primeminer/src/rpcmining.cpp

449 lines
16 KiB
C++
Raw Normal View History

// Copyright (c) 2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
2013-06-04 20:09:29 +00:00
// Copyright (c) 2013 The Primecoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "main.h"
#include "db.h"
#include "init.h"
#include "bitcoinrpc.h"
#include "prime.h"
using namespace json_spirit;
using namespace std;
Value getgenerate(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 0)
throw runtime_error(
"getgenerate\n"
"Returns true or false.");
return GetBoolArg("-gen");
}
Value setgenerate(const Array& params, bool fHelp)
{
if (fHelp || params.size() < 1 || params.size() > 2)
throw runtime_error(
"setgenerate <generate> [genproclimit]\n"
"<generate> is true or false to turn generation on or off.\n"
"Generation is limited to [genproclimit] processors, -1 is unlimited.");
bool fGenerate = true;
if (params.size() > 0)
fGenerate = params[0].get_bool();
if (params.size() > 1)
{
int nGenProcLimit = params[1].get_int();
mapArgs["-genproclimit"] = itostr(nGenProcLimit);
if (nGenProcLimit == 0)
fGenerate = false;
}
mapArgs["-gen"] = (fGenerate ? "1" : "0");
GenerateBitcoins(fGenerate, pwalletMain);
return Value::null;
}
Value getsievepercentage(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 0)
throw runtime_error(
"getsievepercentage\n"
"Returns the current sieve percentage used by the mining algorithm.");
return (boost::int64_t)nSievePercentage;
}
Value setsievepercentage(const Array& params, bool fHelp)
{
if (fHelp || params.size() < 1)
throw runtime_error(
"setsievepercentage <sievepercentage>\n"
"<sievepercentage> determines how many rounds the candidate multiplier sieve runs.");
unsigned int nPercentage = nDefaultSievePercentage;
if (params.size() > 0)
nPercentage = params[0].get_int();
nPercentage = std::max(std::min(nPercentage, nMaxSievePercentage), nMinSievePercentage);
nSievePercentage = nPercentage;
return Value::null;
}
Value getsieveextensions(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 0)
throw runtime_error(
"getsieveextensions\n"
"Returns the number of times the sieve is extended.");
return (boost::int64_t)nSieveExtensions;
}
Value setsieveextensions(const Array& params, bool fHelp)
{
if (fHelp || params.size() < 1)
throw runtime_error(
"setsieveextensions <sieveextensions>\n"
"<sieveextensions> determines the number of times the sieve will be extended.");
unsigned int nExtensions = (fTestNet) ? nDefaultSieveExtensionsTestnet : nDefaultSieveExtensions;
if (params.size() > 0)
nExtensions = params[0].get_int();
nExtensions = std::max(std::min(nExtensions, nMaxSieveExtensions), nMinSieveExtensions);
nSieveExtensions = nExtensions;
return Value::null;
}
2013-06-04 20:09:29 +00:00
Value getprimespersec(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 0)
throw runtime_error(
2013-06-04 20:09:29 +00:00
"getprimespersec\n"
"Returns a recent primes per second performance measurement while generating.");
2013-06-04 20:09:29 +00:00
return (boost::int64_t)dPrimesPerSec;
}
Value getchainspermin(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 0)
throw runtime_error(
"getchainspermin\n"
"Returns a recent chains per second performance measurement while generating.");
return (boost::int64_t)dChainsPerMinute;
}
extern Value getdifficulty(const Array& params, bool fHelp);
Value getmininginfo(const Array& params, bool fHelp)
{
if (fHelp || params.size() != 0)
throw runtime_error(
"getmininginfo\n"
