/* -*- c-basic-offset: 8 -*- * * fw-ohci.c - Driver for OHCI 1394 boards * Copyright (C) 2003-2006 Kristian Hoegsberg * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include "fw-transaction.h" #include "fw-ohci.h" #define descriptor_output_more 0 #define descriptor_output_last (1 << 12) #define descriptor_input_more (2 << 12) #define descriptor_input_last (3 << 12) #define descriptor_status (1 << 11) #define descriptor_key_immediate (2 << 8) #define descriptor_ping (1 << 7) #define descriptor_yy (1 << 6) #define descriptor_no_irq (0 << 4) #define descriptor_irq_error (1 << 4) #define descriptor_irq_always (3 << 4) #define descriptor_branch_always (3 << 2) struct descriptor { __le16 req_count; __le16 control; __le32 data_address; __le32 branch_address; __le16 res_count; __le16 transfer_status; } __attribute__((aligned(16))); struct ar_context { struct fw_ohci *ohci; struct descriptor descriptor; __le32 buffer[512]; dma_addr_t descriptor_bus; dma_addr_t buffer_bus; u32 command_ptr; u32 control_set; u32 control_clear; struct tasklet_struct tasklet; }; struct at_context { struct fw_ohci *ohci; dma_addr_t descriptor_bus; dma_addr_t buffer_bus; struct list_head list; struct { struct descriptor more; __le32 header[4]; struct descriptor last; } d; u32 command_ptr; u32 control_set; u32 control_clear; struct tasklet_struct tasklet; }; #define it_header_sy(v) ((v) << 0) #define it_header_tcode(v) ((v) << 4) #define it_header_channel(v) ((v) << 8) #define it_header_tag(v) ((v) << 14) #define it_header_speed(v) ((v) << 16) #define it_header_data_length(v) ((v) << 16) struct iso_context { struct fw_iso_context base; struct tasklet_struct tasklet; u32 control_set; u32 control_clear; u32 command_ptr; u32 context_match; struct descriptor *buffer; dma_addr_t buffer_bus; struct descriptor *head_descriptor; struct descriptor *tail_descriptor; struct descriptor *tail_descriptor_last; struct descriptor *prev_descriptor; }; #define CONFIG_ROM_SIZE 1024 struct fw_ohci { struct fw_card card; __iomem char *registers; dma_addr_t self_id_bus; __le32 *self_id_cpu; struct tasklet_struct bus_reset_tasklet; int generation; int request_generation; /* Spinlock for accessing fw_ohci data. Never call out of * this driver with this lock held. */ spinlock_t lock; u32 self_id_buffer[512]; /* Config rom buffers */ __be32 *config_rom; dma_addr_t config_rom_bus; __be32 *next_config_rom; dma_addr_t next_config_rom_bus; u32 next_header; struct ar_context ar_request_ctx; struct ar_context ar_response_ctx; struct at_context at_request_ctx; struct at_context at_response_ctx; u32 it_context_mask; struct iso_context *it_context_list; u32 ir_context_mask; struct iso_context *ir_context_list; }; static inline struct fw_ohci *fw_ohci(struct fw_card *card) { return container_of(card, struct fw_ohci, card); } #define CONTEXT_CYCLE_MATCH_ENABLE 0x80000000 #define CONTEXT_RUN 0x8000 #define CONTEXT_WAKE 0x1000 #define CONTEXT_DEAD 0x0800 #define CONTEXT_ACTIVE 0x0400 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8 #define FW_OHCI_MAJOR 240 #define OHCI1394_REGISTER_SIZE 0x800 #define OHCI_LOOP_COUNT 500 #define OHCI1394_PCI_HCI_Control 0x40 #define SELF_ID_BUF_SIZE 0x800 static char ohci_driver_name[] = KBUILD_MODNAME; static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data) { writel(data, ohci->registers + offset); } static inline u32 reg_read(const struct fw_ohci *ohci, int offset) { return readl(ohci->registers + offset); } static inline void flush_writes(const struct fw_ohci *ohci) { /* Do a dummy read to flush writes. */ reg_read(ohci, OHCI1394_Version); } static int ohci_update_phy_reg(struct fw_card *card, int addr, int clear_bits, int set_bits) { struct fw_ohci *ohci = fw_ohci(card); u32 val, old; reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr)); msleep(2); val = reg_read(ohci, OHCI1394_PhyControl); if ((val & OHCI1394_PhyControl_ReadDone) == 0) { fw_error("failed to set phy reg bits.