linux/drivers/mtd/chips/cfi_cmdset_0002.c

1783 lines
46 KiB
C
Raw Normal View History

/*
* Common Flash Interface support:
* AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
*
* Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
* Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
* Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
*
* 2_by_8 routines added by Simon Munton
*
* 4_by_16 work by Carolyn J. Smith
*
* XIP support hooks by Vitaly Wool (based on code for Intel flash
* by Nicolas Pitre)
*
* Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
*
* This code is GPL
*
* $Id: cfi_cmdset_0002.c,v 1.122 2005/11/07 11:14:22 gleixner Exp $
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/mtd/compatmac.h>
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/cfi.h>
#include <linux/mtd/xip.h>
#define AMD_BOOTLOC_BUG
#define FORCE_WORD_WRITE 0
#define MAX_WORD_RETRIES 3
#define MANUFACTURER_AMD 0x0001
#define MANUFACTURER_SST 0x00BF
#define SST49LF004B 0x0060
#define SST49LF008A 0x005a
static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
static void cfi_amdstd_sync (struct mtd_info *);
static int cfi_amdstd_suspend (struct mtd_info *);
static void cfi_amdstd_resume (struct mtd_info *);
static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static void cfi_amdstd_destroy(struct mtd_info *);
struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
#include "fwh_lock.h"
static struct mtd_chip_driver cfi_amdstd_chipdrv = {
.probe = NULL, /* Not usable directly */
.destroy = cfi_amdstd_destroy,
.name = "cfi_cmdset_0002",
.module = THIS_MODULE
};
/* #define DEBUG_CFI_FEATURES */
#ifdef DEBUG_CFI_FEATURES
static void cfi_tell_features(struct cfi_pri_amdstd *extp)
{
const char* erase_suspend[3] = {
"Not supported", "Read only", "Read/write"
};
const char* top_bottom[6] = {
"No WP", "8x8KiB sectors at top & bottom, no WP",
"Bottom boot", "Top boot",
"Uniform, Bottom WP", "Uniform, Top WP"
};
printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
printk(" Address sensitive unlock: %s\n",
(extp->SiliconRevision & 1) ? "Not required" : "Required");
if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
else
printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
if (extp->BlkProt == 0)
printk(" Block protection: Not supported\n");
else
printk(" Block protection: %d sectors per group\n", extp->BlkProt);
printk(" Temporary block unprotect: %s\n",
extp->TmpBlkUnprotect ? "Supported" : "Not supported");
printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
printk(" Burst mode: %s\n",
extp->BurstMode ? "Supported" : "Not supported");
if (extp->PageMode == 0)
printk(" Page mode: Not supported\n");
else
printk(" Page mode: %d word page\n", extp->PageMode << 2);
printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
extp->VppMin >> 4, extp->VppMin & 0xf);
printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
extp->VppMax >> 4, extp->VppMax & 0xf);
if (extp->TopBottom < ARRAY_SIZE(top_bottom))
printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
else
printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
}
#endif
#ifdef AMD_BOOTLOC_BUG
/* Wheee. Bring me the head of someone at AMD. */
static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
__u8 major = extp->MajorVersion;
__u8 minor = extp->MinorVersion;
if (((major << 8) | minor) < 0x3131) {
/* CFI version 1.0 => don't trust bootloc */
if (cfi->id & 0x80) {
printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
extp->TopBottom = 3; /* top boot */
} else {
extp->TopBottom = 2; /* bottom boot */
}
}
}
#endif
static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
if (cfi->cfiq->BufWriteTimeoutTyp) {
DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
mtd->write = cfi_amdstd_write_buffers;
}
}
static void fixup_use_secsi(struct mtd_info *mtd, void *param)
{
/* Setup for chips with a secsi area */
mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
}
static void fixup_use_erase_chip(struct mtd_info *mtd, void *param)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
if ((cfi->cfiq->NumEraseRegions == 1) &&
((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
mtd->erase = cfi_amdstd_erase_chip;
}
}
static struct cfi_fixup cfi_fixup_table[] = {
#ifdef AMD_BOOTLOC_BUG
{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
#endif
{ CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
{ CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
{ CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, },
{ CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, },
{ CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, },
{ CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, },
#if !FORCE_WORD_WRITE
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, },
#endif
{ 0, 0, NULL, NULL }
};
static struct cfi_fixup jedec_fixup_table[] = {
{ MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
{ MANUFACTURER_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
{ 0, 0, NULL, NULL }
};
static struct cfi_fixup fixup_table[] = {
/* The CFI vendor ids and the JEDEC vendor IDs appear
* to be common. It is like the devices id's are as
* well. This table is to pick all cases where
* we know that is the case.
