linux/drivers/firewire/fw-ohci.c

1394 lines
40 KiB
C
Raw Normal View History

/* -*- c-basic-offset: 8 -*-
*
* fw-ohci.c - Driver for OHCI 1394 boards
* Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include <linux/dma-mapping.h>
#include <asm/uaccess.h>
#include <asm/semaphore.h>
#include "fw-transaction.h"
#include "fw-ohci.h"
#define descriptor_output_more 0
#define descriptor_output_last (1 << 12)
#define descriptor_input_more (2 << 12)
#define descriptor_input_last (3 << 12)
#define descriptor_status (1 << 11)
#define descriptor_key_immediate (2 << 8)
#define descriptor_ping (1 << 7)
#define descriptor_yy (1 << 6)
#define descriptor_no_irq (0 << 4)
#define descriptor_irq_error (1 << 4)
#define descriptor_irq_always (3 << 4)
#define descriptor_branch_always (3 << 2)
struct descriptor {
__le16 req_count;
__le16 control;
__le32 data_address;
__le32 branch_address;
__le16 res_count;
__le16 transfer_status;
} __attribute__((aligned(16)));
struct ar_context {
struct fw_ohci *ohci;
struct descriptor descriptor;
__le32 buffer[512];
dma_addr_t descriptor_bus;
dma_addr_t buffer_bus;
u32 command_ptr;
u32 control_set;
u32 control_clear;
struct tasklet_struct tasklet;
};
struct at_context {
struct fw_ohci *ohci;
dma_addr_t descriptor_bus;
dma_addr_t buffer_bus;
struct list_head list;
struct {
struct descriptor more;
__le32 header[4];
struct descriptor last;
} d;
u32 command_ptr;
u32 control_set;
u32 control_clear;
struct tasklet_struct tasklet;
};
#define it_header_sy(v) ((v) << 0)
#define it_header_tcode(v) ((v) << 4)
#define it_header_channel(v) ((v) << 8)
#define it_header_tag(v) ((v) << 14)
#define it_header_speed(v) ((v) << 16)
#define it_header_data_length(v) ((v) << 16)
struct iso_context {
struct fw_iso_context base;
struct tasklet_struct tasklet;
u32 control_set;
u32 control_clear;
u32 command_ptr;
u32 context_match;
struct descriptor *buffer;
dma_addr_t buffer_bus;
struct descriptor *head_descriptor;
struct descriptor *tail_descriptor;
struct descriptor *tail_descriptor_last;
struct descriptor *prev_descriptor;
};
#define CONFIG_ROM_SIZE 1024
struct fw_ohci {
struct fw_card card;
__iomem char *registers;
dma_addr_t self_id_bus;
__le32 *self_id_cpu;
struct tasklet_struct bus_reset_tasklet;
int generation;
int request_generation;
/* Spinlock for accessing fw_ohci data. Never call out of
* this driver with this lock held. */
spinlock_t lock;
u32 self_id_buffer[512];
/* Config rom buffers */
__be32 *config_rom;
dma_addr_t config_rom_bus;
__be32 *next_config_rom;
dma_addr_t next_config_rom_bus;
u32 next_header;
struct ar_context ar_request_ctx;
struct ar_context ar_response_ctx;
struct at_context at_request_ctx;
struct at_context at_response_ctx;
u32 it_context_mask;
struct iso_context *it_context_list;
u32 ir_context_mask;
struct iso_context *ir_context_list;
};
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
{
return container_of(card, struct fw_ohci, card);
}
#define CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
#define CONTEXT_RUN 0x8000
#define CONTEXT_WAKE 0x1000
#define CONTEXT_DEAD 0x0800
#define CONTEXT_ACTIVE 0x0400
#define OHCI1394_MAX_AT_REQ_RETRIES 0x2
#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
#define FW_OHCI_MAJOR 240
#define OHCI1394_REGISTER_SIZE 0x800
#define OHCI_LOOP_COUNT 500
#define OHCI1394_PCI_HCI_Control 0x40
#define SELF_ID_BUF_SIZE 0x800
static char ohci_driver_name[] = KBUILD_MODNAME;
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
{
writel(data, ohci->registers + offset);
}
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
{
return readl(ohci->registers + offset);
}
static inline void flush_writes(const struct fw_ohci *ohci)
{
/* Do a dummy read to flush writes. */
reg_read(ohci, OHCI1394_Version);
}
static int
ohci_update_phy_reg(struct fw_card *card, int addr,
int clear_bits, int set_bits)
{
struct fw_ohci *ohci = fw_ohci(card);
u32 val, old;
reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
msleep(2);
val = reg_read(ohci, OHCI1394_PhyControl);
if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
fw_error("failed to set phy reg bits.\n");
return -EBUSY;
}
old = OHCI1394_PhyControl_ReadData(val);
old = (old & ~clear_bits) | set_bits;
reg_write(ohci, OHCI1394_PhyControl,
OHCI1394_PhyControl_Write(addr, old));
return 0;
}
static void ar_context_run(struct ar_context *ctx)
{
reg_write(ctx->ohci, ctx->command_ptr, ctx->descriptor_bus | 1);