"Returns an object containing mining-related information.");
Object obj;
obj.push_back(Pair("blocks", (int)nBestHeight));
obj.push_back(Pair("chainspermin", getchainspermin(params, false)));
obj.push_back(Pair("chainsperday", dChainsPerDay));
obj.push_back(Pair("currentblocksize",(uint64_t)nLastBlockSize));
obj.push_back(Pair("currentblocktx",(uint64_t)nLastBlockTx));
obj.push_back(Pair("difficulty", getdifficulty(params, false)));
obj.push_back(Pair("errors", GetWarnings("statusbar")));
obj.push_back(Pair("generate", GetBoolArg("-gen")));
obj.push_back(Pair("genproclimit", (int)GetArg("-genproclimit", -1)));
2013-06-04 20:09:29 +00:00
obj.push_back(Pair("primespersec", getprimespersec(params, false)));
obj.push_back(Pair("pooledtx", (uint64_t)mempool.size()));
obj.push_back(Pair("sieveextensions",(int)nSieveExtensions));
obj.push_back(Pair("sievepercentage",(int)nSievePercentage));
obj.push_back(Pair("sievesize", (int)nSieveSize));
obj.push_back(Pair("testnet", fTestNet));
return obj;
}
Value getwork(const Array& params, bool fHelp)
{
if (fHelp || params.size() > 1)
throw runtime_error(
"getwork [data]\n"
"If [data] is not specified, returns formatted hash data to work on:\n"
" \"midstate\" : precomputed hash state after hashing the first half of the data (DEPRECATED)\n" // deprecated
" \"data\" : block data\n"
" \"hash1\" : formatted hash buffer for second hash (DEPRECATED)\n" // deprecated
" \"target\" : little endian hash target\n"
"If [data] is specified, tries to solve the block and returns true if it was successful.");
if (vNodes.empty())
throw JSONRPCError(RPC_CLIENT_NOT_CONNECTED, "Primecoin is not connected!");
if (IsInitialBlockDownload())
throw JSONRPCError(RPC_CLIENT_IN_INITIAL_DOWNLOAD, "Primecoin is downloading blocks...");
typedef map<uint256, pair<CBlock*, CScript> > mapNewBlock_t;
static mapNewBlock_t mapNewBlock; // FIXME: thread safety
static vector<CBlockTemplate*> vNewBlockTemplate;
if (params.size() == 0)
{
// Update block
static unsigned int nTransactionsUpdatedLast;
static CBlockIndex* pindexPrev;
static int64 nStart;
static CBlockTemplate* pblocktemplate;
if (pindexPrev != pindexBest ||
(nTransactionsUpdated != nTransactionsUpdatedLast && GetTime() - nStart > 60))
{
if (pindexPrev != pindexBest)
{
// Deallocate old blocks since they're obsolete now
mapNewBlock.clear();
BOOST_FOREACH(CBlockTemplate* pblocktemplate, vNewBlockTemplate)
delete pblocktemplate;
vNewBlockTemplate.clear();
}
// Clear pindexPrev so future getworks make a new block, despite any failures from here on
pindexPrev = NULL;
// Store the pindexBest used before CreateNewBlock, to avoid races
nTransactionsUpdatedLast = nTransactionsUpdated;
CBlockIndex* pindexPrevNew = pindexBest;
nStart = GetTime();
// Create new block
pblocktemplate = CreateNewBlock(*pMiningKey);
if (!pblocktemplate)
throw JSONRPCError(RPC_OUT_OF_MEMORY, "Out of memory");
vNewBlockTemplate.push_back(pblocktemplate);
// Need to update only after we know CreateNewBlock succeeded
pindexPrev = pindexPrevNew;
}
CBlock* pblock = &pblocktemplate->block; // pointer for convenience
// Update nTime
pblock->UpdateTime(pindexPrev);
pblock->nNonce = 0;
// Update nExtraNonce
static unsigned int nExtraNonce = 0;
IncrementExtraNonce(pblock, pindexPrev, nExtraNonce);
// Save
mapNewBlock[pblock->hashMerkleRoot] = make_pair(pblock, pblock->vtx[0].vin[0].scriptSig);
// Pre-build hash buffers
char pmidstate[32];
char pdata[128];
char phash1[64];
FormatHashBuffers(pblock, pmidstate, pdata, phash1);
