linux/arch/x86/kvm/paging_tmpl.h
Xiao Guangrong be71e061d1 KVM: MMU: don't mark pte notrap if it's just sync transient
If the sync-sp just sync transient, don't mark its pte notrap

Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2010-08-01 10:46:42 +03:00

656 lines
17 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* MMU support
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affilates.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
/*
* We need the mmu code to access both 32-bit and 64-bit guest ptes,
* so the code in this file is compiled twice, once per pte size.
*/
#if PTTYPE == 64
#define pt_element_t u64
#define guest_walker guest_walker64
#define FNAME(name) paging##64_##name
#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
#define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
#define PT_LEVEL_BITS PT64_LEVEL_BITS
#ifdef CONFIG_X86_64
#define PT_MAX_FULL_LEVELS 4
#define CMPXCHG cmpxchg
#else
#define CMPXCHG cmpxchg64
#define PT_MAX_FULL_LEVELS 2
#endif
#elif PTTYPE == 32
#define pt_element_t u32
#define guest_walker guest_walker32
#define FNAME(name) paging##32_##name
#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
#define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
#define PT_LEVEL_BITS PT32_LEVEL_BITS
#define PT_MAX_FULL_LEVELS 2
#define CMPXCHG cmpxchg
#else
#error Invalid PTTYPE value
#endif
#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
/*
* The guest_walker structure emulates the behavior of the hardware page
* table walker.
*/
struct guest_walker {
int level;
gfn_t table_gfn[PT_MAX_FULL_LEVELS];
pt_element_t ptes[PT_MAX_FULL_LEVELS];
gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
unsigned pt_access;
unsigned pte_access;
gfn_t gfn;
u32 error_code;
};
static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
{
return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
}
static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
gfn_t table_gfn, unsigned index,
pt_element_t orig_pte, pt_element_t new_pte)
{
pt_element_t ret;
pt_element_t *table;
struct page *page;
page = gfn_to_page(kvm, table_gfn);
table = kmap_atomic(page, KM_USER0);
ret = CMPXCHG(&table[index], orig_pte, new_pte);
kunmap_atomic(table, KM_USER0);
kvm_release_page_dirty(page);
return (ret != orig_pte);
}
static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
{
unsigned access;
access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
#if PTTYPE == 64
if (is_nx(vcpu))
access &= ~(gpte >> PT64_NX_SHIFT);
#endif
return access;
}
/*
* Fetch a guest pte for a guest virtual address
*/
static int FNAME(walk_addr)(struct guest_walker *walker,
struct kvm_vcpu *vcpu, gva_t addr,
int write_fault, int user_fault, int fetch_fault)
{
pt_element_t pte;
gfn_t table_gfn;
unsigned index, pt_access, pte_access;
gpa_t pte_gpa;
int rsvd_fault = 0;
trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault,
fetch_fault);
walk:
walker->level = vcpu->arch.mmu.root_level;
pte = vcpu->arch.cr3;
#if PTTYPE == 64
if (!is_long_mode(vcpu)) {
pte = kvm_pdptr_read(vcpu, (addr >> 30) & 3);
trace_kvm_mmu_paging_element(pte, walker->level);
if (!is_present_gpte(pte))
goto not_present;
--walker->level;
}
#endif
ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
(vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
pt_access = ACC_ALL;
for (;;) {
index = PT_INDEX(addr, walker->level);
table_gfn = gpte_to_gfn(pte);
pte_gpa = gfn_to_gpa(table_gfn);
pte_gpa += index * sizeof(pt_element_t);
walker->table_gfn[walker->level - 1] = table_gfn;
walker->pte_gpa[walker->level - 1] = pte_gpa;
if (kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte)))
goto not_present;
trace_kvm_mmu_paging_element(pte, walker->level);
if (!is_present_gpte(pte))
goto not_present;
rsvd_fault = is_rsvd_bits_set(vcpu, pte, walker->level);
if (rsvd_fault)
goto access_error;
if (write_fault && !is_writable_pte(pte))
if (user_fault || is_write_protection(vcpu))
goto access_error;
if (user_fault && !(pte & PT_USER_MASK))
goto access_error;