*/
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL },
{ 0, 0, NULL, NULL }
};
struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
{
struct cfi_private *cfi = map->fldrv_priv;
struct mtd_info *mtd;
int i;
mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
if (!mtd) {
printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
return NULL;
}
memset(mtd, 0, sizeof(*mtd));
mtd->priv = map;
mtd->type = MTD_NORFLASH;
/* Fill in the default mtd operations */
mtd->erase = cfi_amdstd_erase_varsize;
mtd->write = cfi_amdstd_write_words;
mtd->read = cfi_amdstd_read;
mtd->sync = cfi_amdstd_sync;
mtd->suspend = cfi_amdstd_suspend;
mtd->resume = cfi_amdstd_resume;
mtd->flags = MTD_CAP_NORFLASH;
mtd->name = map->name;
if (cfi->cfi_mode==CFI_MODE_CFI){
unsigned char bootloc;
/*
* It's a real CFI chip, not one for which the probe
* routine faked a CFI structure. So we read the feature
* table from it.
*/
__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
struct cfi_pri_amdstd *extp;
extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
if (!extp) {
kfree(mtd);
return NULL;
}
if (extp->MajorVersion != '1' ||
(extp->MinorVersion < '0' || extp->MinorVersion > '4')) {
printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
"version %c.%c.\n", extp->MajorVersion,
extp->MinorVersion);
kfree(extp);
kfree(mtd);
return NULL;
}
/* Install our own private info structure */
cfi->cmdset_priv = extp;
/* Apply cfi device specific fixups */
cfi_fixup(mtd, cfi_fixup_table);
#ifdef DEBUG_CFI_FEATURES
/* Tell the user about it in lots of lovely detail */
cfi_tell_features(extp);
#endif
bootloc = extp->TopBottom;
if ((bootloc != 2) && (bootloc != 3)) {
printk(KERN_WARNING "%s: CFI does not contain boot "
"bank location. Assuming top.\n", map->name);
bootloc = 2;
}
if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name);
for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
int j = (cfi->cfiq->NumEraseRegions-1)-i;
__u32 swap;
swap = cfi->cfiq->EraseRegionInfo[i];
cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
cfi->cfiq->EraseRegionInfo[j] = swap;
}
}
/* Set the default CFI lock/unlock addresses */
cfi->addr_unlock1 = 0x555;
cfi->addr_unlock2 = 0x2aa;
/* Modify the unlock address if we are in compatibility mode */
if ( /* x16 in x8 mode */
((cfi->device_type == CFI_DEVICETYPE_X8) &&
(cfi->cfiq->InterfaceDesc == 2)) ||
/* x32 in x16 mode */
((cfi->device_type == CFI_DEVICETYPE_X16) &&
(cfi->cfiq->InterfaceDesc == 4)))
{
cfi->addr_unlock1 = 0xaaa;
cfi->addr_unlock2 = 0x555;
}
} /* CFI mode */
else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
/* Apply jedec specific fixups */
cfi_fixup(mtd, jedec_fixup_table);
}
/* Apply generic fixups */
cfi_fixup(mtd, fixup_table);
for (i=0; i< cfi->numchips; i++) {
cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
}
map->fldrv = &cfi_amdstd_chipdrv;
return cfi_amdstd_setup(mtd);
}
static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
unsigned long offset = 0;
int i,j;
printk(KERN_NOTICE "number of %s chips: %d\n",
(cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
/* Select the correct geometry setup */
mtd->size = devsize * cfi->numchips;
mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
* mtd->numeraseregions, GFP_KERNEL);
if (!mtd->eraseregions) {
printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
goto setup_err;
}
for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
unsigned long ernum, ersize;
ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
if (mtd->erasesize < ersize) {
mtd->erasesize = ersize;
}
for (j=0; j<cfi->numchips; j++) {
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
}
offset += (ersize * ernum);
}
if (offset != devsize) {
/* Argh */
printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
goto setup_err;
}
#if 0
// debug
for (i=0; i<mtd->numeraseregions;i++){
printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
i,mtd->eraseregions[i].offset,
mtd->eraseregions[i].erasesize,
mtd->eraseregions[i].numblocks);
}
#endif
/* FIXME: erase-suspend-program is broken. See
http://lists.infradead.org/pipermail/linux-mtd/2003-December/009001.html */
printk(KERN_NOTICE "cfi_cmdset_0002: Disabling erase-suspend-program due to code brokenness.\n");
__module_get(THIS_MODULE);
return mtd;
setup_err:
if(mtd) {
kfree(mtd->eraseregions);
kfree(mtd);
}
kfree(cfi->cmdset_priv);
kfree(cfi->cfiq);
return NULL;
}
/*
* Return true if the chip is ready.
*
* Ready is one of: read mode, query mode, erase-suspend-read mode (in any
* non-suspended sector) and is indicated by no toggle bits toggling.
*
* Note that anything more complicated than checking if no bits are toggling
* (including checking DQ5 for an error status) is tricky to get working
* correctly and is therefore not done (particulary with interleaved chips
* as each chip must be checked independantly of the others).