uint256 hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256();
Object result;
result.push_back(Pair("midstate", HexStr(BEGIN(pmidstate), END(pmidstate)))); // deprecated
result.push_back(Pair("data", HexStr(BEGIN(pdata), END(pdata))));
result.push_back(Pair("hash1", HexStr(BEGIN(phash1), END(phash1)))); // deprecated
result.push_back(Pair("target", HexStr(BEGIN(hashTarget), END(hashTarget))));
return result;
}
else
{
// Parse parameters
vector<unsigned char> vchData = ParseHex(params[0].get_str());
if (vchData.size() != 128)
throw JSONRPCError(RPC_INVALID_PARAMETER, "Invalid parameter");
CBlock* pdata = (CBlock*)&vchData[0];
// Byte reverse
for (int i = 0; i < 128/4; i++)
((unsigned int*)pdata)[i] = ByteReverse(((unsigned int*)pdata)[i]);
// Get saved block
if (!mapNewBlock.count(pdata->hashMerkleRoot))
return false;
CBlock* pblock = mapNewBlock[pdata->hashMerkleRoot].first;
pblock->nTime = pdata->nTime;
pblock->nNonce = pdata->nNonce;
pblock->vtx[0].vin[0].scriptSig = mapNewBlock[pdata->hashMerkleRoot].second;
pblock->hashMerkleRoot = pblock->BuildMerkleTree();
return CheckWork(pblock, *pwalletMain, *pMiningKey);
}
}
Value getblocktemplate(const Array& params, bool fHelp)
{
if (fHelp || params.size() > 1)
throw runtime_error(
"getblocktemplate [params]\n"
"Returns data needed to construct a block to work on:\n"
" \"version\" : block version\n"
" \"previousblockhash\" : hash of current highest block\n"
" \"transactions\" : contents of non-coinbase transactions that should be included in the next block\n"
" \"coinbaseaux\" : data that should be included in coinbase\n"
" \"coinbasevalue\" : maximum allowable input to coinbase transaction, including the generation award and transaction fees\n"
" \"target\" : hash target\n"
" \"mintime\" : minimum timestamp appropriate for next block\n"
" \"curtime\" : current timestamp\n"
" \"mutable\" : list of ways the block template may be changed\n"
" \"noncerange\" : range of valid nonces\n"
" \"sigoplimit\" : limit of sigops in blocks\n"
" \"sizelimit\" : limit of block size\n"
" \"bits\" : compressed target of next block\n"
" \"height\" : height of the next block\n"
"See https://en.bitcoin.it/wiki/BIP_0022 for full specification.");
std::string strMode = "template";
if (params.size() > 0)
{
const Object& oparam = params[0].get_obj();
const Value& modeval = find_value(oparam, "mode");
if (modeval.type() == str_type)
strMode = modeval.get_str();
else if (modeval.type() == null_type)
{
/* Do nothing */
}
else
throw JSONRPCError(RPC_INVALID_PARAMETER, "Invalid mode");
}
if (strMode != "template")
throw JSONRPCError(RPC_INVALID_PARAMETER, "Invalid mode");
if (vNodes.empty())
throw JSONRPCError(RPC_CLIENT_NOT_CONNECTED, "Primecoin is not connected!");
if (IsInitialBlockDownload())
throw JSONRPCError(RPC_CLIENT_IN_INITIAL_DOWNLOAD, "Primecoin is downloading blocks...");
// Update block
static unsigned int nTransactionsUpdatedLast;
static CBlockIndex* pindexPrev;
static int64 nStart;
static CBlockTemplate* pblocktemplate;
if (pindexPrev != pindexBest ||
(nTransactionsUpdated != nTransactionsUpdatedLast && GetTime() - nStart > 5))
{
// Clear pindexPrev so future calls make a new block, despite any failures from here on
pindexPrev = NULL;
// Store the pindexBest used before CreateNewBlock, to avoid races
nTransactionsUpdatedLast = nTransactionsUpdated;
CBlockIndex* pindexPrevNew = pindexBest;
nStart = GetTime();
// Create new block
if(pblocktemplate)
{
delete pblocktemplate;
