b3ce1debe2
Some manual fixups for clashing kfree() cleanups etc.
1782 lines
46 KiB
C
1782 lines
46 KiB
C
/*
|
|
* Common Flash Interface support:
|
|
* AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
|
|
*
|
|
* Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
|
|
* Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
|
|
* Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
|
|
*
|
|
* 2_by_8 routines added by Simon Munton
|
|
*
|
|
* 4_by_16 work by Carolyn J. Smith
|
|
*
|
|
* XIP support hooks by Vitaly Wool (based on code for Intel flash
|
|
* by Nicolas Pitre)
|
|
*
|
|
* Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
|
|
*
|
|
* This code is GPL
|
|
*
|
|
* $Id: cfi_cmdset_0002.c,v 1.122 2005/11/07 11:14:22 gleixner Exp $
|
|
*
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
#include <asm/io.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mtd/compatmac.h>
|
|
#include <linux/mtd/map.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/cfi.h>
|
|
#include <linux/mtd/xip.h>
|
|
|
|
#define AMD_BOOTLOC_BUG
|
|
#define FORCE_WORD_WRITE 0
|
|
|
|
#define MAX_WORD_RETRIES 3
|
|
|
|
#define MANUFACTURER_AMD 0x0001
|
|
#define MANUFACTURER_SST 0x00BF
|
|
#define SST49LF004B 0x0060
|
|
#define SST49LF008A 0x005a
|
|
|
|
static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
|
|
static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
|
|
static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
|
|
static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
|
|
static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
|
|
static void cfi_amdstd_sync (struct mtd_info *);
|
|
static int cfi_amdstd_suspend (struct mtd_info *);
|
|
static void cfi_amdstd_resume (struct mtd_info *);
|
|
static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
|
|
|
|
static void cfi_amdstd_destroy(struct mtd_info *);
|
|
|
|
struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
|
|
static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
|
|
|
|
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
|
|
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
|
|
#include "fwh_lock.h"
|
|
|
|
static struct mtd_chip_driver cfi_amdstd_chipdrv = {
|
|
.probe = NULL, /* Not usable directly */
|
|
.destroy = cfi_amdstd_destroy,
|
|
.name = "cfi_cmdset_0002",
|
|
.module = THIS_MODULE
|
|
};
|
|
|
|
|
|
/* #define DEBUG_CFI_FEATURES */
|
|
|
|
|
|
#ifdef DEBUG_CFI_FEATURES
|
|
static void cfi_tell_features(struct cfi_pri_amdstd *extp)
|
|
{
|
|
const char* erase_suspend[3] = {
|
|
"Not supported", "Read only", "Read/write"
|
|
};
|
|
const char* top_bottom[6] = {
|
|
"No WP", "8x8KiB sectors at top & bottom, no WP",
|
|
"Bottom boot", "Top boot",
|
|
"Uniform, Bottom WP", "Uniform, Top WP"
|
|
};
|
|
|
|
printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
|
|
printk(" Address sensitive unlock: %s\n",
|
|
(extp->SiliconRevision & 1) ? "Not required" : "Required");
|
|
|
|
if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
|
|
printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
|
|
else
|
|
printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
|
|
|
|
if (extp->BlkProt == 0)
|
|
printk(" Block protection: Not supported\n");
|
|
else
|
|
printk(" Block protection: %d sectors per group\n", extp->BlkProt);
|
|
|
|
|
|
printk(" Temporary block unprotect: %s\n",
|
|
extp->TmpBlkUnprotect ? "Supported" : "Not supported");
|
|
printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
|
|
printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
|
|
printk(" Burst mode: %s\n",
|
|
extp->BurstMode ? "Supported" : "Not supported");
|
|
if (extp->PageMode == 0)
|
|
printk(" Page mode: Not supported\n");
|
|
else
|
|
printk(" Page mode: %d word page\n", extp->PageMode << 2);
|
|
|
|
printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
|
|
extp->VppMin >> 4, extp->VppMin & 0xf);
|
|
printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
|
|
extp->VppMax >> 4, extp->VppMax & 0xf);
|
|
|
|
if (extp->TopBottom < ARRAY_SIZE(top_bottom))
|
|
printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
|
|
else
|
|
printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
|
|
}
|
|
#endif
|
|
|
|
#ifdef AMD_BOOTLOC_BUG
|
|
/* Wheee. Bring me the head of someone at AMD. */
|
|
static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
|
|
__u8 major = extp->MajorVersion;
|
|
__u8 minor = extp->MinorVersion;
|
|
|
|
if (((major << 8) | minor) < 0x3131) {
|
|
/* CFI version 1.0 => don't trust bootloc */
|
|
if (cfi->id & 0x80) {
|
|
printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
|
|
extp->TopBottom = 3; /* top boot */
|
|
} else {
|
|
extp->TopBottom = 2; /* bottom boot */
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
if (cfi->cfiq->BufWriteTimeoutTyp) {
|
|
DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
|
|
mtd->write = cfi_amdstd_write_buffers;
|
|
}
|
|
}
|
|
|
|
static void fixup_use_secsi(struct mtd_info *mtd, void *param)
|
|
{
|
|
/* Setup for chips with a secsi area */
|
|
mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
|
|
mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
|
|
}
|
|
|
|
static void fixup_use_erase_chip(struct mtd_info *mtd, void *param)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
if ((cfi->cfiq->NumEraseRegions == 1) &&
|
|
((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
|
|
mtd->erase = cfi_amdstd_erase_chip;
|
|
}
|
|
|
|
}
|
|
|
|
static struct cfi_fixup cfi_fixup_table[] = {
|
|
#ifdef AMD_BOOTLOC_BUG
|
|
{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
|
|
#endif
|
|
{ CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
|
|
{ CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
|
|
{ CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, },
|
|
{ CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, },
|
|
{ CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, },
|
|
{ CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, },
|
|
#if !FORCE_WORD_WRITE
|
|
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, },
|
|
#endif
|
|
{ 0, 0, NULL, NULL }
|
|
};
|
|
static struct cfi_fixup jedec_fixup_table[] = {
|
|
{ MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
|
|
{ MANUFACTURER_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
|
|
{ 0, 0, NULL, NULL }
|
|
};
|
|
|
|
static struct cfi_fixup fixup_table[] = {
|
|
/* The CFI vendor ids and the JEDEC vendor IDs appear
|
|
* to be common. It is like the devices id's are as
|
|
* well. This table is to pick all cases where
|
|
* we know that is the case.