reg_write(ctx->ohci, ctx->control_set, CONTEXT_RUN);
flush_writes(ctx->ohci);
}
static void ar_context_tasklet(unsigned long data)
{
struct ar_context *ctx = (struct ar_context *)data;
struct fw_ohci *ohci = ctx->ohci;
u32 status;
int length, speed, ack, timestamp, tcode;
/* FIXME: What to do about evt_* errors? */
length = le16_to_cpu(ctx->descriptor.req_count) -
le16_to_cpu(ctx->descriptor.res_count) - 4;
status = le32_to_cpu(ctx->buffer[length / 4]);
ack = ((status >> 16) & 0x1f) - 16;
speed = (status >> 21) & 0x7;
timestamp = status & 0xffff;
ctx->buffer[0] = le32_to_cpu(ctx->buffer[0]);
ctx->buffer[1] = le32_to_cpu(ctx->buffer[1]);
ctx->buffer[2] = le32_to_cpu(ctx->buffer[2]);
tcode = (ctx->buffer[0] >> 4) & 0x0f;
if (TCODE_IS_BLOCK_PACKET(tcode))
ctx->buffer[3] = le32_to_cpu(ctx->buffer[3]);
/* The OHCI bus reset handler synthesizes a phy packet with
* the new generation number when a bus reset happens (see
* section 8.4.2.3). This helps us determine when a request
* was received and make sure we send the response in the same
* generation. We only need this for requests; for responses
* we use the unique tlabel for finding the matching
* request. */
if (ack + 16 == 0x09)
ohci->request_generation = (ctx->buffer[2] >> 16) & 0xff;
else if (ctx == &ohci->ar_request_ctx)
fw_core_handle_request(&ohci->card, speed, ack, timestamp,
ohci->request_generation,
length, ctx->buffer);
else
fw_core_handle_response(&ohci->card, speed, ack, timestamp,
length, ctx->buffer);
ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
ctx->descriptor.req_count = cpu_to_le16(sizeof ctx->buffer);
ctx->descriptor.res_count = cpu_to_le16(sizeof ctx->buffer);
dma_sync_single_for_device(ohci->card.device, ctx->descriptor_bus,
sizeof ctx->descriptor_bus, DMA_TO_DEVICE);
/* FIXME: We stop and restart the ar context here, what if we
* stop while a receive is in progress? Maybe we could just
* loop the context back to itself and use it in buffer fill
* mode as intended... */
reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
ar_context_run(ctx);
}
static int
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 control_set)
{
ctx->descriptor_bus =
dma_map_single(ohci->card.device, &ctx->descriptor,
sizeof ctx->descriptor, DMA_TO_DEVICE);
if (ctx->descriptor_bus == 0)
return -ENOMEM;
if (ctx->descriptor_bus & 0xf)
fw_notify("descriptor not 16-byte aligned: 0x%08lx\n",
(unsigned long)ctx->descriptor_bus);
ctx->buffer_bus =
dma_map_single(ohci->card.device, ctx->buffer,
sizeof ctx->buffer, DMA_FROM_DEVICE);
if (ctx->buffer_bus == 0) {
dma_unmap_single(ohci->card.device, ctx->descriptor_bus,
sizeof ctx->descriptor, DMA_TO_DEVICE);
return -ENOMEM;
}
memset(&ctx->descriptor, 0, sizeof ctx->descriptor);
ctx->descriptor.control = cpu_to_le16(descriptor_input_more |
descriptor_status |
descriptor_branch_always);
ctx->descriptor.req_count = cpu_to_le16(sizeof ctx->buffer);
ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
ctx->descriptor.res_count = cpu_to_le16(sizeof ctx->buffer);
ctx->control_set = control_set;
ctx->control_clear = control_set + 4;
ctx->command_ptr = control_set + 12;
ctx->ohci = ohci;
tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
ar_context_run(ctx);
return 0;
}
static void
do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
{
struct fw_packet *p, *next;
list_for_each_entry_safe(p, next, list, link)
p->callback(p, &ohci->card, p->status);
}
static void
complete_transmission(struct fw_packet *packet,
int status, struct list_head *list)
{
list_move_tail(&packet->link, list);
packet->status = status;
}
/* This function prepares the first packet in the context queue for
* transmission. Must always be called with the ochi->lock held to
* ensure proper generation handling and locking around packet queue
* manipulation. */
static void
at_context_setup_packet(struct at_context *ctx, struct list_head *list)
{
struct fw_packet *packet;
struct fw_ohci *ohci = ctx->ohci;
int z, tcode;
packet = fw_packet(ctx->list.next);
memset(&ctx->d, 0, sizeof ctx->d);
if (packet->payload_length > 0) {
packet->payload_bus = dma_map_single(ohci->card.device,
packet->payload,
packet->payload_length,
DMA_TO_DEVICE);
if (packet->payload_bus == 0) {
complete_transmission(packet, -ENOMEM, list);
return;
}
ctx->d.more.control =
cpu_to_le16(descriptor_output_more |
descriptor_key_immediate);
ctx->d.more.req_count = cpu_to_le16(packet->header_length);
ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
ctx->d.last.control =
cpu_to_le16(descriptor_output_last |
descriptor_irq_always |
descriptor_branch_always);
ctx->d.last.req_count = cpu_to_le16(packet->payload_length);
ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
z = 3;
} else {
ctx->d.more.control =
cpu_to_le16(descriptor_output_last |
descriptor_key_immediate |
descriptor_irq_always |
descriptor_branch_always);
ctx->d.more.req_count = cpu_to_le16(packet->header_length);
ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
z = 2;
}
/* The DMA format for asyncronous link packets is different
* from the IEEE1394 layout, so shift the fields around
* accordingly. If header_length is 8, it's a PHY packet, to
* which we need to prepend an extra quadlet. */
if (packet->header_length > 8) {
ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
(packet->speed << 16));
ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
(packet->header[0] & 0xffff0000));
ctx->d.header[2] = cpu_to_le32(packet->header[2]);
tcode = (packet->header[0] >> 4) & 0x0f;
if (TCODE_IS_BLOCK_PACKET(tcode))
ctx->d.header[3] = cpu_to_le32(packet->header[3]);
else
ctx->d.header[3] = packet->header[3];
} else {
ctx->d.header[0] =
cpu_to_le32((OHCI1394_phy_tcode << 4) |
(packet->speed << 16));
ctx->d.header[1] = cpu_to_le32(packet->header[0]);
ctx->d.header[2] = cpu_to_le32(packet->header[1]);
ctx->d.more.req_count = cpu_to_le16(12);
}
/* FIXME: Document how the locking works. */
if (ohci->generation == packet->generation) {
reg_write(ctx->ohci, ctx->command_ptr,
ctx->descriptor_bus | z);
reg_write(ctx->ohci, ctx->control_set,
CONTEXT_RUN | CONTEXT_WAKE);
} else {
/* We dont return error codes from this function; all
* transmission errors are reported through the
* callback. */
complete_transmission(packet, -ESTALE, list);
}
}
static void at_context_stop(struct at_context *ctx)
{
u32 reg;
reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
reg = reg_read(ctx->ohci, ctx->control_set);
if (reg & CONTEXT_ACTIVE)
fw_notify("Tried to stop context, but it is still active "
"(0x%08x).\n", reg);
}
static void at_context_tasklet(unsigned long data)
{
struct at_context *ctx = (struct at_context *)data;
struct fw_ohci *ohci = ctx->ohci;
struct fw_packet *packet;
LIST_HEAD(list);
unsigned long flags;
int evt;
spin_lock_irqsave(&ohci->lock, flags);
packet = fw_packet(ctx->list.next);
at_context_stop(ctx);
if (packet->payload_length > 0) {
dma_unmap_single(ohci->card.device, packet->payload_bus,
packet->payload_length, DMA_TO_DEVICE);
evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
}
else {
evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
}
if (evt < 16) {
switch (evt) {
case OHCI1394_evt_timeout:
/* Async response transmit timed out. */
complete_transmission(packet, -ETIMEDOUT, &list);
break;
case OHCI1394_evt_flushed:
/* The packet was flushed should give same
* error as when we try to use a stale
* generation count. */
complete_transmission(packet, -ESTALE, &list);
break;
case OHCI1394_evt_missing_ack:
/* This would be a higher level software
* error, it is using a valid (current)
* generation count, but the node is not on
* the bus. */
complete_transmission(packet, -ENODEV, &list);
break;
default:
complete_transmission(packet, -EIO, &list);
break;
}
} else
complete_transmission(packet, evt - 16, &list);
/* If more packets are queued, set up the next one. */
if (!list_empty(&ctx->list))
at_context_setup_packet(ctx, &list);
spin_unlock_irqrestore(&ohci->lock, flags);
do_packet_callbacks(ohci, &list);
}
static int
at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 control_set)
{
INIT_LIST_HEAD(&ctx->list);
ctx->descriptor_bus =
dma_map_single(ohci->card.device, &ctx->d,
sizeof ctx->d, DMA_TO_DEVICE);
if (ctx->descriptor_bus == 0)
return -ENOMEM;
ctx->control_set = control_set;
ctx->control_clear = control_set + 4;
ctx->command_ptr = control_set + 12;
ctx->ohci = ohci;
tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);
return 0;
}
static void
at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
{
LIST_HEAD(list);
unsigned long flags;
int was_empty;
spin_lock_irqsave(&ctx->ohci->lock, flags);
was_empty = list_empty(&ctx->list);
list_add_tail(&packet->link, &ctx->list);
if (was_empty)
at_context_setup_packet(ctx, &list);
spin_unlock_irqrestore(&ctx->ohci->lock, flags);
do_packet_callbacks(ctx->ohci, &list);
}
static void bus_reset_tasklet(unsigned long data)
