7fbb7cadd0
Since the complete re-write in 2.6.10, some PowerMacs (At least PowerMac 5500 and PowerMac G3 Beige rev A) with ATI Mach64 chip have suffered from unstable columns in their framebuffer image. This seems to depend on a value (4) read from PLL_EXT_CNTL register, which leads to incorrect DSP config parameters to be written to the chip. This patch uses a value calculated by aty_init_pll_ct instead, as a starting point. There are questions as to whether this should be extended to other platforms or maybe made dependent on specific chip types, but in the meantime, this has been tested on various powermacs and works for them so let's commit it. Signed-off-by: Risto Suominen <Risto.Suominen@gmail.com> Tested-by: Michael Pettersson <mike@it.uu.se> Cc: <stable@kernel.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
651 lines
19 KiB
C
651 lines
19 KiB
C
|
|
/*
|
|
* ATI Mach64 CT/VT/GT/LT Support
|
|
*/
|
|
|
|
#include <linux/fb.h>
|
|
#include <linux/delay.h>
|
|
#include <asm/io.h>
|
|
#include <video/mach64.h>
|
|
#include "atyfb.h"
|
|
#ifdef CONFIG_PPC
|
|
#include <asm/machdep.h>
|
|
#endif
|
|
|
|
#undef DEBUG
|
|
|
|
static int aty_valid_pll_ct (const struct fb_info *info, u32 vclk_per, struct pll_ct *pll);
|
|
static int aty_dsp_gt (const struct fb_info *info, u32 bpp, struct pll_ct *pll);
|
|
static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll);
|
|
static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll);
|
|
|
|
u8 aty_ld_pll_ct(int offset, const struct atyfb_par *par)
|
|
{
|
|
u8 res;
|
|
|
|
/* write addr byte */
|
|
aty_st_8(CLOCK_CNTL_ADDR, (offset << 2) & PLL_ADDR, par);
|
|
/* read the register value */
|
|
res = aty_ld_8(CLOCK_CNTL_DATA, par);
|
|
return res;
|
|
}
|
|
|
|
static void aty_st_pll_ct(int offset, u8 val, const struct atyfb_par *par)
|
|
{
|
|
/* write addr byte */
|
|
aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) | PLL_WR_EN, par);
|
|
/* write the register value */
|
|
aty_st_8(CLOCK_CNTL_DATA, val & PLL_DATA, par);
|
|
aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) & ~PLL_WR_EN, par);
|
|
}
|
|
|
|
/*
|
|
* by Daniel Mantione
|
|
* <daniel.mantione@freepascal.org>
|
|
*
|
|
*
|
|
* ATI Mach64 CT clock synthesis description.
|
|
*
|
|
* All clocks on the Mach64 can be calculated using the same principle:
|
|
*
|
|
* XTALIN * x * FB_DIV
|
|
* CLK = ----------------------
|
|
* PLL_REF_DIV * POST_DIV
|
|
*
|
|
* XTALIN is a fixed speed clock. Common speeds are 14.31 MHz and 29.50 MHz.
|
|
* PLL_REF_DIV can be set by the user, but is the same for all clocks.
|
|
* FB_DIV can be set by the user for each clock individually, it should be set
|
|
* between 128 and 255, the chip will generate a bad clock signal for too low
|
|
* values.
|
|
* x depends on the type of clock; usually it is 2, but for the MCLK it can also
|
|
* be set to 4.
|
|
* POST_DIV can be set by the user for each clock individually, Possible values
|
|
* are 1,2,4,8 and for some clocks other values are available too.
|
|
* CLK is of course the clock speed that is generated.
|
|
*
|
|
* The Mach64 has these clocks:
|
|
*
|
|
* MCLK The clock rate of the chip
|
|
* XCLK The clock rate of the on-chip memory
|
|
* VCLK0 First pixel clock of first CRT controller
|
|
* VCLK1 Second pixel clock of first CRT controller
|
|
* VCLK2 Third pixel clock of first CRT controller
|
|
* VCLK3 Fourth pixel clock of first CRT controller
|
|
* VCLK Selected pixel clock, one of VCLK0, VCLK1, VCLK2, VCLK3
|
|
* V2CLK Pixel clock of the second CRT controller.
|
|
* SCLK Multi-purpose clock
|
|
*
|
|
* - MCLK and XCLK use the same FB_DIV
|
|
* - VCLK0 .. VCLK3 use the same FB_DIV
|
|
* - V2CLK is needed when the second CRTC is used (can be used for dualhead);
|
|
* i.e. CRT monitor connected to laptop has different resolution than built
|
|
* in LCD monitor.
|
|
* - SCLK is not available on all cards; it is know to exist on the Rage LT-PRO,
|
|
* Rage XL and Rage Mobility. It is know not to exist on the Mach64 VT.