pblocktemplate = NULL;
}
pblocktemplate = CreateNewBlock(*pMiningKey);
if (!pblocktemplate)
throw JSONRPCError(RPC_OUT_OF_MEMORY, "Out of memory");
// Need to update only after we know CreateNewBlock succeeded
pindexPrev = pindexPrevNew;
}
CBlock* pblock = &pblocktemplate->block; // pointer for convenience
// Update nTime
pblock->UpdateTime(pindexPrev);
pblock->nNonce = 0;
Array transactions;
map<uint256, int64_t> setTxIndex;
int i = 0;
BOOST_FOREACH (CTransaction& tx, pblock->vtx)
{
uint256 txHash = tx.GetHash();
setTxIndex[txHash] = i++;
if (tx.IsCoinBase())
continue;
Object entry;
CDataStream ssTx(SER_NETWORK, PROTOCOL_VERSION);
ssTx << tx;
entry.push_back(Pair("data", HexStr(ssTx.begin(), ssTx.end())));
entry.push_back(Pair("hash", txHash.GetHex()));
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 16:54:00 +00:00
Array deps;
BOOST_FOREACH (const CTxIn &in, tx.vin)
{
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 16:54:00 +00:00
if (setTxIndex.count(in.prevout.hash))
deps.push_back(setTxIndex[in.prevout.hash]);
}
entry.push_back(Pair("depends", deps));
int index_in_template = i - 1;
entry.push_back(Pair("fee", pblocktemplate->vTxFees[index_in_template]));
entry.push_back(Pair("sigops", pblocktemplate->vTxSigOps[index_in_template]));
transactions.push_back(entry);
}
Object aux;
aux.push_back(Pair("flags", HexStr(COINBASE_FLAGS.begin(), COINBASE_FLAGS.end())));
uint256 hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256();
static Array aMutable;
if (aMutable.empty())
{
aMutable.push_back("time");
aMutable.push_back("transactions");
aMutable.push_back("prevblock");
}
Object result;
result.push_back(Pair("version", pblock->nVersion));
result.push_back(Pair("previousblockhash", pblock->hashPrevBlock.GetHex()));
result.push_back(Pair("transactions", transactions));
result.push_back(Pair("coinbaseaux", aux));
result.push_back(Pair("coinbasevalue", (int64_t)pblock->vtx[0].vout[0].nValue));
result.push_back(Pair("target", hashTarget.GetHex()));
result.push_back(Pair("mintime", (int64_t)pindexPrev->GetMedianTimePast()+1));
result.push_back(Pair("mutable", aMutable));
result.push_back(Pair("noncerange", "00000000ffffffff"));
result.push_back(Pair("sigoplimit", (int64_t)MAX_BLOCK_SIGOPS));
result.push_back(Pair("sizelimit", (int64_t)MAX_BLOCK_SIZE));
result.push_back(Pair("curtime", (int64_t)pblock->nTime));
result.push_back(Pair("bits", HexBits(pblock->nBits)));
result.push_back(Pair("height", (int64_t)(pindexPrev->nHeight+1)));
return result;
}
Value submitblock(const Array& params, bool fHelp)
{
if (fHelp || params.size() < 1 || params.size() > 2)
throw runtime_error(
"submitblock <hex data> [optional-params-obj]\n"
"[optional-params-obj] parameter is currently ignored.\n"
"Attempts to submit new block to network.\n"
"See https://en.bitcoin.it/wiki/BIP_0022 for full specification.");
vector<unsigned char> blockData(ParseHex(params[0].get_str()));
CDataStream ssBlock(blockData, SER_NETWORK, PROTOCOL_VERSION);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 16:54:00 +00:00
CBlock pblock;
try {
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 16:54:00 +00:00
ssBlock >> pblock;
}
catch (std::exception &e) {
throw JSONRPCError(RPC_DESERIALIZATION_ERROR, "Block decode failed");
}
2013-01-26 23:14:11 +00:00
CValidationState state;
bool fAccepted = ProcessBlock(state, NULL, &pblock);
if (!fAccepted)
2013-01-26 23:14:11 +00:00
return "rejected"; // TODO: report validation state
return Value::null;
}