{
struct fw_ohci *ohci = (struct fw_ohci *)data;
int self_id_count, i, j, reg, node_id;
int generation, new_generation;
unsigned long flags;
reg = reg_read(ohci, OHCI1394_NodeID);
if (!(reg & OHCI1394_NodeID_idValid)) {
fw_error("node ID not valid, new bus reset in progress\n");
return;
}
node_id = reg & 0xffff;
/* The count in the SelfIDCount register is the number of
* bytes in the self ID receive buffer. Since we also receive
* the inverted quadlets and a header quadlet, we shift one
* bit extra to get the actual number of self IDs. */
self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
fw_error("inconsistent self IDs\n");
ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
}
/* Check the consistency of the self IDs we just read. The
* problem we face is that a new bus reset can start while we
* read out the self IDs from the DMA buffer. If this happens,
* the DMA buffer will be overwritten with new self IDs and we
* will read out inconsistent data. The OHCI specification
* (section 11.2) recommends a technique similar to
* linux/seqlock.h, where we remember the generation of the
* self IDs in the buffer before reading them out and compare
* it to the current generation after reading them out. If
* the two generations match we know we have a consistent set
* of self IDs. */
new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
if (new_generation != generation) {
fw_notify("recursive bus reset detected, "
"discarding self ids\n");
return;
}
/* FIXME: Document how the locking works. */
spin_lock_irqsave(&ohci->lock, flags);
ohci->generation = generation;
at_context_stop(&ohci->at_request_ctx);
at_context_stop(&ohci->at_response_ctx);
reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
/* This next bit is unrelated to the AT context stuff but we
* have to do it under the spinlock also. If a new config rom
* was set up before this reset, the old one is now no longer
* in use and we can free it. Update the config rom pointers
* to point to the current config rom and clear the
* next_config_rom pointer so a new udpate can take place. */
if (ohci->next_config_rom != NULL) {
dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
ohci->config_rom, ohci->config_rom_bus);
ohci->config_rom = ohci->next_config_rom;
ohci->config_rom_bus = ohci->next_config_rom_bus;
ohci->next_config_rom = NULL;
/* Restore config_rom image and manually update
* config_rom registers. Writing the header quadlet
* will indicate that the config rom is ready, so we
* do that last. */
reg_write(ohci, OHCI1394_BusOptions,
be32_to_cpu(ohci->config_rom[2]));
ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
}
spin_unlock_irqrestore(&ohci->lock, flags);
fw_core_handle_bus_reset(&ohci->card, node_id, generation,
self_id_count, ohci->self_id_buffer);
}
static irqreturn_t irq_handler(int irq, void *data)
{
struct fw_ohci *ohci = data;
u32 event, iso_event;
int i;
event = reg_read(ohci, OHCI1394_IntEventClear);
if (!event)
return IRQ_NONE;
reg_write(ohci, OHCI1394_IntEventClear, event);
if (event & OHCI1394_selfIDComplete)
tasklet_schedule(&ohci->bus_reset_tasklet);
if (event & OHCI1394_RQPkt)
tasklet_schedule(&ohci->ar_request_ctx.tasklet);
if (event & OHCI1394_RSPkt)
tasklet_schedule(&ohci->ar_response_ctx.tasklet);
if (event & OHCI1394_reqTxComplete)
tasklet_schedule(&ohci->at_request_ctx.tasklet);
if (event & OHCI1394_respTxComplete)
tasklet_schedule(&ohci->at_response_ctx.tasklet);
iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
while (iso_event) {
i = ffs(iso_event) - 1;
tasklet_schedule(&ohci->ir_context_list[i].tasklet);
iso_event &= ~(1 << i);
}
iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
while (iso_event) {
i = ffs(iso_event) - 1;
tasklet_schedule(&ohci->it_context_list[i].tasklet);
iso_event &= ~(1 << i);
}
return IRQ_HANDLED;
}
static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
struct fw_ohci *ohci = fw_ohci(card);
struct pci_dev *dev = to_pci_dev(card->device);
/* When the link is not yet enabled, the atomic config rom
* update mechanism described below in ohci_set_config_rom()
* is not active. We have to update ConfigRomHeader and
* BusOptions manually, and the write to ConfigROMmap takes
* effect immediately. We tie this to the enabling of the
* link, so we have a valid config rom before enabling - the
* OHCI requires that ConfigROMhdr and BusOptions have valid
* values before enabling.