\n"); return -EBUSY; } old = OHCI1394_PhyControl_ReadData(val); old = (old & ~clear_bits) | set_bits; reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Write(addr, old)); return 0; } static void ar_context_run(struct ar_context *ctx) { reg_write(ctx->ohci, ctx->command_ptr, ctx->descriptor_bus | 1); reg_write(ctx->ohci, ctx->control_set, CONTEXT_RUN); flush_writes(ctx->ohci); } static void ar_context_tasklet(unsigned long data) { struct ar_context *ctx = (struct ar_context *)data; struct fw_ohci *ohci = ctx->ohci; u32 status; int length, speed, ack, timestamp, tcode; /* FIXME: What to do about evt_* errors? */ length = le16_to_cpu(ctx->descriptor.req_count) - le16_to_cpu(ctx->descriptor.res_count) - 4; status = le32_to_cpu(ctx->buffer[length / 4]); ack = ((status >> 16) & 0x1f) - 16; speed = (status >> 21) & 0x7; timestamp = status & 0xffff; ctx->buffer[0] = le32_to_cpu(ctx->buffer[0]); ctx->buffer[1] = le32_to_cpu(ctx->buffer[1]); ctx->buffer[2] = le32_to_cpu(ctx->buffer[2]); tcode = (ctx->buffer[0] >> 4) & 0x0f; if (TCODE_IS_BLOCK_PACKET(tcode)) ctx->buffer[3] = le32_to_cpu(ctx->buffer[3]); /* The OHCI bus reset handler synthesizes a phy packet with * the new generation number when a bus reset happens (see * section 8.4.2.3). This helps us determine when a request * was received and make sure we send the response in the same * generation. We only need this for requests; for responses * we use the unique tlabel for finding the matching * request. */ if (ack + 16 == 0x09) ohci->request_generation = (ctx->buffer[2] >> 16) & 0xff; else if (ctx == &ohci->ar_request_ctx) fw_core_handle_request(&ohci->card, speed, ack, timestamp, ohci->request_generation, length, ctx->buffer); else fw_core_handle_response(&ohci->card, speed, ack, timestamp, length, ctx->buffer); ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus); ctx->descriptor.req_count = cpu_to_le16(sizeof ctx->buffer); ctx->descriptor.res_count = cpu_to_le16(sizeof ctx->buffer); dma_sync_single_for_device(ohci->card.device, ctx->descriptor_bus, sizeof ctx->descriptor_bus, DMA_TO_DEVICE); /* FIXME: We stop and restart the ar context here, what if we * stop while a receive is in progress? Maybe we could just * loop the context back to itself and use it in buffer fill * mode as intended... */ reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN); ar_context_run(ctx); } static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 control_set) { ctx->descriptor_bus = dma_map_single(ohci->card.device, &ctx->descriptor, sizeof ctx->descriptor, DMA_TO_DEVICE); if (ctx->descriptor_bus == 0) return -ENOMEM; if (ctx->descriptor_bus & 0xf) fw_notify("descriptor not 16-byte aligned: 0x%08lx\n", (unsigned long)ctx->descriptor_bus); ctx->buffer_bus = dma_map_single(ohci->card.device, ctx->buffer, sizeof ctx->buffer, DMA_FROM_DEVICE); if (ctx->buffer_bus == 0) { dma_unmap_single(ohci->card.device, ctx->descriptor_bus, sizeof ctx->descriptor, DMA_TO_DEVICE); return -ENOMEM; } memset(&ctx->descriptor, 0, sizeof ctx->descriptor); ctx->descriptor.control = cpu_to_le16(descriptor_input_more | descriptor_status | descriptor_branch_always); ctx->descriptor.req_count = cpu_to_le16(sizeof ctx->buffer); ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus); ctx->descriptor.res_count = cpu_to_le16(sizeof ctx->buffer); ctx->control_set = control_set; ctx->control_clear = control_set + 4; ctx->command_ptr = control_set + 12; ctx->ohci = ohci; tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx); ar_context_run(ctx); return 0; } static void do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list) { struct fw_packet *p, *next; list_for_each_entry_safe(p, next, list, link) p->callback(p, &ohci->card, p->status); } static void complete_transmission(struct fw_packet *packet, int status, struct list_head *list) { list_move_tail(&packet->link, list); packet->status = status; } /* This function prepares the first packet in the context queue for * transmission. Must always be called with the ochi->lock held to * ensure proper generation handling and locking around packet queue * manipulation. */ static void at_context_setup_packet(struct at_context *ctx, struct list_head *list) { struct fw_packet *packet; struct fw_ohci *ohci = ctx->ohci; int z, tcode; packet = fw_packet(ctx->list.next); memset(&ctx->d, 0, sizeof ctx->d); if (packet->payload_length > 0) { packet->payload_bus = dma_map_single(ohci->card.device, packet->payload, packet->payload_length, DMA_TO_DEVICE); if (packet->payload_bus == 0) { complete_transmission(packet, -ENOMEM, list); return; } ctx->d.more.control = cpu_to_le16(descriptor_output_more | descriptor_key_immediate); ctx->d.more.req_count = cpu_to_le16(packet->header_length); ctx->d.more.res_count = cpu_to_le16(packet->timestamp); ctx->d.last.control = cpu_to_le16(descriptor_output_last | descriptor_irq_always | descriptor_branch_always); ctx->d.last.req_count = cpu_to_le16(packet->payload_length); ctx->d.last.data_address = cpu_to_le32(packet->payload_bus); z = 3; } else { ctx->d.more.control = cpu_to_le16(descriptor_output_last | descriptor_key_immediate | descriptor_irq_always | descriptor_branch_always); ctx->d.more.req_count = cpu_to_le16(packet->header_length); ctx->d.more.res_count = cpu_to_le16(packet->timestamp); z = 2; } /* The DMA format for asyncronous