#if PTTYPE == 64
if (fetch_fault && (pte & PT64_NX_MASK))
goto access_error;
#endif
if (!(pte & PT_ACCESSED_MASK)) {
trace_kvm_mmu_set_accessed_bit(table_gfn, index,
sizeof(pte));
if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
index, pte, pte|PT_ACCESSED_MASK))
goto walk;
mark_page_dirty(vcpu->kvm, table_gfn);
pte |= PT_ACCESSED_MASK;
}
pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
walker->ptes[walker->level - 1] = pte;
if ((walker->level == PT_PAGE_TABLE_LEVEL) ||
((walker->level == PT_DIRECTORY_LEVEL) &&
is_large_pte(pte) &&
(PTTYPE == 64 || is_pse(vcpu))) ||
((walker->level == PT_PDPE_LEVEL) &&
is_large_pte(pte) &&
is_long_mode(vcpu))) {
int lvl = walker->level;
walker->gfn = gpte_to_gfn_lvl(pte, lvl);
walker->gfn += (addr & PT_LVL_OFFSET_MASK(lvl))
>> PAGE_SHIFT;
if (PTTYPE == 32 &&
walker->level == PT_DIRECTORY_LEVEL &&
is_cpuid_PSE36())
walker->gfn += pse36_gfn_delta(pte);
break;
}
pt_access = pte_access;
--walker->level;
}
if (write_fault && !is_dirty_gpte(pte)) {
bool ret;
trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
pte|PT_DIRTY_MASK);
if (ret)
goto walk;
mark_page_dirty(vcpu->kvm, table_gfn);
pte |= PT_DIRTY_MASK;
walker->ptes[walker->level - 1] = pte;
}
walker->pt_access = pt_access;
walker->pte_access = pte_access;
pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
__func__, (u64)pte, pte_access, pt_access);
return 1;
not_present:
walker->error_code = 0;
goto err;
access_error:
walker->error_code = PFERR_PRESENT_MASK;
err:
if (write_fault)
walker->error_code |= PFERR_WRITE_MASK;
if (user_fault)
walker->error_code |= PFERR_USER_MASK;
if (fetch_fault)
walker->error_code |= PFERR_FETCH_MASK;
if (rsvd_fault)
walker->error_code |= PFERR_RSVD_MASK;
trace_kvm_mmu_walker_error(walker->error_code);
return 0;
}
static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
u64 *spte, const void *pte)
{
pt_element_t gpte;
unsigned pte_access;
pfn_t pfn;
u64 new_spte;
gpte = *(const pt_element_t *)pte;
if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
if (!is_present_gpte(gpte)) {
if (sp->unsync)
new_spte = shadow_trap_nonpresent_pte;
else
new_spte = shadow_notrap_nonpresent_pte;
__set_spte(spte, new_spte);
}
return;
}
pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
return;
pfn = vcpu->arch.update_pte.pfn;
if (is_error_pfn(pfn))
return;
if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
return;
kvm_get_pfn(pfn);
/*
* we call mmu_set_spte() with reset_host_protection = true beacuse that
* vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
*/
mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
is_dirty_gpte(gpte), NULL, PT_PAGE_TABLE_LEVEL,
gpte_to_gfn(gpte), pfn, true, true);
}
/*
* Fetch a shadow pte for a specific level in the paging hierarchy.
*/
static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
struct guest_walker *gw,
int user_fault, int write_fault, int hlevel,
int *ptwrite, pfn_t pfn)
{
unsigned access = gw->pt_access;
struct kvm_mmu_page *sp;
u64 spte, *sptep = NULL;
int direct;
gfn_t table_gfn;
int r;
int level;
pt_element_t curr_pte;
struct kvm_shadow_walk_iterator iterator;
if (!is_present_gpte(gw->ptes[gw->level - 1]))
return NULL;
for_each_shadow_entry(vcpu, addr, iterator) {
level = iterator.level;
sptep = iterator.sptep;
if (iterator.level == hlevel) {
mmu_set_spte(vcpu, sptep, access,
gw->pte_access & access,
user_fault, write_fault,
is_dirty_gpte(gw->ptes[gw->level-1]),
ptwrite, level,
gw->gfn, pfn, false, true);
break;
}
if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
continue;
if (is_large_pte(*sptep)) {
rmap_remove(vcpu->kvm, sptep);
__set_spte(sptep, shadow_trap_nonpresent_pte);
kvm_flush_remote_tlbs(vcpu->kvm);
}
if (level <= gw->level) {
int delta = level - gw->level + 1;
direct = 1;
if (!is_dirty_gpte(gw->ptes[level - delta]))
access &= ~ACC_WRITE_MASK;
/*
* It is a large guest pages backed by small host pages,
* So we set @direct(@sp->role.direct)=1, and set
* @table_gfn(@sp->gfn)=the base page frame for linear
* translations.