*
* However, when the ConfigROMmap is written, some controllers
* always read back quadlets 0 and 2 from the config rom to
* the ConfigRomHeader and BusOptions registers on bus reset.
* They shouldn't do that in this initial case where the link
* isn't enabled. This means we have to use the same
* workaround here, setting the bus header to 0 and then write
* the right values in the bus reset tasklet.
*/
ohci->next_config_rom =
dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
&ohci->next_config_rom_bus, GFP_KERNEL);
if (ohci->next_config_rom == NULL)
return -ENOMEM;
memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
ohci->next_header = config_rom[0];
ohci->next_config_rom[0] = 0;
reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
if (request_irq(dev->irq, irq_handler,
SA_SHIRQ, ohci_driver_name, ohci)) {
fw_error("Failed to allocate shared interrupt %d.\n",
dev->irq);
dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
ohci->config_rom, ohci->config_rom_bus);
return -EIO;
}
reg_write(ohci, OHCI1394_HCControlSet,
OHCI1394_HCControl_linkEnable |
OHCI1394_HCControl_BIBimageValid);
flush_writes(ohci);
/* We are ready to go, initiate bus reset to finish the
* initialization. */
fw_core_initiate_bus_reset(&ohci->card, 1);
return 0;
}
static int
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
{
struct fw_ohci *ohci;
unsigned long flags;
int retval = 0;
__be32 *next_config_rom;
dma_addr_t next_config_rom_bus;
ohci = fw_ohci(card);
/* When the OHCI controller is enabled, the config rom update
* mechanism is a bit tricky, but easy enough to use. See
* section 5.5.6 in the OHCI specification.
*
* The OHCI controller caches the new config rom address in a
* shadow register (ConfigROMmapNext) and needs a bus reset
* for the changes to take place. When the bus reset is
* detected, the controller loads the new values for the
* ConfigRomHeader and BusOptions registers from the specified
* config rom and loads ConfigROMmap from the ConfigROMmapNext
* shadow register. All automatically and atomically.
*
* Now, there's a twist to this story. The automatic load of
* ConfigRomHeader and BusOptions doesn't honor the
* noByteSwapData bit, so with a be32 config rom, the
* controller will load be32 values in to these registers
* during the atomic update, even on litte endian
* architectures. The workaround we use is to put a 0 in the
* header quadlet; 0 is endian agnostic and means that the
* config rom isn't ready yet. In the bus reset tasklet we
* then set up the real values for the two registers.
*
* We use ohci->lock to avoid racing with the code that sets
* ohci->next_config_rom to NULL (see bus_reset_tasklet).
*/
next_config_rom =
dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
&next_config_rom_bus, GFP_KERNEL);
if (next_config_rom == NULL)
return -ENOMEM;
spin_lock_irqsave(&ohci->lock, flags);
if (ohci->next_config_rom == NULL) {
ohci->next_config_rom = next_config_rom;
ohci->next_config_rom_bus = next_config_rom_bus;
memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
length * 4);
ohci->next_header = config_rom[0];
ohci->next_config_rom[0] = 0;
reg_write(ohci, OHCI1394_ConfigROMmap,
ohci->next_config_rom_bus);
} else {
dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
next_config_rom, next_config_rom_bus);
retval = -EBUSY;
}
spin_unlock_irqrestore(&ohci->lock, flags);
/* Now initiate a bus reset to have the changes take
* effect. We clean up the old config rom memory and DMA
* mappings in the bus reset tasklet, since the OHCI
* controller could need to access it before the bus reset
* takes effect. */
if (retval == 0)
fw_core_initiate_bus_reset(&ohci->card, 1);
return retval;
}
static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
struct fw_ohci *ohci = fw_ohci(card);
at_context_transmit(&ohci->at_request_ctx, packet);
}
static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
struct fw_ohci *ohci = fw_ohci(card);
at_context_transmit(&ohci->at_response_ctx, packet);
}
static int
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
{
struct fw_ohci *ohci = fw_ohci(card);
unsigned long flags;
int n, retval = 0;
/* FIXME: Make sure this bitmask is cleared when we clear the busReset
* interrupt bit. Clear physReqResourceAllBuses on bus reset. */
spin_lock_irqsave(&ohci->lock, flags);
if (ohci->generation != generation) {
retval = -ESTALE;
goto out;
}
/* NOTE, if the node ID contains a non-local bus ID, physical DMA is