|
|
*/
|
|
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL },
|
|
{ 0, 0, NULL, NULL }
|
|
};
|
|
|
|
|
|
struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct mtd_info *mtd;
|
|
int i;
|
|
|
|
mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
|
|
if (!mtd) {
|
|
printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
|
|
return NULL;
|
|
}
|
|
memset(mtd, 0, sizeof(*mtd));
|
|
mtd->priv = map;
|
|
mtd->type = MTD_NORFLASH;
|
|
|
|
/* Fill in the default mtd operations */
|
|
mtd->erase = cfi_amdstd_erase_varsize;
|
|
mtd->write = cfi_amdstd_write_words;
|
|
mtd->read = cfi_amdstd_read;
|
|
mtd->sync = cfi_amdstd_sync;
|
|
mtd->suspend = cfi_amdstd_suspend;
|
|
mtd->resume = cfi_amdstd_resume;
|
|
mtd->flags = MTD_CAP_NORFLASH;
|
|
mtd->name = map->name;
|
|
|
|
if (cfi->cfi_mode==CFI_MODE_CFI){
|
|
unsigned char bootloc;
|
|
/*
|
|
* It's a real CFI chip, not one for which the probe
|
|
* routine faked a CFI structure. So we read the feature
|
|
* table from it.
|
|
*/
|
|
__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
|
|
struct cfi_pri_amdstd *extp;
|
|
|
|
extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
|
|
if (!extp) {
|
|
kfree(mtd);
|
|
return NULL;
|
|
}
|
|
|
|
if (extp->MajorVersion != '1' ||
|
|
(extp->MinorVersion < '0' || extp->MinorVersion > '4')) {
|
|
printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
|
|
"version %c.%c.\n", extp->MajorVersion,
|
|
extp->MinorVersion);
|
|
kfree(extp);
|
|
kfree(mtd);
|
|
return NULL;
|
|
}
|
|
|
|
/* Install our own private info structure */
|
|
cfi->cmdset_priv = extp;
|
|
|
|
/* Apply cfi device specific fixups */
|
|
cfi_fixup(mtd, cfi_fixup_table);
|
|
|
|
#ifdef DEBUG_CFI_FEATURES
|
|
/* Tell the user about it in lots of lovely detail */
|
|
cfi_tell_features(extp);
|
|
#endif
|
|
|
|
bootloc = extp->TopBottom;
|
|
if ((bootloc != 2) && (bootloc != 3)) {
|
|
printk(KERN_WARNING "%s: CFI does not contain boot "
|
|
"bank location. Assuming top.\n", map->name);
|
|
bootloc = 2;
|
|
}
|
|
|
|
if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
|
|
printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name);
|
|
|
|
for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
|
|
int j = (cfi->cfiq->NumEraseRegions-1)-i;
|
|
__u32 swap;
|
|
|
|
swap = cfi->cfiq->EraseRegionInfo[i];
|
|
cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
|
|
cfi->cfiq->EraseRegionInfo[j] = swap;
|
|
}
|
|
}
|
|
/* Set the default CFI lock/unlock addresses */
|
|
cfi->addr_unlock1 = 0x555;
|
|
cfi->addr_unlock2 = 0x2aa;
|
|
/* Modify the unlock address if we are in compatibility mode */
|
|
if ( /* x16 in x8 mode */
|
|
((cfi->device_type == CFI_DEVICETYPE_X8) &&
|
|
(cfi->cfiq->InterfaceDesc == 2)) ||
|
|
/* x32 in x16 mode */
|
|
((cfi->device_type == CFI_DEVICETYPE_X16) &&
|
|
(cfi->cfiq->InterfaceDesc == 4)))
|
|
{
|
|
cfi->addr_unlock1 = 0xaaa;
|
|
cfi->addr_unlock2 = 0x555;
|
|
}
|
|
|
|
} /* CFI mode */
|
|
else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
|
|
/* Apply jedec specific fixups */
|
|
cfi_fixup(mtd, jedec_fixup_table);
|
|
}
|
|
/* Apply generic fixups */
|
|
cfi_fixup(mtd, fixup_table);
|
|
|
|
for (i=0; i< cfi->numchips; i++) {
|
|
cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
|
|
cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
|
|
cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
|
|
}
|
|
|
|
map->fldrv = &cfi_amdstd_chipdrv;
|
|
|
|
return cfi_amdstd_setup(mtd);
|
|
}
|
|
|
|
|
|
static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
|
|
unsigned long offset = 0;
|
|
int i,j;
|
|
|
|
printk(KERN_NOTICE "number of %s chips: %d\n",
|
|
(cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
|
|
/* Select the correct geometry setup */
|
|
mtd->size = devsize * cfi->numchips;
|
|
|
|
mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
|
|
mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
|
|
* mtd->numeraseregions, GFP_KERNEL);
|
|
if (!mtd->eraseregions) {
|
|
printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
|
|
goto setup_err;
|
|
}
|
|
|
|
for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
|
|
unsigned long ernum, ersize;
|
|
ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
|
|
ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
|
|
|
|
if (mtd->erasesize < ersize) {
|
|
mtd->erasesize = ersize;
|
|
}
|
|
for (j=0; j<cfi->numchips; j++) {
|
|
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
|
|
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
|
|
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
|
|
}
|
|
offset += (ersize * ernum);
|
|
}
|
|
if (offset != devsize) {
|
|
/* Argh */
|
|
printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
|
|
goto setup_err;
|
|
}
|
|
#if 0
|
|
// debug
|
|
for (i=0; i<mtd->numeraseregions;i++){
|
|
printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
|
|
i,mtd->eraseregions[i].offset,
|
|
mtd->eraseregions[i].erasesize,
|
|
mtd->eraseregions[i].numblocks);
|
|
}
|
|
#endif
|
|
|
|
/* FIXME: erase-suspend-program is broken. See
|
|
http://lists.infradead.org/pipermail/linux-mtd/2003-December/009001.html */
|
|
printk(KERN_NOTICE "cfi_cmdset_0002: Disabling erase-suspend-program due to code brokenness.\n");
|
|
|
|
__module_get(THIS_MODULE);
|
|
return mtd;
|
|
|
|
setup_err:
|
|
if(mtd) {
|
|
kfree(mtd->eraseregions);
|
|
kfree(mtd);
|
|
}
|
|
kfree(cfi->cmdset_priv);
|
|
kfree(cfi->cfiq);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Return true if the chip is ready.