link packets is different * from the IEEE1394 layout, so shift the fields around * accordingly. If header_length is 8, it's a PHY packet, to * which we need to prepend an extra quadlet. */ if (packet->header_length > 8) { ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) | (packet->speed << 16)); ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) | (packet->header[0] & 0xffff0000)); ctx->d.header[2] = cpu_to_le32(packet->header[2]); tcode = (packet->header[0] >> 4) & 0x0f; if (TCODE_IS_BLOCK_PACKET(tcode)) ctx->d.header[3] = cpu_to_le32(packet->header[3]); else ctx->d.header[3] = packet->header[3]; } else { ctx->d.header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) | (packet->speed << 16)); ctx->d.header[1] = cpu_to_le32(packet->header[0]); ctx->d.header[2] = cpu_to_le32(packet->header[1]); ctx->d.more.req_count = cpu_to_le16(12); } /* FIXME: Document how the locking works. */ if (ohci->generation == packet->generation) { reg_write(ctx->ohci, ctx->command_ptr, ctx->descriptor_bus | z); reg_write(ctx->ohci, ctx->control_set, CONTEXT_RUN | CONTEXT_WAKE); } else { /* We dont return error codes from this function; all * transmission errors are reported through the * callback. */ complete_transmission(packet, -ESTALE, list); } } static void at_context_stop(struct at_context *ctx) { u32 reg; reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN); reg = reg_read(ctx->ohci, ctx->control_set); if (reg & CONTEXT_ACTIVE) fw_notify("Tried to stop context, but it is still active " "(0x%08x).\n", reg); } static void at_context_tasklet(unsigned long data) { struct at_context *ctx = (struct at_context *)data; struct fw_ohci *ohci = ctx->ohci; struct fw_packet *packet; LIST_HEAD(list); unsigned long flags; int evt; spin_lock_irqsave(&ohci->lock, flags); packet = fw_packet(ctx->list.next); at_context_stop(ctx); if (packet->payload_length > 0) { dma_unmap_single(ohci->card.device, packet->payload_bus, packet->payload_length, DMA_TO_DEVICE); evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f; packet->timestamp = le16_to_cpu(ctx->d.last.res_count); } else { evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f; packet->timestamp = le16_to_cpu(ctx->d.more.res_count); } if (evt < 16) { switch (evt) { case OHCI1394_evt_timeout: /* Async response transmit timed out. */ complete_transmission(packet, -ETIMEDOUT, &list); break; case OHCI1394_evt_flushed: /* The packet was flushed should give same * error as when we try to use a stale * generation count. */ complete_transmission(packet, -ESTALE, &list); break; case OHCI1394_evt_missing_ack: /* This would be a higher level software * error, it is using a valid (current) * generation count, but the node is not on * the bus. */ complete_transmission(packet, -ENODEV, &list); break; default: complete_transmission(packet, -EIO, &list); break; } } else complete_transmission(packet, evt - 16, &list); /* If more packets are queued, set up the next one. */ if (!list_empty(&ctx->list)) at_context_setup_packet(ctx, &list); spin_unlock_irqrestore(&ohci->lock, flags); do_packet_callbacks(ohci, &list); } static int at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 control_set) { INIT_LIST_HEAD(&ctx->list); ctx->descriptor_bus = dma_map_single(ohci->card.device, &ctx->d, sizeof ctx->d, DMA_TO_DEVICE); if (ctx->descriptor_bus == 0) return -ENOMEM; ctx->control_set = control_set; ctx->control_clear = control_set + 4; ctx->command_ptr = control_set + 12; ctx->ohci = ohci; tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx); return 0; } static void at_context_transmit(struct at_context *ctx, struct fw_packet *packet) { LIST_HEAD(list); unsigned long flags; int was_empty; spin_lock_irqsave(&ctx->ohci->lock, flags); was_empty = list_empty(&ctx->list); list_add_tail(&packet->link, &ctx->list); if (was_empty) at_context_setup_packet(ctx, &list); spin_unlock_irqrestore(&ctx->ohci->lock, flags); do_packet_callbacks(ctx->ohci, &list); } static void bus_reset_tasklet(unsigned long data) { struct fw_ohci *ohci = (struct fw_ohci *)data; int self_id_count, i, j, reg, node_id; int generation, new_generation; unsigned long flags; reg = reg_read(ohci, OHCI1394_NodeID); if (!