*/
static int __xipram chip_ready(struct map_info *map, unsigned long addr)
{
map_word d, t;
d = map_read(map, addr);
t = map_read(map, addr);
return map_word_equal(map, d, t);
}
/*
* Return true if the chip is ready and has the correct value.
*
* Ready is one of: read mode, query mode, erase-suspend-read mode (in any
* non-suspended sector) and it is indicated by no bits toggling.
*
* Error are indicated by toggling bits or bits held with the wrong value,
* or with bits toggling.
*
* Note that anything more complicated than checking if no bits are toggling
* (including checking DQ5 for an error status) is tricky to get working
* correctly and is therefore not done (particulary with interleaved chips
* as each chip must be checked independantly of the others).
*
*/
static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
{
map_word oldd, curd;
oldd = map_read(map, addr);
curd = map_read(map, addr);
return map_word_equal(map, oldd, curd) &&
map_word_equal(map, curd, expected);
}
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
{
DECLARE_WAITQUEUE(wait, current);
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo;
struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
resettime:
timeo = jiffies + HZ;
retry:
switch (chip->state) {
case FL_STATUS:
for (;;) {
if (chip_ready(map, adr))
break;
if (time_after(jiffies, timeo)) {
printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
spin_unlock(chip->mutex);
return -EIO;
}
spin_unlock(chip->mutex);
cfi_udelay(1);
spin_lock(chip->mutex);
/* Someone else might have been playing with it. */
goto retry;
}
case FL_READY:
case FL_CFI_QUERY:
case FL_JEDEC_QUERY:
return 0;
case FL_ERASING:
if (mode == FL_WRITING) /* FIXME: Erase-suspend-program appears broken. */
goto sleep;
if (!(mode == FL_READY || mode == FL_POINT
|| !cfip
|| (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))
|| (mode == FL_WRITING && (cfip->EraseSuspend & 0x1))))
goto sleep;
/* We could check to see if we're trying to access the sector
* that is currently being erased. However, no user will try
* anything like that so we just wait for the timeout. */
/* Erase suspend */
/* It's harmless to issue the Erase-Suspend and Erase-Resume
* commands when the erase algorithm isn't in progress. */
map_write(map, CMD(0xB0), chip->in_progress_block_addr);
chip->oldstate = FL_ERASING;
chip->state = FL_ERASE_SUSPENDING;
chip->erase_suspended = 1;
for (;;) {
if (chip_ready(map, adr))
break;
if (time_after(jiffies, timeo)) {
/* Should have suspended the erase by now.
* Send an Erase-Resume command as either
* there was an error (so leave the erase
* routine to recover from it) or we trying to
* use the erase-in-progress sector. */
map_write(map, CMD(0x30), chip->in_progress_block_addr);
chip->state = FL_ERASING;
chip->oldstate = FL_READY;
printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
return -EIO;
}
spin_unlock(chip->mutex);
cfi_udelay(1);
spin_lock(chip->mutex);
/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
So we can just loop here. */
}
chip->state = FL_READY;
return 0;
case FL_XIP_WHILE_ERASING:
if (mode != FL_READY && mode != FL_POINT &&
(!cfip || !(cfip->EraseSuspend&2)))
goto sleep;
chip->oldstate = chip->state;
chip->state = FL_READY;
return 0;
case FL_POINT:
/* Only if there's no operation suspended... */
if (mode == FL_READY && chip->oldstate == FL_READY)
return 0;
default:
sleep:
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
spin_lock(chip->mutex);
goto resettime;
}
}
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
{
struct cfi_private *cfi = map->fldrv_priv;
switch(chip->oldstate) {
case FL_ERASING:
chip->state = chip->oldstate;
map_write(map, CMD(0x30), chip->in_progress_block_addr);
chip->oldstate = FL_READY;
chip->state = FL_ERASING;
break;
case FL_XIP_WHILE_ERASING:
chip->state = chip->oldstate;
chip->oldstate = FL_READY;
break;
case FL_READY:
case FL_STATUS:
/* We should really make set_vpp() count, rather than doing this */
DISABLE_VPP(map);
break;
default:
printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
}
wake_up(&chip->wq);
}
#ifdef CONFIG_MTD_XIP
/*
* No interrupt what so ever can be serviced while the flash isn't in array
* mode. This is ensured by the xip_disable() and xip_enable() functions
* enclosing any code path where the flash is known not to be in array mode.
* And within a XIP disabled code path, only functions marked with __xipram
* may be called and nothing else (it's a good thing to inspect generated
* assembly to make sure inline functions were actually inlined and that gcc
* didn't emit calls to its own support functions). Also configuring MTD CFI
* support to a single buswidth and a single interleave is also recommended.