|
|
*
|
|
* Ready is one of: read mode, query mode, erase-suspend-read mode (in any
|
|
* non-suspended sector) and is indicated by no toggle bits toggling.
|
|
*
|
|
* Note that anything more complicated than checking if no bits are toggling
|
|
* (including checking DQ5 for an error status) is tricky to get working
|
|
* correctly and is therefore not done (particulary with interleaved chips
|
|
* as each chip must be checked independantly of the others).
|
|
*/
|
|
static int __xipram chip_ready(struct map_info *map, unsigned long addr)
|
|
{
|
|
map_word d, t;
|
|
|
|
d = map_read(map, addr);
|
|
t = map_read(map, addr);
|
|
|
|
return map_word_equal(map, d, t);
|
|
}
|
|
|
|
/*
|
|
* Return true if the chip is ready and has the correct value.
|
|
*
|
|
* Ready is one of: read mode, query mode, erase-suspend-read mode (in any
|
|
* non-suspended sector) and it is indicated by no bits toggling.
|
|
*
|
|
* Error are indicated by toggling bits or bits held with the wrong value,
|
|
* or with bits toggling.
|
|
*
|
|
* Note that anything more complicated than checking if no bits are toggling
|
|
* (including checking DQ5 for an error status) is tricky to get working
|
|
* correctly and is therefore not done (particulary with interleaved chips
|
|
* as each chip must be checked independantly of the others).
|
|
*
|
|
*/
|
|
static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
|
|
{
|
|
map_word oldd, curd;
|
|
|
|
oldd = map_read(map, addr);
|
|
curd = map_read(map, addr);
|
|
|
|
return map_word_equal(map, oldd, curd) &&
|
|
map_word_equal(map, curd, expected);
|
|
}
|
|
|
|
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long timeo;
|
|
struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
|
|
|
|
resettime:
|
|
timeo = jiffies + HZ;
|
|
retry:
|
|
switch (chip->state) {
|
|
|
|
case FL_STATUS:
|
|
for (;;) {
|
|
if (chip_ready(map, adr))
|
|
break;
|
|
|
|
if (time_after(jiffies, timeo)) {
|
|
printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
|
|
spin_unlock(chip->mutex);
|
|
return -EIO;
|
|
}
|
|
spin_unlock(chip->mutex);
|
|
cfi_udelay(1);
|
|
spin_lock(chip->mutex);
|
|
/* Someone else might have been playing with it. */
|
|
goto retry;
|
|
}
|
|
|
|
case FL_READY:
|
|
case FL_CFI_QUERY:
|
|
case FL_JEDEC_QUERY:
|
|
return 0;
|
|
|
|
case FL_ERASING:
|
|
if (mode == FL_WRITING) /* FIXME: Erase-suspend-program appears broken. */
|
|
goto sleep;
|
|
|
|
if (!(mode == FL_READY || mode == FL_POINT
|
|
|| !cfip
|
|
|| (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))
|
|
|| (mode == FL_WRITING && (cfip->EraseSuspend & 0x1))))
|
|
goto sleep;
|
|
|
|
/* We could check to see if we're trying to access the sector
|
|
* that is currently being erased. However, no user will try
|
|
* anything like that so we just wait for the timeout. */
|
|
|
|
/* Erase suspend */
|
|
/* It's harmless to issue the Erase-Suspend and Erase-Resume
|
|
* commands when the erase algorithm isn't in progress. */
|
|
map_write(map, CMD(0xB0), chip->in_progress_block_addr);
|
|
chip->oldstate = FL_ERASING;
|
|
chip->state = FL_ERASE_SUSPENDING;
|
|
chip->erase_suspended = 1;
|
|
for (;;) {
|
|
if (chip_ready(map, adr))
|
|
break;
|
|
|
|
if (time_after(jiffies, timeo)) {
|
|
/* Should have suspended the erase by now.
|
|
* Send an Erase-Resume command as either
|
|
* there was an error (so leave the erase
|
|
* routine to recover from it) or we trying to
|
|
* use the erase-in-progress sector. */
|
|
map_write(map, CMD(0x30), chip->in_progress_block_addr);
|
|
chip->state = FL_ERASING;
|
|
chip->oldstate = FL_READY;
|
|
printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
|
|
return -EIO;
|
|
}
|
|
|
|
spin_unlock(chip->mutex);
|
|
cfi_udelay(1);
|
|
spin_lock(chip->mutex);
|
|
/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
|
|
So we can just loop here. */
|
|
}
|
|
chip->state = FL_READY;
|
|
return 0;
|
|
|
|
case FL_XIP_WHILE_ERASING:
|
|
if (mode != FL_READY && mode != FL_POINT &&
|
|
(!cfip || !(cfip->EraseSuspend&2)))
|
|
goto sleep;
|
|
chip->oldstate = chip->state;
|
|
chip->state = FL_READY;
|
|
return 0;
|
|
|
|
case FL_POINT:
|
|
/* Only if there's no operation suspended... */
|
|
if (mode == FL_READY && chip->oldstate == FL_READY)
|
|
return 0;
|
|
|
|
default:
|
|
sleep:
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
spin_unlock(chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
spin_lock(chip->mutex);
|
|
goto resettime;
|
|
}
|
|
}
|
|
|
|
|
|
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
switch(chip->oldstate) {
|
|
case FL_ERASING:
|
|
chip->state = chip->oldstate;
|
|
map_write(map, CMD(0x30), chip->in_progress_block_addr);
|
|
chip->oldstate = FL_READY;
|
|
chip->state = FL_ERASING;
|
|
break;
|
|
|
|
case FL_XIP_WHILE_ERASING:
|
|
chip->state = chip->oldstate;
|
|
chip->oldstate = FL_READY;
|
|
break;
|
|
|
|
case FL_READY:
|
|
case FL_STATUS:
|
|
/* We should really make set_vpp() count, rather than doing this */
|
|
DISABLE_VPP(map);
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
|
|
}
|
|
wake_up(&chip->wq);
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_XIP
|
|
|
|
/*
|
|
* No interrupt what so ever can be serviced while the flash isn't in array
|
|
* mode. This is ensured by the xip_disable() and xip_enable() functions
|
|
* enclosing any code path where the flash is known not to be in array mode.