* enabled for _all_ nodes on remote buses. */
n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
if (n < 32)
reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
else
reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
flush_writes(ohci);
out:
spin_unlock_irqrestore(&ohci->lock, flags);
return retval;
}
static void ir_context_tasklet(unsigned long data)
{
struct iso_context *ctx = (struct iso_context *)data;
(void)ctx;
}
#define ISO_BUFFER_SIZE (64 * 1024)
static void flush_iso_context(struct iso_context *ctx)
{
struct fw_ohci *ohci = fw_ohci(ctx->base.card);
struct descriptor *d, *last;
u32 address;
int z;
dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
ISO_BUFFER_SIZE, DMA_TO_DEVICE);
d = ctx->tail_descriptor;
last = ctx->tail_descriptor_last;
while (last->branch_address != 0 && last->transfer_status != 0) {
address = le32_to_cpu(last->branch_address);
z = address & 0xf;
d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
if (z == 2)
last = d;
else
last = d + z - 1;
if (le16_to_cpu(last->control) & descriptor_irq_always)
ctx->base.callback(&ctx->base,
0, le16_to_cpu(last->res_count),
ctx->base.callback_data);
}
ctx->tail_descriptor = d;
ctx->tail_descriptor_last = last;
}
static void it_context_tasklet(unsigned long data)
{
struct iso_context *ctx = (struct iso_context *)data;
flush_iso_context(ctx);
}
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
int type)
{
struct fw_ohci *ohci = fw_ohci(card);
struct iso_context *ctx, *list;
void (*tasklet) (unsigned long data);
u32 *mask;
unsigned long flags;
int index;
if (type == FW_ISO_CONTEXT_TRANSMIT) {
mask = &ohci->it_context_mask;
list = ohci->it_context_list;
tasklet = it_context_tasklet;
} else {
mask = &ohci->ir_context_mask;
list = ohci->ir_context_list;
tasklet = ir_context_tasklet;
}
spin_lock_irqsave(&ohci->lock, flags);
index = ffs(*mask) - 1;
if (index >= 0)
*mask &= ~(1 << index);
spin_unlock_irqrestore(&ohci->lock, flags);
if (index < 0)
return ERR_PTR(-EBUSY);
ctx = &list[index];
memset(ctx, 0, sizeof *ctx);
tasklet_init(&ctx->tasklet, tasklet, (unsigned long)ctx);
ctx->buffer = kmalloc(ISO_BUFFER_SIZE, GFP_KERNEL);
if (ctx->buffer == NULL) {
spin_lock_irqsave(&ohci->lock, flags);
*mask |= 1 << index;
spin_unlock_irqrestore(&ohci->lock, flags);
return ERR_PTR(-ENOMEM);
}
ctx->buffer_bus =
dma_map_single(card->device, ctx->buffer,
ISO_BUFFER_SIZE, DMA_TO_DEVICE);
ctx->head_descriptor = ctx->buffer;
ctx->prev_descriptor = ctx->buffer;
ctx->tail_descriptor = ctx->buffer;
ctx->tail_descriptor_last = ctx->buffer;
/* We put a dummy descriptor in the buffer that has a NULL
* branch address and looks like it's been sent. That way we
* have a descriptor to append DMA programs to. Also, the
* ring buffer invariant is that it always has at least one
* element so that head == tail means buffer full. */
memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
ctx->head_descriptor++;
return &ctx->base;
}
static int ohci_send_iso(struct fw_iso_context *base, s32 cycle)
{
struct iso_context *ctx = (struct iso_context *)base;
struct fw_ohci *ohci = fw_ohci(ctx->base.card);
u32 cycle_match = 0;
int index;
index = ctx - ohci->it_context_list;
if (cycle > 0)
cycle_match = CONTEXT_CYCLE_MATCH_ENABLE |
(cycle & 0x7fff) << 16;
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
reg_write(ohci, OHCI1394_IsoXmitCommandPtr(index),
le32_to_cpu(ctx->tail_descriptor_last->branch_address));
reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index),
CONTEXT_RUN | cycle_match);
flush_writes(ohci);
return 0;
}
static void ohci_free_iso_context(struct fw_iso_context *base)
{
struct fw_ohci *ohci = fw_ohci(base->card);
struct iso_context *ctx = (struct iso_context *)base;
unsigned long flags;
int index;
flush_iso_context(ctx);
spin_lock_irqsave(&ohci->lock, flags);
if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
index = ctx - ohci->it_context_list;
reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
ohci->it_context_mask |= 1 << index;
} else {
index = ctx - ohci->ir_context_list;
reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0);
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
ohci->ir_context_mask |= 1 << index;
}
flush_writes(ohci);
dma_unmap_single(ohci->card.device, ctx->buffer_bus,
ISO_BUFFER_SIZE, DMA_TO_DEVICE);
spin_unlock_irqrestore(&ohci->lock, flags);
}
static int
ohci_queue_iso(struct fw_iso_context *base,
struct fw_iso_packet *packet, void *payload)
{
struct iso_context *ctx = (struct iso_context *)base;