*/
static void xip_disable(struct map_info *map, struct flchip *chip,
unsigned long adr)
{
/* TODO: chips with no XIP use should ignore and return */
(void) map_read(map, adr); /* ensure mmu mapping is up to date */
local_irq_disable();
}
static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
unsigned long adr)
{
struct cfi_private *cfi = map->fldrv_priv;
if (chip->state != FL_POINT && chip->state != FL_READY) {
map_write(map, CMD(0xf0), adr);
chip->state = FL_READY;
}
(void) map_read(map, adr);
xip_iprefetch();
local_irq_enable();
}
/*
* When a delay is required for the flash operation to complete, the
* xip_udelay() function is polling for both the given timeout and pending
* (but still masked) hardware interrupts. Whenever there is an interrupt
* pending then the flash erase operation is suspended, array mode restored
* and interrupts unmasked. Task scheduling might also happen at that
* point. The CPU eventually returns from the interrupt or the call to
* schedule() and the suspended flash operation is resumed for the remaining
* of the delay period.
*
* Warning: this function _will_ fool interrupt latency tracing tools.
*/
static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
unsigned long adr, int usec)
{
struct cfi_private *cfi = map->fldrv_priv;
struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
map_word status, OK = CMD(0x80);
unsigned long suspended, start = xip_currtime();
flstate_t oldstate;
do {
cpu_relax();
if (xip_irqpending() && extp &&
((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
(cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
/*
* Let's suspend the erase operation when supported.
* Note that we currently don't try to suspend
* interleaved chips if there is already another
* operation suspended (imagine what happens
* when one chip was already done with the current
* operation while another chip suspended it, then
* we resume the whole thing at once). Yes, it
* can happen!
*/
map_write(map, CMD(0xb0), adr);
usec -= xip_elapsed_since(start);
suspended = xip_currtime();
do {
if (xip_elapsed_since(suspended) > 100000) {
/*
* The chip doesn't want to suspend
* after waiting for 100 msecs.
* This is a critical error but there
* is not much we can do here.
*/
return;
}
status = map_read(map, adr);
} while (!map_word_andequal(map, status, OK, OK));
/* Suspend succeeded */
oldstate = chip->state;
if (!map_word_bitsset(map, status, CMD(0x40)))
break;
chip->state = FL_XIP_WHILE_ERASING;
chip->erase_suspended = 1;
map_write(map, CMD(0xf0), adr);
(void) map_read(map, adr);
asm volatile (".rep 8; nop; .endr");
local_irq_enable();
spin_unlock(chip->mutex);
asm volatile (".rep 8; nop; .endr");
cond_resched();
/*
* We're back. However someone else might have
* decided to go write to the chip if we are in
* a suspended erase state. If so let's wait
* until it's done.
*/
spin_lock(chip->mutex);
while (chip->state != FL_XIP_WHILE_ERASING) {
DECLARE_WAITQUEUE(wait, current);
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
spin_lock(chip->mutex);
}
/* Disallow XIP again */
local_irq_disable();
/* Resume the write or erase operation */
map_write(map, CMD(0x30), adr);
chip->state = oldstate;
start = xip_currtime();
} else if (usec >= 1000000/HZ) {
/*
* Try to save on CPU power when waiting delay
* is at least a system timer tick period.
* No need to be extremely accurate here.
*/
xip_cpu_idle();
}
status = map_read(map, adr);
} while (!map_word_andequal(map, status, OK, OK)
&& xip_elapsed_since(start) < usec);
}
#define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
/*
* The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
* the flash is actively programming or erasing since we have to poll for
* the operation to complete anyway. We can't do that in a generic way with
* a XIP setup so do it before the actual flash operation in this case
* and stub it out from INVALIDATE_CACHE_UDELAY.
*/
#define XIP_INVAL_CACHED_RANGE(map, from, size) \
INVALIDATE_CACHED_RANGE(map, from, size)
#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
UDELAY(map, chip, adr, usec)
/*
* Extra notes:
*
* Activating this XIP support changes the way the code works a bit. For
* example the code to suspend the current process when concurrent access
* happens is never executed because xip_udelay() will always return with the
* same chip state as it was entered with. This is why there is no care for
* the presence of add_wait_queue() or schedule() calls from within a couple
* xip_disable()'d areas of code, like in do_erase_oneblock for example.
* The queueing and scheduling are always happening within xip_udelay().
*
* Similarly, get_chip() and put_chip() just happen to always be executed
* with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
* is in array mode, therefore never executing many cases therein and not
* causing any problem with XIP.
*/
#else
#define xip_disable(map, chip, adr)
#define xip_enable(map, chip, adr)
#define XIP_INVAL_CACHED_RANGE(x...)