(reg & OHCI1394_NodeID_idValid)) { fw_error("node ID not valid, new bus reset in progress\n"); return; } node_id = reg & 0xffff; /* The count in the SelfIDCount register is the number of * bytes in the self ID receive buffer. Since we also receive * the inverted quadlets and a header quadlet, we shift one * bit extra to get the actual number of self IDs. */ self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff; generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff; for (i = 1, j = 0; j < self_id_count; i += 2, j++) { if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) fw_error("inconsistent self IDs\n"); ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]); } /* Check the consistency of the self IDs we just read. The * problem we face is that a new bus reset can start while we * read out the self IDs from the DMA buffer. If this happens, * the DMA buffer will be overwritten with new self IDs and we * will read out inconsistent data. The OHCI specification * (section 11.2) recommends a technique similar to * linux/seqlock.h, where we remember the generation of the * self IDs in the buffer before reading them out and compare * it to the current generation after reading them out. If * the two generations match we know we have a consistent set * of self IDs. */ new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff; if (new_generation != generation) { fw_notify("recursive bus reset detected, " "discarding self ids\n"); return; } /* FIXME: Document how the locking works. */ spin_lock_irqsave(&ohci->lock, flags); ohci->generation = generation; at_context_stop(&ohci->at_request_ctx); at_context_stop(&ohci->at_response_ctx); reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset); /* This next bit is unrelated to the AT context stuff but we * have to do it under the spinlock also. If a new config rom * was set up before this reset, the old one is now no longer * in use and we can free it. Update the config rom pointers * to point to the current config rom and clear the * next_config_rom pointer so a new udpate can take place. */ if (ohci->next_config_rom != NULL) { dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, ohci->config_rom, ohci->config_rom_bus); ohci->config_rom = ohci->next_config_rom; ohci->config_rom_bus = ohci->next_config_rom_bus; ohci->next_config_rom = NULL; /* Restore config_rom image and manually update * config_rom registers. Writing the header quadlet * will indicate that the config rom is ready, so we * do that last. */ reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->config_rom[2])); ohci->config_rom[0] = cpu_to_be32(ohci->next_header); reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header); } spin_unlock_irqrestore(&ohci->lock, flags); fw_core_handle_bus_reset(&ohci->card, node_id, generation, self_id_count, ohci->self_id_buffer); } static irqreturn_t irq_handler(int irq, void *data) { struct fw_ohci *ohci = data; u32 event, iso_event; int i; event = reg_read(ohci, OHCI1394_IntEventClear); if (!event) return IRQ_NONE; reg_write(ohci, OHCI1394_IntEventClear, event); if (event & OHCI1394_selfIDComplete) tasklet_schedule(&ohci->bus_reset_tasklet); if (event & OHCI1394_RQPkt) tasklet_schedule(&ohci->ar_request_ctx.tasklet); if (event & OHCI1394_RSPkt) tasklet_schedule(&ohci->ar_response_ctx.tasklet); if (event & OHCI1394_reqTxComplete) tasklet_schedule(&ohci->at_request_ctx.tasklet); if (event & OHCI1394_respTxComplete) tasklet_schedule(&ohci->at_response_ctx.tasklet); iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet); reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event); while (iso_event) { i = ffs(iso_event) - 1; tasklet_schedule(&ohci->ir_context_list[i].tasklet); iso_event &= ~(1 << i); } iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet); reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event); while (iso_event) { i = ffs(iso_event) - 1; tasklet_schedule(&ohci->it_context_list[i].tasklet); iso_event &= ~(1 << i); } return IRQ_HANDLED; } static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length) { struct fw_ohci *ohci = fw_ohci(card); struct pci_dev *dev = to_pci_dev(card->device); /* When the link is not yet enabled, the atomic config rom * update mechanism described below in ohci_set_config_rom() * is not active. We have to update ConfigRomHeader and * BusOptions manually, and the write to ConfigROMmap takes * effect immediately. We tie this to the enabling of the * link, so we have a valid config rom before enabling - the * OHCI requires that ConfigROMhdr and BusOptions have valid * values before enabling. * * However, when the ConfigROMmap is written, some controllers * always read back quadlets 0 and 2 from the config rom to * the ConfigRomHeader and BusOptions registers on bus reset. * They shouldn't do that in this initial case where the link * isn't enabled. This means we have to use the same * workaround here, setting the bus header to 0 and then write * the right values in the bus reset tasklet. */ ohci->next_config_rom = dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, &ohci->next_config_rom_bus, GFP_KERNEL); if (ohci->next_config_rom == NULL) return -ENOMEM; memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE); fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4); ohci->next_header = config_rom[0]; ohci->next_config_rom[0] = 0; reg_write(ohci, OHCI1394_ConfigROMhdr, 0); reg_write(ohci, OHCI1394_BusOptions, config_rom[2]); reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000); if (request_irq(dev->irq, irq_handler, SA_SHIRQ, ohci_driver_name, ohci)) { fw_error("Failed to allocate shared interrupt %d.