struct fw_ohci *ohci = fw_ohci(ctx->base.card);
struct descriptor *d, *end, *last, *tail, *pd;
struct fw_iso_packet *p;
__le32 *header;
dma_addr_t d_bus;
u32 z, header_z, payload_z, irq;
u32 payload_index, payload_end_index, next_page_index;
int index, page, end_page, i, length, offset;
/* FIXME: Cycle lost behavior should be configurable: lose
* packet, retransmit or terminate.. */
p = packet;
payload_index = payload - ctx->base.buffer;
d = ctx->head_descriptor;
tail = ctx->tail_descriptor;
end = ctx->buffer + ISO_BUFFER_SIZE / sizeof(struct descriptor);
if (p->skip)
z = 1;
else
z = 2;
if (p->header_length > 0)
z++;
/* Determine the first page the payload isn't contained in. */
end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
if (p->payload_length > 0)
payload_z = end_page - (payload_index >> PAGE_SHIFT);
else
payload_z = 0;
z += payload_z;
/* Get header size in number of descriptors. */
header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
if (d + z + header_z <= tail) {
goto has_space;
} else if (d > tail && d + z + header_z <= end) {
goto has_space;
} else if (d > tail && ctx->buffer + z + header_z <= tail) {
d = ctx->buffer;
goto has_space;
}
/* No space in buffer */
return -1;
has_space:
memset(d, 0, (z + header_z) * sizeof *d);
d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
if (!p->skip) {
d[0].control = cpu_to_le16(descriptor_key_immediate);
d[0].req_count = cpu_to_le16(8);
header = (__le32 *) &d[1];
header[0] = cpu_to_le32(it_header_sy(p->sy) |
it_header_tag(p->tag) |
it_header_tcode(TCODE_STREAM_DATA) |
it_header_channel(ctx->base.channel) |
it_header_speed(ctx->base.speed));
header[1] =
cpu_to_le32(it_header_data_length(p->header_length +
p->payload_length));
}
if (p->header_length > 0) {
d[2].req_count = cpu_to_le16(p->header_length);
d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
memcpy(&d[z], p->header, p->header_length);
}
pd = d + z - payload_z;
payload_end_index = payload_index + p->payload_length;
for (i = 0; i < payload_z; i++) {
page = payload_index >> PAGE_SHIFT;
offset = payload_index & ~PAGE_MASK;
next_page_index = (page + 1) << PAGE_SHIFT;
length =
min(next_page_index, payload_end_index) - payload_index;
pd[i].req_count = cpu_to_le16(length);
pd[i].data_address = cpu_to_le32(ctx->base.pages[page] + offset);
payload_index += length;
}
if (z == 2)
last = d;
else
last = d + z - 1;
if (p->interrupt)
irq = descriptor_irq_always;
else
irq = descriptor_no_irq;
last->control = cpu_to_le16(descriptor_output_last |
descriptor_status |
descriptor_branch_always |
irq);
dma_sync_single_for_device(ohci->card.device, ctx->buffer_bus,
ISO_BUFFER_SIZE, DMA_TO_DEVICE);
ctx->head_descriptor = d + z + header_z;
ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
ctx->prev_descriptor = last;
index = ctx - ohci->it_context_list;
reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), CONTEXT_WAKE);
flush_writes(ohci);
return 0;
}
static const struct fw_card_driver ohci_driver = {
.name = ohci_driver_name,
.enable = ohci_enable,
.update_phy_reg = ohci_update_phy_reg,
.set_config_rom = ohci_set_config_rom,
.send_request = ohci_send_request,
.send_response = ohci_send_response,
.enable_phys_dma = ohci_enable_phys_dma,
.allocate_iso_context = ohci_allocate_iso_context,
.free_iso_context = ohci_free_iso_context,
.queue_iso = ohci_queue_iso,
.send_iso = ohci_send_iso,
};
static int software_reset(struct fw_ohci *ohci)
{
int i;
reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
for (i = 0; i < OHCI_LOOP_COUNT; i++) {
if ((reg_read(ohci, OHCI1394_HCControlSet) &
OHCI1394_HCControl_softReset) == 0)
return 0;
msleep(1);
}
return -EBUSY;
}
/* ---------- pci subsystem interface ---------- */
enum {
CLEANUP_SELF_ID,
CLEANUP_REGISTERS,
CLEANUP_IOMEM,
CLEANUP_DISABLE,
CLEANUP_PUT_CARD,
};
static int cleanup(struct fw_ohci *ohci, int stage, int code)
{
struct pci_dev *dev = to_pci_dev(ohci->card.device);
switch (stage) {
case CLEANUP_SELF_ID:
dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
ohci->self_id_cpu, ohci->self_id_bus);
case CLEANUP_REGISTERS:
kfree(ohci->it_context_list);
kfree(ohci->ir_context_list);
pci_iounmap(dev, ohci->registers);
case CLEANUP_IOMEM:
pci_release_region(dev, 0);
case CLEANUP_DISABLE:
pci_disable_device(dev);
case CLEANUP_PUT_CARD:
fw_card_put(&ohci->card);
}
return code;
}
static int __devinit
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
struct fw_ohci *ohci;
u32 bus_options, max_receive, link_speed;