#define UDELAY(map, chip, adr, usec) \
do { \
spin_unlock(chip->mutex); \
cfi_udelay(usec); \
spin_lock(chip->mutex); \
} while (0)
#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
do { \
spin_unlock(chip->mutex); \
INVALIDATE_CACHED_RANGE(map, adr, len); \
cfi_udelay(usec); \
spin_lock(chip->mutex); \
} while (0)
#endif
static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
{
unsigned long cmd_addr;
struct cfi_private *cfi = map->fldrv_priv;
int ret;
adr += chip->start;
/* Ensure cmd read/writes are aligned. */
cmd_addr = adr & ~(map_bankwidth(map)-1);
spin_lock(chip->mutex);
ret = get_chip(map, chip, cmd_addr, FL_READY);
if (ret) {
spin_unlock(chip->mutex);
return ret;
}
if (chip->state != FL_POINT && chip->state != FL_READY) {
map_write(map, CMD(0xf0), cmd_addr);
chip->state = FL_READY;
}
map_copy_from(map, buf, adr, len);
put_chip(map, chip, cmd_addr);
spin_unlock(chip->mutex);
return 0;
}
static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
unsigned long ofs;
int chipnum;
int ret = 0;
/* ofs: offset within the first chip that the first read should start */
chipnum = (from >> cfi->chipshift);
ofs = from - (chipnum << cfi->chipshift);
*retlen = 0;
while (len) {
unsigned long thislen;
if (chipnum >= cfi->numchips)
break;
if ((len + ofs -1) >> cfi->chipshift)
thislen = (1<<cfi->chipshift) - ofs;
else
thislen = len;
ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
if (ret)
break;
*retlen += thislen;
len -= thislen;
buf += thislen;
ofs = 0;
chipnum++;
}
return ret;
}
static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
{
DECLARE_WAITQUEUE(wait, current);
unsigned long timeo = jiffies + HZ;
struct cfi_private *cfi = map->fldrv_priv;
retry:
spin_lock(chip->mutex);
if (chip->state != FL_READY){
#if 0
printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);
#endif
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
#if 0
if(signal_pending(current))
return -EINTR;
#endif
timeo = jiffies + HZ;
goto retry;
}
adr += chip->start;
chip->state = FL_READY;
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
map_copy_from(map, buf, adr, len);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
wake_up(&chip->wq);
spin_unlock(chip->mutex);
return 0;
}
static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
unsigned long ofs;
int chipnum;
int ret = 0;
/* ofs: offset within the first chip that the first read should start */
/* 8 secsi bytes per chip */
chipnum=from>>3;
ofs=from & 7;
*retlen = 0;
while (len) {
unsigned long thislen;
if (chipnum >= cfi->numchips)
break;
if ((len + ofs -1) >> 3)
thislen = (1<<3) - ofs;
else
thislen = len;
ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
if (ret)
break;
*retlen += thislen;
len -= thislen;
buf += thislen;
ofs = 0;
chipnum++;
}
return ret;
}
static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
/*
* We use a 1ms + 1 jiffies generic timeout for writes (most devices
* have a max write time of a few hundreds usec). However, we should
* use the maximum timeout value given by the chip at probe time
* instead. Unfortunately, struct flchip does have a field for
* maximum timeout, only for typical which can be far too short
* depending of the conditions. The ' + 1' is to avoid having a
* timeout of 0 jiffies if HZ is smaller than 1000.
*/
unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
int ret = 0;
map_word oldd;
int retry_cnt = 0;
adr += chip->start;
spin_lock(chip->mutex);
ret = get_chip(map, chip, adr, FL_WRITING);
if (ret) {
spin_unlock(chip->mutex);
return ret;
}
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
__func__, adr, datum.x[0] );
/*
* Check for a NOP for the case when the datum to write is already
* present - it saves time and works around buggy chips that corrupt
* data at other locations when 0xff is written to a location that
* already contains 0xff.
*/
oldd = map_read(map, adr);
if (map_word_equal(map, oldd, datum)) {
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
__func__);
goto op_done;
}
XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
ENABLE_VPP(map);
xip_disable(map, chip, adr);
retry:
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
map_write(map, datum, adr);
chip->state = FL_WRITING;
INVALIDATE_CACHE_UDELAY(map, chip,
adr, map_bankwidth(map),
chip->word_write_time);
/* See comment above for timeout value. */
timeo = jiffies + uWriteTimeout;
for (;;) {
if (chip->state != FL_WRITING) {
/* Someone's suspended the write. Sleep */
DECLARE_WAITQUEUE(wait, current);
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
timeo = jiffies + (HZ / 2); /* FIXME */
spin_lock(chip->mutex);
continue;
}
if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
xip_enable(map, chip, adr);
printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