\n", dev->irq); dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, ohci->config_rom, ohci->config_rom_bus); return -EIO; } reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_linkEnable | OHCI1394_HCControl_BIBimageValid); flush_writes(ohci); /* We are ready to go, initiate bus reset to finish the * initialization. */ fw_core_initiate_bus_reset(&ohci->card, 1); return 0; } static int ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length) { struct fw_ohci *ohci; unsigned long flags; int retval = 0; __be32 *next_config_rom; dma_addr_t next_config_rom_bus; ohci = fw_ohci(card); /* When the OHCI controller is enabled, the config rom update * mechanism is a bit tricky, but easy enough to use. See * section 5.5.6 in the OHCI specification. * * The OHCI controller caches the new config rom address in a * shadow register (ConfigROMmapNext) and needs a bus reset * for the changes to take place. When the bus reset is * detected, the controller loads the new values for the * ConfigRomHeader and BusOptions registers from the specified * config rom and loads ConfigROMmap from the ConfigROMmapNext * shadow register. All automatically and atomically. * * Now, there's a twist to this story. The automatic load of * ConfigRomHeader and BusOptions doesn't honor the * noByteSwapData bit, so with a be32 config rom, the * controller will load be32 values in to these registers * during the atomic update, even on litte endian * architectures. The workaround we use is to put a 0 in the * header quadlet; 0 is endian agnostic and means that the * config rom isn't ready yet. In the bus reset tasklet we * then set up the real values for the two registers. * * We use ohci->lock to avoid racing with the code that sets * ohci->next_config_rom to NULL (see bus_reset_tasklet). */ next_config_rom = dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, &next_config_rom_bus, GFP_KERNEL); if (next_config_rom == NULL) return -ENOMEM; spin_lock_irqsave(&ohci->lock, flags); if (ohci->next_config_rom == NULL) { ohci->next_config_rom = next_config_rom; ohci->next_config_rom_bus = next_config_rom_bus; memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE); fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4); ohci->next_header = config_rom[0]; ohci->next_config_rom[0] = 0; reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); } else { dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom, next_config_rom_bus); retval = -EBUSY; } spin_unlock_irqrestore(&ohci->lock, flags); /* Now initiate a bus reset to have the changes take * effect. We clean up the old config rom memory and DMA * mappings in the bus reset tasklet, since the OHCI * controller could need to access it before the bus reset * takes effect. */ if (retval == 0) fw_core_initiate_bus_reset(&ohci->card, 1); return retval; } static void ohci_send_request(struct fw_card *card, struct fw_packet *packet) { struct fw_ohci *ohci = fw_ohci(card); at_context_transmit(&ohci->at_request_ctx, packet); } static void ohci_send_response(struct fw_card *card, struct fw_packet *packet) { struct fw_ohci *ohci = fw_ohci(card); at_context_transmit(&ohci->at_response_ctx, packet); } static int ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation) { struct fw_ohci *ohci = fw_ohci(card); unsigned long flags; int n, retval = 0; /* FIXME: Make sure this bitmask is cleared when we clear the busReset * interrupt bit. Clear physReqResourceAllBuses on bus reset. */ spin_lock_irqsave(&ohci->lock, flags); if (ohci->generation != generation) { retval = -ESTALE; goto out; } /* NOTE, if the node ID contains a non-local bus ID, physical DMA is * enabled for _all_ nodes on remote buses. */ n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63; if (n < 32) reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n); else reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32)); flush_writes(ohci); out: spin_unlock_irqrestore(&ohci->lock, flags); return retval; } static void ir_context_tasklet(unsigned long data) { struct iso_context *ctx = (struct iso_context *)data; (void)ctx; } #define