|
|
* And within a XIP disabled code path, only functions marked with __xipram
|
|
* may be called and nothing else (it's a good thing to inspect generated
|
|
* assembly to make sure inline functions were actually inlined and that gcc
|
|
* didn't emit calls to its own support functions). Also configuring MTD CFI
|
|
* support to a single buswidth and a single interleave is also recommended.
|
|
*/
|
|
|
|
static void xip_disable(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr)
|
|
{
|
|
/* TODO: chips with no XIP use should ignore and return */
|
|
(void) map_read(map, adr); /* ensure mmu mapping is up to date */
|
|
local_irq_disable();
|
|
}
|
|
|
|
static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
if (chip->state != FL_POINT && chip->state != FL_READY) {
|
|
map_write(map, CMD(0xf0), adr);
|
|
chip->state = FL_READY;
|
|
}
|
|
(void) map_read(map, adr);
|
|
xip_iprefetch();
|
|
local_irq_enable();
|
|
}
|
|
|
|
/*
|
|
* When a delay is required for the flash operation to complete, the
|
|
* xip_udelay() function is polling for both the given timeout and pending
|
|
* (but still masked) hardware interrupts. Whenever there is an interrupt
|
|
* pending then the flash erase operation is suspended, array mode restored
|
|
* and interrupts unmasked. Task scheduling might also happen at that
|
|
* point. The CPU eventually returns from the interrupt or the call to
|
|
* schedule() and the suspended flash operation is resumed for the remaining
|
|
* of the delay period.
|
|
*
|
|
* Warning: this function _will_ fool interrupt latency tracing tools.
|
|
*/
|
|
|
|
static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr, int usec)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
|
|
map_word status, OK = CMD(0x80);
|
|
unsigned long suspended, start = xip_currtime();
|
|
flstate_t oldstate;
|
|
|
|
do {
|
|
cpu_relax();
|
|
if (xip_irqpending() && extp &&
|
|
((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
|
|
(cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
|
|
/*
|
|
* Let's suspend the erase operation when supported.
|
|
* Note that we currently don't try to suspend
|
|
* interleaved chips if there is already another
|
|
* operation suspended (imagine what happens
|
|
* when one chip was already done with the current
|
|
* operation while another chip suspended it, then
|
|
* we resume the whole thing at once). Yes, it
|
|
* can happen!
|
|
*/
|
|
map_write(map, CMD(0xb0), adr);
|
|
usec -= xip_elapsed_since(start);
|
|
suspended = xip_currtime();
|
|
do {
|
|
if (xip_elapsed_since(suspended) > 100000) {
|
|
/*
|
|
* The chip doesn't want to suspend
|
|
* after waiting for 100 msecs.
|
|
* This is a critical error but there
|
|
* is not much we can do here.
|
|
*/
|
|
return;
|
|
}
|
|
status = map_read(map, adr);
|
|
} while (!map_word_andequal(map, status, OK, OK));
|
|
|
|
/* Suspend succeeded */
|
|
oldstate = chip->state;
|
|
if (!map_word_bitsset(map, status, CMD(0x40)))
|
|
break;
|
|
chip->state = FL_XIP_WHILE_ERASING;
|
|
chip->erase_suspended = 1;
|
|
map_write(map, CMD(0xf0), adr);
|
|
(void) map_read(map, adr);
|
|
asm volatile (".rep 8; nop; .endr");
|
|
local_irq_enable();
|
|
spin_unlock(chip->mutex);
|
|
asm volatile (".rep 8; nop; .endr");
|
|
cond_resched();
|
|
|
|
/*
|
|
* We're back. However someone else might have
|
|
* decided to go write to the chip if we are in
|
|
* a suspended erase state. If so let's wait
|
|
* until it's done.
|
|
*/
|
|
spin_lock(chip->mutex);
|
|
while (chip->state != FL_XIP_WHILE_ERASING) {
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
spin_unlock(chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
spin_lock(chip->mutex);
|
|
}
|
|
/* Disallow XIP again */
|
|
local_irq_disable();
|
|
|
|
/* Resume the write or erase operation */
|
|
map_write(map, CMD(0x30), adr);
|
|
chip->state = oldstate;
|
|
start = xip_currtime();
|
|
} else if (usec >= 1000000/HZ) {
|
|
/*
|
|
* Try to save on CPU power when waiting delay
|
|
* is at least a system timer tick period.
|
|
* No need to be extremely accurate here.
|
|
*/
|
|
xip_cpu_idle();
|
|
}
|
|
status = map_read(map, adr);
|
|
} while (!map_word_andequal(map, status, OK, OK)
|
|
&& xip_elapsed_since(start) < usec);
|
|
}
|
|
|
|
#define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
|
|
|
|
/*
|
|
* The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
|
|
* the flash is actively programming or erasing since we have to poll for
|
|
* the operation to complete anyway. We can't do that in a generic way with
|
|
* a XIP setup so do it before the actual flash operation in this case
|
|
* and stub it out from INVALIDATE_CACHE_UDELAY.
|
|
*/
|
|
#define XIP_INVAL_CACHED_RANGE(map, from, size) \
|
|
INVALIDATE_CACHED_RANGE(map, from, size)
|
|
|
|
#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
|
|
UDELAY(map, chip, adr, usec)
|
|
|
|
/*
|
|
* Extra notes:
|
|
*
|
|
* Activating this XIP support changes the way the code works a bit. For
|
|
* example the code to suspend the current process when concurrent access
|
|
* happens is never executed because xip_udelay() will always return with the
|
|
* same chip state as it was entered with. This is why there is no care for
|
|
* the presence of add_wait_queue() or schedule() calls from within a couple
|
|
* xip_disable()'d areas of code, like in do_erase_oneblock for example.
|
|
* The queueing and scheduling are always happening within xip_udelay().
|
|
*
|
|
* Similarly, get_chip() and put_chip() just happen to always be executed
|
|
* with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
|
|
* is in array mode, therefore never executing many cases therein and not
|
|
* causing any problem with XIP.
|
|
*/
|
|
|
|
#else
|
|
|
|
#define xip_disable(map, chip, adr)
|
|
#define xip_enable(map, chip, adr)
|
|
#define XIP_INVAL_CACHED_RANGE(x...)