xip_disable(map, chip, adr);
break;
}
if (chip_ready(map, adr))
break;
/* Latency issues. Drop the lock, wait a while and retry */
UDELAY(map, chip, adr, 1);
}
/* Did we succeed? */
if (!chip_good(map, adr, datum)) {
/* reset on all failures. */
map_write( map, CMD(0xF0), chip->start );
/* FIXME - should have reset delay before continuing */
if (++retry_cnt <= MAX_WORD_RETRIES)
goto retry;
ret = -EIO;
}
xip_enable(map, chip, adr);
op_done:
chip->state = FL_READY;
put_chip(map, chip, adr);
spin_unlock(chip->mutex);
return ret;
}
static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int ret = 0;
int chipnum;
unsigned long ofs, chipstart;
DECLARE_WAITQUEUE(wait, current);
*retlen = 0;
if (!len)
return 0;
chipnum = to >> cfi->chipshift;
ofs = to - (chipnum << cfi->chipshift);
chipstart = cfi->chips[chipnum].start;
/* If it's not bus-aligned, do the first byte write */
if (ofs & (map_bankwidth(map)-1)) {
unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
int i = ofs - bus_ofs;
int n = 0;
map_word tmp_buf;
retry:
spin_lock(cfi->chips[chipnum].mutex);
if (cfi->chips[chipnum].state != FL_READY) {
#if 0
printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
#endif
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&cfi->chips[chipnum].wq, &wait);
spin_unlock(cfi->chips[chipnum].mutex);
schedule();
remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
#if 0
if(signal_pending(current))
return -EINTR;
#endif
goto retry;
}
/* Load 'tmp_buf' with old contents of flash */
tmp_buf = map_read(map, bus_ofs+chipstart);
spin_unlock(cfi->chips[chipnum].mutex);
/* Number of bytes to copy from buffer */
n = min_t(int, len, map_bankwidth(map)-i);
tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
ret = do_write_oneword(map, &cfi->chips[chipnum],
bus_ofs, tmp_buf);
if (ret)
return ret;
ofs += n;
buf += n;
(*retlen) += n;
len -= n;
if (ofs >> cfi->chipshift) {
chipnum ++;
ofs = 0;
if (chipnum == cfi->numchips)
return 0;
}
}
/* We are now aligned, write as much as possible */
while(len >= map_bankwidth(map)) {
map_word datum;
datum = map_word_load(map, buf);
ret = do_write_oneword(map, &cfi->chips[chipnum],
ofs, datum);
if (ret)
return ret;
ofs += map_bankwidth(map);
buf += map_bankwidth(map);
(*retlen) += map_bankwidth(map);
len -= map_bankwidth(map);
if (ofs >> cfi->chipshift) {
chipnum ++;
ofs = 0;
if (chipnum == cfi->numchips)
return 0;
chipstart = cfi->chips[chipnum].start;
}
}
/* Write the trailing bytes if any */
if (len & (map_bankwidth(map)-1)) {
map_word tmp_buf;
retry1:
spin_lock(cfi->chips[chipnum].mutex);
if (cfi->chips[chipnum].state != FL_READY) {
#if 0
printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
#endif
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&cfi->chips[chipnum].wq, &wait);
spin_unlock(cfi->chips[chipnum].mutex);
schedule();
remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
#if 0
if(signal_pending(current))
return -EINTR;
#endif
goto retry1;
}
tmp_buf = map_read(map, ofs + chipstart);
spin_unlock(cfi->chips[chipnum].mutex);
tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
ret = do_write_oneword(map, &cfi->chips[chipnum],
ofs, tmp_buf);
if (ret)
return ret;
(*retlen) += len;
}
return 0;
}
/*
* FIXME: interleaved mode not tested, and probably not supported!
*/
static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
unsigned long adr, const u_char *buf,
int len)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
/* see comments in do_write_oneword() regarding uWriteTimeo. */
unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
int ret = -EIO;
unsigned long cmd_adr;
int z, words;
map_word datum;
adr += chip->start;
cmd_adr = adr;
spin_lock(chip->mutex);
ret = get_chip(map, chip, adr, FL_WRITING);
if (ret) {
spin_unlock(chip->mutex);
return ret;
}
datum = map_word_load(map, buf);
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
__func__, adr, datum.x[0] );
XIP_INVAL_CACHED_RANGE(map, adr, len);
ENABLE_VPP(map);
xip_disable(map, chip, cmd_adr);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
//cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
/* Write Buffer Load */
map_write(map, CMD(0x25), cmd_adr);
chip->state = FL_WRITING_TO_BUFFER;
/* Write length of data to come */
words = len / map_bankwidth(map);
map_write(map, CMD(words - 1), cmd_adr);
/* Write data */
z = 0;
while(z < words * map_bankwidth(map)) {
datum = map_word_load(map, buf);
map_write(map, datum, adr + z);
z += map_bankwidth(map);
buf += map_bankwidth(map);
}
z -= map_bankwidth(map);
adr += z;
/* Write Buffer Program Confirm: GO GO GO */
map_write(map, CMD(0x29), cmd_adr);
chip->state = FL_WRITING;
INVALIDATE_CACHE_UDELAY(map, chip,
adr, map_bankwidth(map),
chip->word_write_time);
timeo = jiffies + uWriteTimeout;