ISO_BUFFER_SIZE (64 * 1024) static void flush_iso_context(struct iso_context *ctx) { struct fw_ohci *ohci = fw_ohci(ctx->base.card); struct descriptor *d, *last; u32 address; int z; dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus, ISO_BUFFER_SIZE, DMA_TO_DEVICE); d = ctx->tail_descriptor; last = ctx->tail_descriptor_last; while (last->branch_address != 0 && last->transfer_status != 0) { address = le32_to_cpu(last->branch_address); z = address & 0xf; d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d; if (z == 2) last = d; else last = d + z - 1; if (le16_to_cpu(last->control) & descriptor_irq_always) ctx->base.callback(&ctx->base, 0, le16_to_cpu(last->res_count), ctx->base.callback_data); } ctx->tail_descriptor = d; ctx->tail_descriptor_last = last; } static void it_context_tasklet(unsigned long data) { struct iso_context *ctx = (struct iso_context *)data; flush_iso_context(ctx); } static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card, int type) { struct fw_ohci *ohci = fw_ohci(card); struct iso_context *ctx, *list; void (*tasklet) (unsigned long data); u32 *mask; unsigned long flags; int index; if (type == FW_ISO_CONTEXT_TRANSMIT) { mask = &ohci->it_context_mask; list = ohci->it_context_list; tasklet = it_context_tasklet; } else { mask = &ohci->ir_context_mask; list = ohci->ir_context_list; tasklet = ir_context_tasklet; } spin_lock_irqsave(&ohci->lock, flags); index = ffs(*mask) - 1; if (index >= 0) *mask &= ~(1 << index); spin_unlock_irqrestore(&ohci->lock, flags); if (index < 0) return ERR_PTR(-EBUSY); ctx = &list[index]; memset(ctx, 0, sizeof *ctx); tasklet_init(&ctx->tasklet, tasklet, (unsigned long)ctx); ctx->buffer = kmalloc(ISO_BUFFER_SIZE, GFP_KERNEL); if (ctx->buffer == NULL) { spin_lock_irqsave(&ohci->lock, flags); *mask |= 1 << index; spin_unlock_irqrestore(&ohci->lock, flags); return ERR_PTR(-ENOMEM); } ctx->buffer_bus = dma_map_single(card->device, ctx->buffer, ISO_BUFFER_SIZE, DMA_TO_DEVICE); ctx->head_descriptor = ctx->buffer; ctx->prev_descriptor = ctx->buffer; ctx->tail_descriptor = ctx->buffer; ctx->tail_descriptor_last = ctx->buffer; /* We put a dummy descriptor in the buffer that has a NULL * branch address and looks like it's been sent. That way we * have a descriptor to append DMA programs to. Also, the * ring buffer invariant is that it always has at least one * element so that head == tail means buffer full. */ memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor); ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last); ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011); ctx->head_descriptor++; return &ctx->base; } static int ohci_send_iso(struct fw_iso_context *base, s32 cycle) { struct iso_context *ctx = (struct iso_context *)base; struct fw_ohci *ohci = fw_ohci(ctx->base.card); u32 cycle_match = 0; int index; index = ctx - ohci->it_context_list; if (cycle > 0) cycle_match = CONTEXT_CYCLE_MATCH_ENABLE | (cycle & 0x7fff) << 16; reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index); reg_write(ohci, OHCI1394_IsoXmitCommandPtr(index), le32_to_cpu(ctx->tail_descriptor_last->branch_address)); reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0); reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), CONTEXT_RUN | cycle_match); flush_writes(ohci); return 0; } static void ohci_free_iso_context(struct fw_iso_context *base) { struct fw_ohci *ohci = fw_ohci(base->card); struct iso_context *ctx = (struct iso_context *)base; unsigned long flags; int index; flush_iso_context(ctx); spin_lock_irqsave(&ohci->lock, flags); if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) { index = ctx - ohci->it_context_list; reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0); reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index); ohci->it_context_mask |= 1 << index; } else { index = ctx - ohci->ir_context_list; reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0); reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index); ohci->ir_context_mask |= 1 << index; } flush_writes(ohci); dma_unmap_single(ohci->card.device, ctx->buffer_bus, ISO_BUFFER_SIZE, DMA_TO_DEVICE); spin_unlock_irqrestore(&ohci->lock, flags); } static int ohci_queue_iso(struct fw_iso_context *base, struct fw_iso_packet *packet, void *payload) { struct iso_context *ctx = (struct iso_context *)base; struct fw_ohci *ohci = fw_ohci(ctx->base.card); struct descriptor *d, *end, *last, *tail, *pd; struct fw_iso_packet *p; __le32 *header; dma_addr_t d_bus; u32 z, header_z, payload_z, irq; u32 payload_index, payload_end_index, next_page_index; int index, page, end_page, i, length, offset; /* FIXME: Cycle lost behavior should be configurable: lose * packet, retransmit or terminate.. */ p = packet; payload_index = payload - ctx->base.buffer; d = ctx->head_descriptor; tail = ctx->tail_descriptor; end = ctx->buffer + ISO_BUFFER_SIZE / sizeof(struct descriptor); if (p->skip) z = 1; else z = 2; if (p->header_length > 0) z++; /* Determine the first page the payload isn't contained in. */ end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT; if (p->payload_length > 0) payload_z = end_page - (payload_index >> PAGE_SHIFT); else payload_z = 0; z += payload_z; /* Get header size in number of descriptors. */ header_z = DIV_ROUND_UP(p->header_length, sizeof *d); if (d + z + header_z <= tail) { goto has_space; } else if (d > tail && d + z + header_z <= end) { goto has_space; } else if (d > tail && ctx->buffer + z + header_z <= tail) { d = ctx->buffer; goto has_space; } /* No space in buffer */ return -1; has_space: memset(d, 0, (z + header_z) * sizeof *d); d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d; if (!p->skip) { d[0].control = cpu_to_le16(descriptor_key_immediate); d[0].req_count = cpu_to_le16(8); header = (__le32 *) &d[1]; header[0] = cpu_to_le32(it_header_sy(p->sy) | it_header_tag(p->tag) | it_header_tcode(TCODE_STREAM_DATA) | it_header_channel(ctx->base.channel) | it_header_speed(ctx->base.speed)); header[1] = cpu_to_le32(it_header_data_length(p->header_length + p->payload_length)); } if (p->header_length > 0) { d[2].req_count = cpu_to_le16(p->header_length); d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d); memcpy(&d[z], p->header, p->header_length); } pd = d + z - payload_z; payload_end_index = payload_index + p->payload_length; for (i = 0; i < payload_z; i++) { page = payload_index >> PAGE_SHIFT; offset = payload_index & ~PAGE_MASK; next_page_index = (page + 1) << PAGE_SHIFT; length = min(next_page_index, payload_end_index) - payload_index; pd[i].req_count = cpu_to_le16(length); pd[i].data_address = cpu_to_le32(ctx->base.pages[page] + offset); payload_index += length; } if (z == 2) last = d; else last = d + z - 1; if (p->interrupt) irq = descriptor_irq_always; else irq = descriptor_no_irq; last->control = cpu_to_le16(descriptor_output_last | descriptor_status | descriptor_branch_always | irq); dma_sync_single_for_device(ohci->card.device, ctx->buffer_bus, ISO_BUFFER_SIZE, DMA_TO_DEVICE); ctx->head_descriptor = d + z + header_z; ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z); ctx->prev_descriptor = last; index = ctx - ohci->it_context_list; reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), CONTEXT_WAKE); flush_writes(ohci); return 0; } static const struct fw_card_driver ohci_driver = { .name = ohci_driver_name, .enable = ohci_enable, .update_phy_reg = ohci_update_phy_reg, .set_config_rom = ohci_set_config_rom, .send_request = ohci_send_request, .send_response = ohci_send_response, .enable_phys_dma = ohci_enable_phys_dma, .allocate_iso_context = ohci_allocate_iso_context, .free_iso_context = ohci_free_iso_context, .queue_iso = ohci_queue_iso, .send_iso = ohci_send_iso, }; static int software_reset(struct fw_ohci *ohci) { int i; reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset); for (i = 0; i < OHCI_LOOP_COUNT; i++) { if ((reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_softReset) == 0) return 0; msleep(1); } return -EBUSY; } /* ---------- pci subsystem interface ---------- */ enum { CLEANUP_SELF_ID, CLEANUP_REGISTERS, CLEANUP_IOMEM, CLEANUP_DISABLE, CLEANUP_PUT_CARD, }; static int cleanup(struct fw_ohci *ohci, int stage, int code) { struct pci_dev *dev = to_pci_dev(ohci->card.device); switch (stage) { case CLEANUP_SELF_ID: dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE, ohci->self_id_cpu, ohci->self_id_bus); case CLEANUP_REGISTERS: kfree(ohci->it_context_list); kfree(ohci->ir_context_list); pci_iounmap(dev, ohci->registers); case CLEANUP_IOMEM: pci_release_region(dev, 0); case CLEANUP_DISABLE: pci_disable_device(dev); case CLEANUP_PUT_CARD: fw_card_put(&ohci->card); } return code; } static int __devinit pci_probe(struct pci_dev *dev, const struct pci_device_id *ent) { struct fw_ohci *ohci; u32 bus_options, max_receive, link_speed; u64 guid; int error_code; size_t size; ohci = kzalloc(sizeof *ohci, GFP_KERNEL); if (ohci == NULL) { fw_error("Could not malloc fw_ohci data.\n"); return -ENOMEM; } fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev); if (pci_enable_device(dev)) { fw_error("Failed to enable OHCI hardware.