|
|
|
|
#define UDELAY(map, chip, adr, usec) \
|
|
do { \
|
|
spin_unlock(chip->mutex); \
|
|
cfi_udelay(usec); \
|
|
spin_lock(chip->mutex); \
|
|
} while (0)
|
|
|
|
#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
|
|
do { \
|
|
spin_unlock(chip->mutex); \
|
|
INVALIDATE_CACHED_RANGE(map, adr, len); \
|
|
cfi_udelay(usec); \
|
|
spin_lock(chip->mutex); \
|
|
} while (0)
|
|
|
|
#endif
|
|
|
|
static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
|
|
{
|
|
unsigned long cmd_addr;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int ret;
|
|
|
|
adr += chip->start;
|
|
|
|
/* Ensure cmd read/writes are aligned. */
|
|
cmd_addr = adr & ~(map_bankwidth(map)-1);
|
|
|
|
spin_lock(chip->mutex);
|
|
ret = get_chip(map, chip, cmd_addr, FL_READY);
|
|
if (ret) {
|
|
spin_unlock(chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
if (chip->state != FL_POINT && chip->state != FL_READY) {
|
|
map_write(map, CMD(0xf0), cmd_addr);
|
|
chip->state = FL_READY;
|
|
}
|
|
|
|
map_copy_from(map, buf, adr, len);
|
|
|
|
put_chip(map, chip, cmd_addr);
|
|
|
|
spin_unlock(chip->mutex);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long ofs;
|
|
int chipnum;
|
|
int ret = 0;
|
|
|
|
/* ofs: offset within the first chip that the first read should start */
|
|
|
|
chipnum = (from >> cfi->chipshift);
|
|
ofs = from - (chipnum << cfi->chipshift);
|
|
|
|
|
|
*retlen = 0;
|
|
|
|
while (len) {
|
|
unsigned long thislen;
|
|
|
|
if (chipnum >= cfi->numchips)
|
|
break;
|
|
|
|
if ((len + ofs -1) >> cfi->chipshift)
|
|
thislen = (1<<cfi->chipshift) - ofs;
|
|
else
|
|
thislen = len;
|
|
|
|
ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
|
|
if (ret)
|
|
break;
|
|
|
|
*retlen += thislen;
|
|
len -= thislen;
|
|
buf += thislen;
|
|
|
|
ofs = 0;
|
|
chipnum++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
unsigned long timeo = jiffies + HZ;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
retry:
|
|
spin_lock(chip->mutex);
|
|
|
|
if (chip->state != FL_READY){
|
|
#if 0
|
|
printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);
|
|
#endif
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
|
|
spin_unlock(chip->mutex);
|
|
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
#if 0
|
|
if(signal_pending(current))
|
|
return -EINTR;
|
|
#endif
|
|
timeo = jiffies + HZ;
|
|
|
|
goto retry;
|
|
}
|
|
|
|
adr += chip->start;
|
|
|
|
chip->state = FL_READY;
|
|
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
|
|
map_copy_from(map, buf, adr, len);
|
|
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
|
|
wake_up(&chip->wq);
|
|
spin_unlock(chip->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long ofs;
|
|
int chipnum;
|
|
int ret = 0;
|
|
|
|
|
|
/* ofs: offset within the first chip that the first read should start */
|
|
|
|
/* 8 secsi bytes per chip */
|
|
chipnum=from>>3;
|
|
ofs=from & 7;
|
|
|
|
|
|
*retlen = 0;
|
|
|
|
while (len) {
|
|
unsigned long thislen;
|
|
|
|
if (chipnum >= cfi->numchips)
|
|
break;
|
|
|
|
if ((len + ofs -1) >> 3)
|
|
thislen = (1<<3) - ofs;
|
|
else
|
|
thislen = len;
|
|
|
|
ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
|
|
if (ret)
|
|
break;
|
|
|
|
*retlen += thislen;
|
|
len -= thislen;
|
|
buf += thislen;
|
|
|
|
ofs = 0;
|
|
chipnum++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long timeo = jiffies + HZ;
|
|
/*
|
|
* We use a 1ms + 1 jiffies generic timeout for writes (most devices
|
|
* have a max write time of a few hundreds usec). However, we should
|
|
* use the maximum timeout value given by the chip at probe time
|
|
* instead. Unfortunately, struct flchip does have a field for
|
|
* maximum timeout, only for typical which can be far too short
|
|
* depending of the conditions. The ' + 1' is to avoid having a
|
|
* timeout of 0 jiffies if HZ is smaller than 1000.
|
|
*/
|
|
unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
|
|
int ret = 0;
|
|
map_word oldd;
|
|
int retry_cnt = 0;
|
|
|
|
adr += chip->start;
|
|
|
|
spin_lock(chip->mutex);
|
|
ret = get_chip(map, chip, adr, FL_WRITING);
|
|
if (ret) {
|
|
spin_unlock(chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
|
|
__func__, adr, datum.x[0] );
|
|
|
|
/*
|
|
* Check for a NOP for the case when the datum to write is already
|
|
* present - it saves time and works around buggy chips that corrupt
|
|
* data at other locations when 0xff is written to a location that
|
|
* already contains 0xff.