for (;;) {
if (chip->state != FL_WRITING) {
/* Someone's suspended the write. Sleep */
DECLARE_WAITQUEUE(wait, current);
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
timeo = jiffies + (HZ / 2); /* FIXME */
spin_lock(chip->mutex);
continue;
}
if (time_after(jiffies, timeo) && !chip_ready(map, adr))
break;
if (chip_ready(map, adr)) {
xip_enable(map, chip, adr);
goto op_done;
}
/* Latency issues. Drop the lock, wait a while and retry */
UDELAY(map, chip, adr, 1);
}
/* reset on all failures. */
map_write( map, CMD(0xF0), chip->start );
xip_enable(map, chip, adr);
/* FIXME - should have reset delay before continuing */
printk(KERN_WARNING "MTD %s(): software timeout\n",
__func__ );
ret = -EIO;
op_done:
chip->state = FL_READY;
put_chip(map, chip, adr);
spin_unlock(chip->mutex);
return ret;
}
static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
int ret = 0;
int chipnum;
unsigned long ofs;
*retlen = 0;
if (!len)
return 0;
chipnum = to >> cfi->chipshift;
ofs = to - (chipnum << cfi->chipshift);
/* If it's not bus-aligned, do the first word write */
if (ofs & (map_bankwidth(map)-1)) {
size_t local_len = (-ofs)&(map_bankwidth(map)-1);
if (local_len > len)
local_len = len;
ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
local_len, retlen, buf);
if (ret)
return ret;
ofs += local_len;
buf += local_len;
len -= local_len;
if (ofs >> cfi->chipshift) {
chipnum ++;
ofs = 0;
if (chipnum == cfi->numchips)
return 0;
}
}
/* Write buffer is worth it only if more than one word to write... */
while (len >= map_bankwidth(map) * 2) {
/* We must not cross write block boundaries */
int size = wbufsize - (ofs & (wbufsize-1));
if (size > len)
size = len;
if (size % map_bankwidth(map))
size -= size % map_bankwidth(map);
ret = do_write_buffer(map, &cfi->chips[chipnum],
ofs, buf, size);
if (ret)
return ret;
ofs += size;
buf += size;
(*retlen) += size;
len -= size;
if (ofs >> cfi->chipshift) {
chipnum ++;
ofs = 0;
if (chipnum == cfi->numchips)
return 0;
}
}
if (len) {
size_t retlen_dregs = 0;
ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
len, &retlen_dregs, buf);
*retlen += retlen_dregs;
return ret;
}
return 0;
}
/*
* Handle devices with one erase region, that only implement
* the chip erase command.
*/
static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
unsigned long int adr;
DECLARE_WAITQUEUE(wait, current);
int ret = 0;
adr = cfi->addr_unlock1;
spin_lock(chip->mutex);
ret = get_chip(map, chip, adr, FL_WRITING);
if (ret) {
spin_unlock(chip->mutex);
return ret;
}
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
__func__, chip->start );
XIP_INVAL_CACHED_RANGE(map, adr, map->size);
ENABLE_VPP(map);
xip_disable(map, chip, adr);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
chip->state = FL_ERASING;
chip->erase_suspended = 0;
chip->in_progress_block_addr = adr;
INVALIDATE_CACHE_UDELAY(map, chip,
adr, map->size,
chip->erase_time*500);
timeo = jiffies + (HZ*20);
for (;;) {
if (chip->state != FL_ERASING) {
/* Someone's suspended the erase. Sleep */
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
spin_lock(chip->mutex);
continue;
}
if (chip->erase_suspended) {
/* This erase was suspended and resumed.
Adjust the timeout */
timeo = jiffies + (HZ*20); /* FIXME */
chip->erase_suspended = 0;
}
if (chip_ready(map, adr))
break;
if (time_after(jiffies, timeo)) {
printk(KERN_WARNING "MTD %s(): software timeout\n",
__func__ );
break;
}
/* Latency issues. Drop the lock, wait a while and retry */
UDELAY(map, chip, adr, 1000000/HZ);
}
/* Did we succeed? */
if (!chip_good(map, adr, map_word_ff(map))) {
/* reset on all failures. */
map_write( map, CMD(0xF0), chip->start );
/* FIXME - should have reset delay before continuing */
ret = -EIO;
}
chip->state = FL_READY;
xip_enable(map, chip, adr);
put_chip(map, chip, adr);
spin_unlock(chip->mutex);
return ret;
}
static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
DECLARE_WAITQUEUE(wait, current);
int ret = 0;
adr += chip->start;
spin_lock(chip->mutex);
ret = get_chip(map, chip, adr, FL_ERASING);
if (ret) {
spin_unlock(chip->mutex);
return ret;
}
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
__func__, adr );
XIP_INVAL_CACHED_RANGE(map, adr, len);
ENABLE_VPP(map);
xip_disable(map, chip, adr);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
map_write(map, CMD(0x30), adr);
chip->state = FL_ERASING;
chip->erase_suspended = 0;
chip->in_progress_block_addr = adr;
INVALIDATE_CACHE_UDELAY(map, chip,
adr, len,
chip->erase_time*500);
timeo = jiffies + (HZ*20);
for (;;) {
if (chip->state != FL_ERASING) {
/* Someone's suspended the erase. Sleep */
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
spin_lock(chip->mutex);
continue;
}
if (chip->erase_suspended) {
/* This erase was suspended and resumed.