\n"); return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV); } pci_set_master(dev); pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0); pci_set_drvdata(dev, ohci); spin_lock_init(&ohci->lock); tasklet_init(&ohci->bus_reset_tasklet, bus_reset_tasklet, (unsigned long)ohci); if (pci_request_region(dev, 0, ohci_driver_name)) { fw_error("MMIO resource unavailable\n"); return cleanup(ohci, CLEANUP_DISABLE, -EBUSY); } ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE); if (ohci->registers == NULL) { fw_error("Failed to remap registers\n"); return cleanup(ohci, CLEANUP_IOMEM, -ENXIO); } if (software_reset(ohci)) { fw_error("Failed to reset ohci card.\n"); return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY); } /* Now enable LPS, which we need in order to start accessing * most of the registers. In fact, on some cards (ALI M5251), * accessing registers in the SClk domain without LPS enabled * will lock up the machine. Wait 50msec to make sure we have * full link enabled. */ reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS | OHCI1394_HCControl_postedWriteEnable); flush_writes(ohci); msleep(50); reg_write(ohci, OHCI1394_HCControlClear, OHCI1394_HCControl_noByteSwapData); reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_rcvSelfID | OHCI1394_LinkControl_cycleTimerEnable | OHCI1394_LinkControl_cycleMaster); ar_context_init(&ohci->ar_request_ctx, ohci, OHCI1394_AsReqRcvContextControlSet); ar_context_init(&ohci->ar_response_ctx, ohci, OHCI1394_AsRspRcvContextControlSet); at_context_init(&ohci->at_request_ctx, ohci, OHCI1394_AsReqTrContextControlSet); at_context_init(&ohci->at_response_ctx, ohci, OHCI1394_AsRspTrContextControlSet); reg_write(ohci, OHCI1394_ATRetries, OHCI1394_MAX_AT_REQ_RETRIES | (OHCI1394_MAX_AT_RESP_RETRIES << 4) | (OHCI1394_MAX_PHYS_RESP_RETRIES << 8)); reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0); ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet); reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0); size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask); ohci->it_context_list = kzalloc(size, GFP_KERNEL); reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0); ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet); reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0); size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask); ohci->ir_context_list = kzalloc(size, GFP_KERNEL); if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) { fw_error("Out of memory for it/ir contexts.\n"); return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM); } /* self-id dma buffer allocation */ ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device, SELF_ID_BUF_SIZE, &ohci->self_id_bus, GFP_KERNEL); if (ohci->self_id_cpu == NULL) { fw_error("Out of memory for self ID buffer.\n"); return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM); } reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus); reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000); reg_write(ohci, OHCI1394_IntEventClear, ~0); reg_write(ohci, OHCI1394_IntMaskClear, ~0); reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_selfIDComplete | OHCI1394_RQPkt | OHCI1394_RSPkt | OHCI1394_reqTxComplete | OHCI1394_respTxComplete | OHCI1394_isochRx | OHCI1394_isochTx | OHCI1394_masterIntEnable); bus_options = reg_read(ohci, OHCI1394_BusOptions); max_receive = (bus_options >> 12) & 0xf; link_speed = bus_options & 0x7; guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) | reg_read(ohci, OHCI1394_GUIDLo); error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid); if (error_code < 0) return cleanup(ohci, CLEANUP_SELF_ID, error_code); fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id); return 0; } static void pci_remove(struct pci_dev *dev) { struct fw_ohci *ohci; ohci = pci_get_drvdata(dev); reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable); fw_core_remove_card(&ohci->card); /* FIXME: Fail all pending packets here, now that the upper * layers can't queue any more. */ software_reset(ohci); free_irq(dev->irq, ohci); cleanup(ohci, CLEANUP_SELF_ID, 0); fw_notify("Removed fw-ohci device.\n"); } static struct pci_device_id pci_table[] = { { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) }, { } }; MODULE_DEVICE_TABLE(pci, pci_table); static struct pci_driver fw_ohci_pci_driver = { .name = ohci_driver_name, .id_table = pci_table, .probe = pci_probe, .remove = pci_remove, }; MODULE_AUTHOR("Kristian Hoegsberg "); MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers"); MODULE_LICENSE("GPL"); static int __init fw_ohci_init(void) { return pci_register_driver(&fw_ohci_pci_driver); } static void __exit fw_ohci_cleanup(void) { pci_unregister_driver(&fw_ohci_pci_driver); } module_init(fw_ohci_init); module_exit(fw_ohci_cleanup);