*/
table_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
access &= gw->pte_access;
} else {
direct = 0;
table_gfn = gw->table_gfn[level - 2];
}
sp = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
direct, access, sptep);
if (!direct) {
r = kvm_read_guest_atomic(vcpu->kvm,
gw->pte_gpa[level - 2],
&curr_pte, sizeof(curr_pte));
if (r || curr_pte != gw->ptes[level - 2]) {
kvm_mmu_put_page(sp, sptep);
kvm_release_pfn_clean(pfn);
sptep = NULL;
break;
}
}
spte = __pa(sp->spt)
| PT_PRESENT_MASK | PT_ACCESSED_MASK
| PT_WRITABLE_MASK | PT_USER_MASK;
*sptep = spte;
}
return sptep;
}
/*
* Page fault handler. There are several causes for a page fault:
* - there is no shadow pte for the guest pte
* - write access through a shadow pte marked read only so that we can set
* the dirty bit
* - write access to a shadow pte marked read only so we can update the page
* dirty bitmap, when userspace requests it
* - mmio access; in this case we will never install a present shadow pte
* - normal guest page fault due to the guest pte marked not present, not
* writable, or not executable
*
* Returns: 1 if we need to emulate the instruction, 0 otherwise, or
* a negative value on error.
*/
static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
u32 error_code)
{
int write_fault = error_code & PFERR_WRITE_MASK;
int user_fault = error_code & PFERR_USER_MASK;
int fetch_fault = error_code & PFERR_FETCH_MASK;
struct guest_walker walker;
u64 *sptep;
int write_pt = 0;
int r;
pfn_t pfn;
int level = PT_PAGE_TABLE_LEVEL;
unsigned long mmu_seq;
pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
kvm_mmu_audit(vcpu, "pre page fault");
r = mmu_topup_memory_caches(vcpu);
if (r)
return r;
/*
* Look up the guest pte for the faulting address.
*/
r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
fetch_fault);
/*
* The page is not mapped by the guest. Let the guest handle it.
*/
if (!r) {
pgprintk("%s: guest page fault\n", __func__);
inject_page_fault(vcpu, addr, walker.error_code);
vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
return 0;
}
if (walker.level >= PT_DIRECTORY_LEVEL) {
level = min(walker.level, mapping_level(vcpu, walker.gfn));
walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
}
mmu_seq = vcpu->kvm->mmu_notifier_seq;
smp_rmb();
pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
/* mmio */
if (is_error_pfn(pfn))
return kvm_handle_bad_page(vcpu->kvm, walker.gfn, pfn);
spin_lock(&vcpu->kvm->mmu_lock);
if (mmu_notifier_retry(vcpu, mmu_seq))
goto out_unlock;
kvm_mmu_free_some_pages(vcpu);
sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
level, &write_pt, pfn);
(void)sptep;
pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
sptep, *sptep, write_pt);
if (!write_pt)
vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
++vcpu->stat.pf_fixed;
kvm_mmu_audit(vcpu, "post page fault (fixed)");
spin_unlock(&vcpu->kvm->mmu_lock);
return write_pt;
out_unlock:
spin_unlock(&vcpu->kvm->mmu_lock);
kvm_release_pfn_clean(pfn);
return 0;
}
static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
{
struct kvm_shadow_walk_iterator iterator;
struct kvm_mmu_page *sp;
gpa_t pte_gpa = -1;
int level;
u64 *sptep;
int need_flush = 0;
spin_lock(&vcpu->kvm->mmu_lock);
for_each_shadow_entry(vcpu, gva, iterator) {
level = iterator.level;
sptep = iterator.sptep;
sp = page_header(__pa(sptep));
if (is_last_spte(*sptep, level)) {
int offset, shift;
if (!sp->unsync)
break;
shift = PAGE_SHIFT -
(PT_LEVEL_BITS - PT64_LEVEL_BITS) * level;
offset = sp->role.quadrant << shift;