u64 guid;
int error_code;
size_t size;
ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
if (ohci == NULL) {
fw_error("Could not malloc fw_ohci data.\n");
return -ENOMEM;
}
fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
if (pci_enable_device(dev)) {
fw_error("Failed to enable OHCI hardware.\n");
return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
}
pci_set_master(dev);
pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
pci_set_drvdata(dev, ohci);
spin_lock_init(&ohci->lock);
tasklet_init(&ohci->bus_reset_tasklet,
bus_reset_tasklet, (unsigned long)ohci);
if (pci_request_region(dev, 0, ohci_driver_name)) {
fw_error("MMIO resource unavailable\n");
return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
}
ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
if (ohci->registers == NULL) {
fw_error("Failed to remap registers\n");
return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
}
if (software_reset(ohci)) {
fw_error("Failed to reset ohci card.\n");
return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
}
/* Now enable LPS, which we need in order to start accessing
* most of the registers. In fact, on some cards (ALI M5251),
* accessing registers in the SClk domain without LPS enabled
* will lock up the machine. Wait 50msec to make sure we have
* full link enabled. */
reg_write(ohci, OHCI1394_HCControlSet,
OHCI1394_HCControl_LPS |
OHCI1394_HCControl_postedWriteEnable);
flush_writes(ohci);
msleep(50);
reg_write(ohci, OHCI1394_HCControlClear,
OHCI1394_HCControl_noByteSwapData);
reg_write(ohci, OHCI1394_LinkControlSet,
OHCI1394_LinkControl_rcvSelfID |
OHCI1394_LinkControl_cycleTimerEnable |
OHCI1394_LinkControl_cycleMaster);
ar_context_init(&ohci->ar_request_ctx, ohci,
OHCI1394_AsReqRcvContextControlSet);
ar_context_init(&ohci->ar_response_ctx, ohci,
OHCI1394_AsRspRcvContextControlSet);
at_context_init(&ohci->at_request_ctx, ohci,
OHCI1394_AsReqTrContextControlSet);
at_context_init(&ohci->at_response_ctx, ohci,
OHCI1394_AsRspTrContextControlSet);
reg_write(ohci, OHCI1394_ATRetries,
OHCI1394_MAX_AT_REQ_RETRIES |
(OHCI1394_MAX_AT_RESP_RETRIES << 4) |
(OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
ohci->it_context_list = kzalloc(size, GFP_KERNEL);
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
fw_error("Out of memory for it/ir contexts.\n");
return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
}
/* self-id dma buffer allocation */
ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
SELF_ID_BUF_SIZE,
&ohci->self_id_bus,
GFP_KERNEL);
if (ohci->self_id_cpu == NULL) {
fw_error("Out of memory for self ID buffer.\n");
return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
}
reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
reg_write(ohci, OHCI1394_IntEventClear, ~0);
reg_write(ohci, OHCI1394_IntMaskClear, ~0);
reg_write(ohci, OHCI1394_IntMaskSet,
OHCI1394_selfIDComplete |
OHCI1394_RQPkt | OHCI1394_RSPkt |
OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
OHCI1394_isochRx | OHCI1394_isochTx |
OHCI1394_masterIntEnable);
bus_options = reg_read(ohci, OHCI1394_BusOptions);
max_receive = (bus_options >> 12) & 0xf;
link_speed = bus_options & 0x7;
guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
reg_read(ohci, OHCI1394_GUIDLo);
error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
if (error_code < 0)
return cleanup(ohci, CLEANUP_SELF_ID, error_code);
fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id);
return 0;
}
static void pci_remove(struct pci_dev *dev)
{
struct fw_ohci *ohci;
ohci = pci_get_drvdata(dev);
reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
fw_core_remove_card(&ohci->card);
/* FIXME: Fail all pending packets here, now that the upper
* layers can't queue any more. */
software_reset(ohci);
free_irq(dev->irq, ohci);
cleanup(ohci, CLEANUP_SELF_ID, 0);
fw_notify("Removed fw-ohci device.\n");
}
static struct pci_device_id pci_table[] = {
{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
{ }
};
MODULE_DEVICE_TABLE(pci, pci_table);
static struct pci_driver fw_ohci_pci_driver = {
.name = ohci_driver_name,
.id_table = pci_table,
.probe = pci_probe,
.remove = pci_remove,
};
MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");
static int __init fw_ohci_init(void)
{
return pci_register_driver(&fw_ohci_pci_driver);
}
static void __exit fw_ohci_cleanup(void)
{
pci_unregister_driver(&fw_ohci_pci_driver);
}
module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);