|
|
*/
|
|
oldd = map_read(map, adr);
|
|
if (map_word_equal(map, oldd, datum)) {
|
|
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
|
|
__func__);
|
|
goto op_done;
|
|
}
|
|
|
|
XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
|
|
ENABLE_VPP(map);
|
|
xip_disable(map, chip, adr);
|
|
retry:
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
map_write(map, datum, adr);
|
|
chip->state = FL_WRITING;
|
|
|
|
INVALIDATE_CACHE_UDELAY(map, chip,
|
|
adr, map_bankwidth(map),
|
|
chip->word_write_time);
|
|
|
|
/* See comment above for timeout value. */
|
|
timeo = jiffies + uWriteTimeout;
|
|
for (;;) {
|
|
if (chip->state != FL_WRITING) {
|
|
/* Someone's suspended the write. Sleep */
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
spin_unlock(chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
timeo = jiffies + (HZ / 2); /* FIXME */
|
|
spin_lock(chip->mutex);
|
|
continue;
|
|
}
|
|
|
|
if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
|
|
xip_enable(map, chip, adr);
|
|
printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
|
|
xip_disable(map, chip, adr);
|
|
break;
|
|
}
|
|
|
|
if (chip_ready(map, adr))
|
|
break;
|
|
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
|
UDELAY(map, chip, adr, 1);
|
|
}
|
|
/* Did we succeed? */
|
|
if (!chip_good(map, adr, datum)) {
|
|
/* reset on all failures. */
|
|
map_write( map, CMD(0xF0), chip->start );
|
|
/* FIXME - should have reset delay before continuing */
|
|
|
|
if (++retry_cnt <= MAX_WORD_RETRIES)
|
|
goto retry;
|
|
|
|
ret = -EIO;
|
|
}
|
|
xip_enable(map, chip, adr);
|
|
op_done:
|
|
chip->state = FL_READY;
|
|
put_chip(map, chip, adr);
|
|
spin_unlock(chip->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int ret = 0;
|
|
int chipnum;
|
|
unsigned long ofs, chipstart;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
*retlen = 0;
|
|
if (!len)
|
|
return 0;
|
|
|
|
chipnum = to >> cfi->chipshift;
|
|
ofs = to - (chipnum << cfi->chipshift);
|
|
chipstart = cfi->chips[chipnum].start;
|
|
|
|
/* If it's not bus-aligned, do the first byte write */
|
|
if (ofs & (map_bankwidth(map)-1)) {
|
|
unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
|
|
int i = ofs - bus_ofs;
|
|
int n = 0;
|
|
map_word tmp_buf;
|
|
|
|
retry:
|
|
spin_lock(cfi->chips[chipnum].mutex);
|
|
|
|
if (cfi->chips[chipnum].state != FL_READY) {
|
|
#if 0
|
|
printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
|
|
#endif
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&cfi->chips[chipnum].wq, &wait);
|
|
|
|
spin_unlock(cfi->chips[chipnum].mutex);
|
|
|
|
schedule();
|
|
remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
|
|
#if 0
|
|
if(signal_pending(current))
|
|
return -EINTR;
|
|
#endif
|
|
goto retry;
|
|
}
|
|
|
|
/* Load 'tmp_buf' with old contents of flash */
|
|
tmp_buf = map_read(map, bus_ofs+chipstart);
|
|
|
|
spin_unlock(cfi->chips[chipnum].mutex);
|
|
|
|
/* Number of bytes to copy from buffer */
|
|
n = min_t(int, len, map_bankwidth(map)-i);
|
|
|
|
tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
|
|
|
|
ret = do_write_oneword(map, &cfi->chips[chipnum],
|
|
bus_ofs, tmp_buf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ofs += n;
|
|
buf += n;
|
|
(*retlen) += n;
|
|
len -= n;
|
|
|
|
if (ofs >> cfi->chipshift) {
|
|
chipnum ++;
|
|
ofs = 0;
|
|
if (chipnum == cfi->numchips)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* We are now aligned, write as much as possible */
|
|
while(len >= map_bankwidth(map)) {
|
|
map_word datum;
|
|
|
|
datum = map_word_load(map, buf);
|
|
|
|
ret = do_write_oneword(map, &cfi->chips[chipnum],
|
|
ofs, datum);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ofs += map_bankwidth(map);
|
|
buf += map_bankwidth(map);
|
|
(*retlen) += map_bankwidth(map);
|
|
len -= map_bankwidth(map);
|
|
|
|
if (ofs >> cfi->chipshift) {
|
|
chipnum ++;
|
|
ofs = 0;
|
|
if (chipnum == cfi->numchips)
|
|
return 0;
|
|
chipstart = cfi->chips[chipnum].start;
|
|
}
|
|
}
|
|
|
|
/* Write the trailing bytes if any */
|
|
if (len & (map_bankwidth(map)-1)) {
|
|
map_word tmp_buf;
|
|
|
|
retry1:
|
|
spin_lock(cfi->chips[chipnum].mutex);
|
|
|
|
if (cfi->chips[chipnum].state != FL_READY) {
|
|
#if 0
|
|
printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
|
|
#endif
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&cfi->chips[chipnum].wq, &wait);
|
|
|
|
spin_unlock(cfi->chips[chipnum].mutex);
|
|
|
|
schedule();
|
|
remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
|
|
#if 0
|
|
if(signal_pending(current))
|
|
return -EINTR;
|
|
#endif
|
|
goto retry1;
|
|
}
|
|
|
|
tmp_buf = map_read(map, ofs + chipstart);
|
|
|
|
spin_unlock(cfi->chips[chipnum].mutex);
|
|
|
|
tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
|
|
|
|
ret = do_write_oneword(map, &cfi->chips[chipnum],
|
|
ofs, tmp_buf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
(*retlen) += len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* FIXME: interleaved mode not tested, and probably not supported!
|
|
*/
|
|
static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr, const u_char *buf,
|
|
int len)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long timeo = jiffies + HZ;
|
|
/* see comments in do_write_oneword() regarding uWriteTimeo. */
|
|
unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
|
|
int ret = -EIO;
|
|
unsigned long cmd_adr;
|
|
int z, words;
|
|
map_word datum;
|
|
|
|
adr += chip->start;
|
|
cmd_adr = adr;
|
|
|
|
spin_lock(chip->mutex);
|
|
ret = get_chip(map, chip, adr, FL_WRITING);
|
|
if (ret) {
|
|
spin_unlock(chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
datum = map_word_load(map, buf);
|
|
|
|
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
|
|
__func__, adr, datum.x[0] );
|
|
|
|
XIP_INVAL_CACHED_RANGE(map, adr, len);
|
|
ENABLE_VPP(map);
|
|
xip_disable(map, chip, cmd_adr);
|
|
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
|
|
//cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
|
|
/* Write Buffer Load */
|
|
map_write(map, CMD(0x25), cmd_adr);
|
|
|
|
chip->state = FL_WRITING_TO_BUFFER;
|
|
|
|
/* Write length of data to come */
|
|
words = len / map_bankwidth(map);
|
|
map_write(map, CMD(words - 1), cmd_adr);
|
|
/* Write data */