pte_gpa = (sp->gfn << PAGE_SHIFT) + offset;
pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
if (is_shadow_present_pte(*sptep)) {
rmap_remove(vcpu->kvm, sptep);
if (is_large_pte(*sptep))
--vcpu->kvm->stat.lpages;
need_flush = 1;
}
__set_spte(sptep, shadow_trap_nonpresent_pte);
break;
}
if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
break;
}
if (need_flush)
kvm_flush_remote_tlbs(vcpu->kvm);
atomic_inc(&vcpu->kvm->arch.invlpg_counter);
spin_unlock(&vcpu->kvm->mmu_lock);
if (pte_gpa == -1)
return;
if (mmu_topup_memory_caches(vcpu))
return;
kvm_mmu_pte_write(vcpu, pte_gpa, NULL, sizeof(pt_element_t), 0);
}
static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
u32 *error)
{
struct guest_walker walker;
gpa_t gpa = UNMAPPED_GVA;
int r;
r = FNAME(walk_addr)(&walker, vcpu, vaddr,
!!(access & PFERR_WRITE_MASK),
!!(access & PFERR_USER_MASK),
!!(access & PFERR_FETCH_MASK));
if (r) {
gpa = gfn_to_gpa(walker.gfn);
gpa |= vaddr & ~PAGE_MASK;
} else if (error)
*error = walker.error_code;
return gpa;
}
static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp)
{
int i, j, offset, r;
pt_element_t pt[256 / sizeof(pt_element_t)];
gpa_t pte_gpa;
if (sp->role.direct
|| (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
nonpaging_prefetch_page(vcpu, sp);
return;
}
pte_gpa = gfn_to_gpa(sp->gfn);
if (PTTYPE == 32) {
offset = sp->role.quadrant << PT64_LEVEL_BITS;
pte_gpa += offset * sizeof(pt_element_t);
}
for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
for (j = 0; j < ARRAY_SIZE(pt); ++j)
if (r || is_present_gpte(pt[j]))
sp->spt[i+j] = shadow_trap_nonpresent_pte;
else
sp->spt[i+j] = shadow_notrap_nonpresent_pte;
}
}
/*
* Using the cached information from sp->gfns is safe because:
* - The spte has a reference to the struct page, so the pfn for a given gfn
* can't change unless all sptes pointing to it are nuked first.
* - Alias changes zap the entire shadow cache.
*/
static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
bool clear_unsync)
{
int i, offset, nr_present;
bool reset_host_protection;
gpa_t first_pte_gpa;
offset = nr_present = 0;
/* direct kvm_mmu_page can not be unsync. */
BUG_ON(sp->role.direct);
if (PTTYPE == 32)
offset = sp->role.quadrant << PT64_LEVEL_BITS;
first_pte_gpa = gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
unsigned pte_access;
pt_element_t gpte;
gpa_t pte_gpa;
gfn_t gfn;
if (!is_shadow_present_pte(sp->spt[i]))
continue;
pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
sizeof(pt_element_t)))
return -EINVAL;
gfn = gpte_to_gfn(gpte);
if (unalias_gfn(vcpu->kvm, gfn) != sp->gfns[i] ||
!is_present_gpte(gpte) || !(gpte & PT_ACCESSED_MASK)) {
u64 nonpresent;
rmap_remove(vcpu->kvm, &sp->spt[i]);
if (is_present_gpte(gpte) || !clear_unsync)
nonpresent = shadow_trap_nonpresent_pte;
else
nonpresent = shadow_notrap_nonpresent_pte;
__set_spte(&sp->spt[i], nonpresent);
continue;
}
nr_present++;
pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
if (!(sp->spt[i] & SPTE_HOST_WRITEABLE)) {
pte_access &= ~ACC_WRITE_MASK;
reset_host_protection = 0;
} else {
reset_host_protection = 1;
}
set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
is_dirty_gpte(gpte), PT_PAGE_TABLE_LEVEL, gfn,
spte_to_pfn(sp->spt[i]), true, false,
reset_host_protection);
}
return !nr_present;
}
#undef pt_element_t
#undef guest_walker
#undef FNAME
#undef PT_BASE_ADDR_MASK
#undef PT_INDEX
#undef PT_LEVEL_MASK
#undef PT_LVL_ADDR_MASK
#undef PT_LVL_OFFSET_MASK
#undef PT_LEVEL_BITS
#undef PT_MAX_FULL_LEVELS
#undef gpte_to_gfn
#undef gpte_to_gfn_lvl
#undef CMPXCHG