Adjust the timeout */
timeo = jiffies + (HZ*20); /* FIXME */
chip->erase_suspended = 0;
}
if (chip_ready(map, adr)) {
xip_enable(map, chip, adr);
break;
}
if (time_after(jiffies, timeo)) {
xip_enable(map, chip, adr);
printk(KERN_WARNING "MTD %s(): software timeout\n",
__func__ );
break;
}
/* Latency issues. Drop the lock, wait a while and retry */
UDELAY(map, chip, adr, 1000000/HZ);
}
/* Did we succeed? */
if (!chip_good(map, adr, map_word_ff(map))) {
/* reset on all failures. */
map_write( map, CMD(0xF0), chip->start );
/* FIXME - should have reset delay before continuing */
ret = -EIO;
}
chip->state = FL_READY;
put_chip(map, chip, adr);
spin_unlock(chip->mutex);
return ret;
}
int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
{
unsigned long ofs, len;
int ret;
ofs = instr->addr;
len = instr->len;
ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
if (ret)
return ret;
instr->state = MTD_ERASE_DONE;
mtd_erase_callback(instr);
return 0;
}
static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int ret = 0;
if (instr->addr != 0)
return -EINVAL;
if (instr->len != mtd->size)
return -EINVAL;
ret = do_erase_chip(map, &cfi->chips[0]);
if (ret)
return ret;
instr->state = MTD_ERASE_DONE;
mtd_erase_callback(instr);
return 0;
}
static void cfi_amdstd_sync (struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int i;
struct flchip *chip;
int ret = 0;
DECLARE_WAITQUEUE(wait, current);
for (i=0; !ret && i<cfi->numchips; i++) {
chip = &cfi->chips[i];
retry:
spin_lock(chip->mutex);
switch(chip->state) {
case FL_READY:
case FL_STATUS:
case FL_CFI_QUERY:
case FL_JEDEC_QUERY:
chip->oldstate = chip->state;
chip->state = FL_SYNCING;
/* No need to wake_up() on this state change -
* as the whole point is that nobody can do anything
* with the chip now anyway.
*/
case FL_SYNCING:
spin_unlock(chip->mutex);
break;
default:
/* Not an idle state */
add_wait_queue(&chip->wq, &wait);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
goto retry;
}
}
/* Unlock the chips again */
for (i--; i >=0; i--) {
chip = &cfi->chips[i];
spin_lock(chip->mutex);
if (chip->state == FL_SYNCING) {
chip->state = chip->oldstate;
wake_up(&chip->wq);
}
spin_unlock(chip->mutex);
}
}
static int cfi_amdstd_suspend(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int i;
struct flchip *chip;
int ret = 0;
for (i=0; !ret && i<cfi->numchips; i++) {
chip = &cfi->chips[i];
spin_lock(chip->mutex);
switch(chip->state) {
case FL_READY:
case FL_STATUS:
case FL_CFI_QUERY:
case FL_JEDEC_QUERY:
chip->oldstate = chip->state;
chip->state = FL_PM_SUSPENDED;
/* No need to wake_up() on this state change -
* as the whole point is that nobody can do anything
* with the chip now anyway.
*/
case FL_PM_SUSPENDED:
break;
default:
ret = -EAGAIN;
break;
}
spin_unlock(chip->mutex);
}
/* Unlock the chips again */
if (ret) {
for (i--; i >=0; i--) {
chip = &cfi->chips[i];
spin_lock(chip->mutex);
if (chip->state == FL_PM_SUSPENDED) {
chip->state = chip->oldstate;
wake_up(&chip->wq);
}
spin_unlock(chip->mutex);
}
}
return ret;
}
static void cfi_amdstd_resume(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int i;
struct flchip *chip;
for (i=0; i<cfi->numchips; i++) {
chip = &cfi->chips[i];
spin_lock(chip->mutex);
if (chip->state == FL_PM_SUSPENDED) {
chip->state = FL_READY;
map_write(map, CMD(0xF0), chip->start);
wake_up(&chip->wq);
}
else
printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
spin_unlock(chip->mutex);
}
}
static void cfi_amdstd_destroy(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
kfree(cfi->cmdset_priv);
kfree(cfi->cfiq);
kfree(cfi);
kfree(mtd->eraseregions);
}
static char im_name[]="cfi_cmdset_0002";
static int __init cfi_amdstd_init(void)
{
inter_module_register(im_name, THIS_MODULE, &cfi_cmdset_0002);
return 0;
}
static void __exit cfi_amdstd_exit(void)
{
inter_module_unregister(im_name);
}
module_init(cfi_amdstd_init);
module_exit(cfi_amdstd_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");