|
|
z = 0;
|
|
while(z < words * map_bankwidth(map)) {
|
|
datum = map_word_load(map, buf);
|
|
map_write(map, datum, adr + z);
|
|
|
|
z += map_bankwidth(map);
|
|
buf += map_bankwidth(map);
|
|
}
|
|
z -= map_bankwidth(map);
|
|
|
|
adr += z;
|
|
|
|
/* Write Buffer Program Confirm: GO GO GO */
|
|
map_write(map, CMD(0x29), cmd_adr);
|
|
chip->state = FL_WRITING;
|
|
|
|
INVALIDATE_CACHE_UDELAY(map, chip,
|
|
adr, map_bankwidth(map),
|
|
chip->word_write_time);
|
|
|
|
timeo = jiffies + uWriteTimeout;
|
|
|
|
for (;;) {
|
|
if (chip->state != FL_WRITING) {
|
|
/* Someone's suspended the write. Sleep */
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
spin_unlock(chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
timeo = jiffies + (HZ / 2); /* FIXME */
|
|
spin_lock(chip->mutex);
|
|
continue;
|
|
}
|
|
|
|
if (time_after(jiffies, timeo) && !chip_ready(map, adr))
|
|
break;
|
|
|
|
if (chip_ready(map, adr)) {
|
|
xip_enable(map, chip, adr);
|
|
goto op_done;
|
|
}
|
|
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
|
UDELAY(map, chip, adr, 1);
|
|
}
|
|
|
|
/* reset on all failures. */
|
|
map_write( map, CMD(0xF0), chip->start );
|
|
xip_enable(map, chip, adr);
|
|
/* FIXME - should have reset delay before continuing */
|
|
|
|
printk(KERN_WARNING "MTD %s(): software timeout\n",
|
|
__func__ );
|
|
|
|
ret = -EIO;
|
|
op_done:
|
|
chip->state = FL_READY;
|
|
put_chip(map, chip, adr);
|
|
spin_unlock(chip->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
|
|
int ret = 0;
|
|
int chipnum;
|
|
unsigned long ofs;
|
|
|
|
*retlen = 0;
|
|
if (!len)
|
|
return 0;
|
|
|
|
chipnum = to >> cfi->chipshift;
|
|
ofs = to - (chipnum << cfi->chipshift);
|
|
|
|
/* If it's not bus-aligned, do the first word write */
|
|
if (ofs & (map_bankwidth(map)-1)) {
|
|
size_t local_len = (-ofs)&(map_bankwidth(map)-1);
|
|
if (local_len > len)
|
|
local_len = len;
|
|
ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
|
|
local_len, retlen, buf);
|
|
if (ret)
|
|
return ret;
|
|
ofs += local_len;
|
|
buf += local_len;
|
|
len -= local_len;
|
|
|
|
if (ofs >> cfi->chipshift) {
|
|
chipnum ++;
|
|
ofs = 0;
|
|
if (chipnum == cfi->numchips)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Write buffer is worth it only if more than one word to write... */
|
|
while (len >= map_bankwidth(map) * 2) {
|
|
/* We must not cross write block boundaries */
|
|
int size = wbufsize - (ofs & (wbufsize-1));
|
|
|
|
if (size > len)
|
|
size = len;
|
|
if (size % map_bankwidth(map))
|
|
size -= size % map_bankwidth(map);
|
|
|
|
ret = do_write_buffer(map, &cfi->chips[chipnum],
|
|
ofs, buf, size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ofs += size;
|
|
buf += size;
|
|
(*retlen) += size;
|
|
len -= size;
|
|
|
|
if (ofs >> cfi->chipshift) {
|
|
chipnum ++;
|
|
ofs = 0;
|
|
if (chipnum == cfi->numchips)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (len) {
|
|
size_t retlen_dregs = 0;
|
|
|
|
ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
|
|
len, &retlen_dregs, buf);
|
|
|
|
*retlen += retlen_dregs;
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Handle devices with one erase region, that only implement
|
|
* the chip erase command.
|
|
*/
|
|
static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long timeo = jiffies + HZ;
|
|
unsigned long int adr;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
int ret = 0;
|
|
|
|
adr = cfi->addr_unlock1;
|
|
|
|
spin_lock(chip->mutex);
|
|
ret = get_chip(map, chip, adr, FL_WRITING);
|
|
if (ret) {
|
|
spin_unlock(chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
|
|
__func__, chip->start );
|
|
|
|
XIP_INVAL_CACHED_RANGE(map, adr, map->size);
|
|
ENABLE_VPP(map);
|
|
xip_disable(map, chip, adr);
|
|
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
|
|
chip->state = FL_ERASING;
|
|
chip->erase_suspended = 0;
|
|
chip->in_progress_block_addr = adr;
|
|
|
|
INVALIDATE_CACHE_UDELAY(map, chip,
|
|
adr, map->size,
|
|
chip->erase_time*500);
|
|
|
|
timeo = jiffies + (HZ*20);
|
|
|
|
for (;;) {
|
|
if (chip->state != FL_ERASING) {
|
|
/* Someone's suspended the erase. Sleep */
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
spin_unlock(chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
spin_lock(chip->mutex);
|
|
continue;
|
|
}
|
|
if (chip->erase_suspended) {
|
|
/* This erase was suspended and resumed.
|
|
Adjust the timeout */
|
|
timeo = jiffies + (HZ*20); /* FIXME */
|
|
chip->erase_suspended = 0;
|
|
}
|
|
|
|
if (chip_ready(map, adr))
|
|
break;
|
|
|
|
if (time_after(jiffies, timeo)) {
|
|
printk(KERN_WARNING "MTD %s(): software timeout\n",
|
|
__func__ );
|
|
break;
|
|
}
|
|
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
|
UDELAY(map, chip, adr, 1000000/HZ);
|
|
}
|
|
/* Did we succeed? */
|
|
if (!chip_good(map, adr, map_word_ff(map))) {
|
|
/* reset on all failures. */
|
|
map_write( map, CMD(0xF0), chip->start );
|
|
/* FIXME - should have reset delay before continuing */
|
|
|
|
ret = -EIO;
|
|
}
|
|
|
|
chip->state = FL_READY;
|
|
xip_enable(map, chip, adr);
|
|
put_chip(map, chip, adr);
|
|
spin_unlock(chip->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long timeo = jiffies + HZ;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
int ret = 0;
|
|
|
|
adr += chip->start;
|
|
|
|
spin_lock(chip->mutex);
|
|
ret = get_chip(map, chip, adr, FL_ERASING);
|
|
if (ret) {
|
|
spin_unlock(chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
|
|
__func__, adr );
|
|
|
|
XIP_INVAL_CACHED_RANGE(map, adr, len);
|
|
ENABLE_VPP(map);
|
|
xip_disable(map, chip, adr);
|
|
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
|
|
map_write(map, CMD(0x30), adr);
|
|
|
|
chip->state = FL_ERASING;
|
|
chip->erase_suspended = 0;
|
|
chip->in_progress_block_addr = adr;
|
|
|
|
INVALIDATE_CACHE_UDELAY(map, chip,
|
|
adr, len,
|
|
chip->erase_time*500);
|
|
|
|
timeo = jiffies + (HZ*20);
|
|
|
|
for (;;) {
|
|
if (chip->state != FL_ERASING) {
|
|
/* Someone's suspended the erase. Sleep */
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
spin_unlock(chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
spin_lock(chip->mutex);
|
|
continue;
|
|
}
|
|
if (chip->erase_suspended) {
|
|
/* This erase was suspended and resumed.
|
|
Adjust the timeout */
|
|
timeo = jiffies + (HZ*20); /* FIXME */
|
|
chip->erase_suspended = 0;
|
|
}
|
|
|
|
if (chip_ready(map, adr)) {
|
|
xip_enable(map, chip, adr);
|
|
break;
|
|
}
|
|
|
|
if (time_after(jiffies, timeo)) {
|
|
xip_enable(map, chip, adr);
|
|
printk(KERN_WARNING "MTD %s(): software timeout\n",
|
|
__func__ );
|
|
break;
|
|
}
|
|
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
|
UDELAY(map, chip, adr, 1000000/HZ);
|
|
}
|
|
/* Did we succeed? */
|
|
if (!chip_good(map, adr, map_word_ff(map))) {
|
|
/* reset on all failures. */
|
|
map_write( map, CMD(0xF0), chip->start );
|
|
/* FIXME - should have reset delay before continuing */
|
|
|
|
ret = -EIO;
|
|
}
|
|
|
|
chip->state = FL_READY;
|
|
put_chip(map, chip, adr);
|
|
spin_unlock(chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
|
|
int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
unsigned long ofs, len;
|
|
int ret;
|
|
|
|
ofs = instr->addr;
|
|
len = instr->len;
|
|
|
|
ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
instr->state = MTD_ERASE_DONE;
|
|
mtd_erase_callback(instr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int ret = 0;
|
|
|
|
if (instr->addr != 0)
|
|
return -EINVAL;
|
|
|
|
if (instr->len != mtd->size)
|
|
return -EINVAL;
|
|
|
|
ret = do_erase_chip(map, &cfi->chips[0]);
|
|
if (ret)
|
|
return ret;
|
|
|
|
instr->state = MTD_ERASE_DONE;
|
|
mtd_erase_callback(instr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void cfi_amdstd_sync (struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int i;
|
|
struct flchip *chip;
|
|
int ret = 0;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
for (i=0; !ret && i<cfi->numchips; i++) {
|
|
chip = &cfi->chips[i];
|
|
|
|
retry:
|
|
spin_lock(chip->mutex);
|
|
|
|
switch(chip->state) {
|
|
case FL_READY:
|
|
case FL_STATUS:
|
|
case FL_CFI_QUERY:
|
|
case FL_JEDEC_QUERY:
|
|
chip->oldstate = chip->state;
|
|
chip->state = FL_SYNCING;
|
|
/* No need to wake_up() on this state change -
|
|
* as the whole point is that nobody can do anything
|
|
* with the chip now anyway.
|
|
*/
|
|
case FL_SYNCING:
|
|
spin_unlock(chip->mutex);
|
|
break;
|
|
|
|
default:
|
|
/* Not an idle state */
|
|
add_wait_queue(&chip->wq, &wait);
|
|
|
|
spin_unlock(chip->mutex);
|
|
|
|
schedule();
|
|
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
/* Unlock the chips again */
|
|
|
|
for (i--; i >=0; i--) {
|
|
chip = &cfi->chips[i];
|
|
|
|
spin_lock(chip->mutex);
|
|
|
|
if (chip->state == FL_SYNCING) {
|
|
chip->state = chip->oldstate;
|
|
wake_up(&chip->wq);
|
|
}
|
|
spin_unlock(chip->mutex);
|
|
}
|
|
}
|
|
|
|
|
|
static int cfi_amdstd_suspend(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int i;
|
|
struct flchip *chip;
|
|
int ret = 0;
|
|
|
|
for (i=0; !ret && i<cfi->numchips; i++) {
|
|
chip = &cfi->chips[i];
|
|
|
|
spin_lock(chip->mutex);
|
|
|
|
switch(chip->state) {
|
|
case FL_READY:
|
|
case FL_STATUS:
|
|
case FL_CFI_QUERY:
|
|
case FL_JEDEC_QUERY:
|
|
chip->oldstate = chip->state;
|
|
chip->state = FL_PM_SUSPENDED;
|
|
/* No need to wake_up() on this state change -
|
|
* as the whole point is that nobody can do anything
|
|
* with the chip now anyway.
|
|
*/
|
|
case FL_PM_SUSPENDED:
|
|
break;
|
|
|
|
default:
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
spin_unlock(chip->mutex);
|
|
}
|
|
|
|
/* Unlock the chips again */
|
|
|
|
if (ret) {
|
|
for (i--; i >=0; i--) {
|
|
chip = &cfi->chips[i];
|
|
|
|
spin_lock(chip->mutex);
|
|
|
|
if (chip->state == FL_PM_SUSPENDED) {
|
|
chip->state = chip->oldstate;
|
|
wake_up(&chip->wq);
|
|
}
|
|
spin_unlock(chip->mutex);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static void cfi_amdstd_resume(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int i;
|
|
struct flchip *chip;
|
|
|
|
for (i=0; i<cfi->numchips; i++) {
|
|
|
|
chip = &cfi->chips[i];
|
|
|
|
spin_lock(chip->mutex);
|
|
|
|
if (chip->state == FL_PM_SUSPENDED) {
|
|
chip->state = FL_READY;
|
|
map_write(map, CMD(0xF0), chip->start);
|
|
wake_up(&chip->wq);
|
|
}
|
|
else
|
|
printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
|
|
|
|
spin_unlock(chip->mutex);
|
|
}
|
|
}
|
|
|
|
static void cfi_amdstd_destroy(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
kfree(cfi->cmdset_priv);
|
|
kfree(cfi->cfiq);
|
|
kfree(cfi);
|
|
kfree(mtd->eraseregions);
|
|
}
|
|
|
|
static char im_name[]="cfi_cmdset_0002";
|
|
|
|
|
|
static int __init cfi_amdstd_init(void)
|
|
{
|
|
inter_module_register(im_name, THIS_MODULE, &cfi_cmdset_0002);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void __exit cfi_amdstd_exit(void)
|
|
{
|
|
inter_module_unregister(im_name);
|
|
}
|
|
|
|
|
|
module_init(cfi_amdstd_init);
|
|
module_exit(cfi_amdstd_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
|
|
MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
|