|
|
* - V2CLK is not available on all cards, most likely only the Rage LT-PRO,
|
|
* the Rage XL and the Rage Mobility
|
|
*
|
|
* SCLK can be used to:
|
|
* - Clock the chip instead of MCLK
|
|
* - Replace XTALIN with a user defined frequency
|
|
* - Generate the pixel clock for the LCD monitor (instead of VCLK)
|
|
*/
|
|
|
|
/*
|
|
* It can be quite hard to calculate XCLK and MCLK if they don't run at the
|
|
* same frequency. Luckily, until now all cards that need asynchrone clock
|
|
* speeds seem to have SCLK.
|
|
* So this driver uses SCLK to clock the chip and XCLK to clock the memory.
|
|
*/
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* PLL programming (Mach64 CT family)
|
|
*
|
|
*
|
|
* This procedure sets the display fifo. The display fifo is a buffer that
|
|
* contains data read from the video memory that waits to be processed by
|
|
* the CRT controller.
|
|
*
|
|
* On the more modern Mach64 variants, the chip doesn't calculate the
|
|
* interval after which the display fifo has to be reloaded from memory
|
|
* automatically, the driver has to do it instead.
|
|
*/
|
|
|
|
#define Maximum_DSP_PRECISION 7
|
|
static u8 postdividers[] = {1,2,4,8,3};
|
|
|
|
static int aty_dsp_gt(const struct fb_info *info, u32 bpp, struct pll_ct *pll)
|
|
{
|
|
u32 dsp_off, dsp_on, dsp_xclks;
|
|
u32 multiplier, divider, ras_multiplier, ras_divider, tmp;
|
|
u8 vshift, xshift;
|
|
s8 dsp_precision;
|
|
|
|
multiplier = ((u32)pll->mclk_fb_div) * pll->vclk_post_div_real;
|
|
divider = ((u32)pll->vclk_fb_div) * pll->xclk_ref_div;
|
|
|
|
ras_multiplier = pll->xclkmaxrasdelay;
|
|
ras_divider = 1;
|
|
|
|
if (bpp>=8)
|
|
divider = divider * (bpp >> 2);
|
|
|
|
vshift = (6 - 2) - pll->xclk_post_div; /* FIFO is 64 bits wide in accelerator mode ... */
|
|
|
|
if (bpp == 0)
|
|
vshift--; /* ... but only 32 bits in VGA mode. */
|
|
|
|
#ifdef CONFIG_FB_ATY_GENERIC_LCD
|
|
if (pll->xres != 0) {
|
|
struct atyfb_par *par = (struct atyfb_par *) info->par;
|
|
|
|
multiplier = multiplier * par->lcd_width;
|
|
divider = divider * pll->xres & ~7;
|
|
|
|
ras_multiplier = ras_multiplier * par->lcd_width;
|
|
ras_divider = ras_divider * pll->xres & ~7;
|
|
}
|
|
#endif
|
|
/* If we don't do this, 32 bits for multiplier & divider won't be
|
|
enough in certain situations! */
|
|
while (((multiplier | divider) & 1) == 0) {
|
|
multiplier = multiplier >> 1;
|
|
divider = divider >> 1;
|
|
}
|
|
|
|
/* Determine DSP precision first */
|
|
tmp = ((multiplier * pll->fifo_size) << vshift) / divider;
|
|
|
|
for (dsp_precision = -5; tmp; dsp_precision++)
|
|
tmp >>= 1;
|
|
if (dsp_precision < 0)
|
|
dsp_precision = 0;
|
|
else if (dsp_precision > Maximum_DSP_PRECISION)
|
|
dsp_precision = Maximum_DSP_PRECISION;
|
|
|
|
xshift = 6 - dsp_precision;
|
|
vshift += xshift;
|
|
|
|
/* Move on to dsp_off */
|
|
dsp_off = ((multiplier * (pll->fifo_size - 1)) << vshift) / divider -
|
|
(1 << (vshift - xshift));
|
|
|
|
/* if (bpp == 0)
|
|
dsp_on = ((multiplier * 20 << vshift) + divider) / divider;
|
|
else */
|
|
{
|
|
dsp_on = ((multiplier << vshift) + divider) / divider;
|
|
tmp = ((ras_multiplier << xshift) + ras_divider) / ras_divider;
|
|
if (dsp_on < tmp)
|
|
dsp_on = tmp;
|
|
dsp_on = dsp_on + (tmp * 2) + (pll->xclkpagefaultdelay << xshift);
|
|
}
|
|
|
|
/* Calculate rounding factor and apply it to dsp_on */
|
|
tmp = ((1 << (Maximum_DSP_PRECISION - dsp_precision)) - 1) >> 1;
|
|
dsp_on = ((dsp_on + tmp) / (tmp + 1)) * (tmp + 1);
|
|
|
|
if (dsp_on >= ((dsp_off / (tmp + 1)) * (tmp + 1))) {
|
|
dsp_on = dsp_off - (multiplier << vshift) / divider;
|
|
dsp_on = (dsp_on / (tmp + 1)) * (tmp + 1);
|
|
}
|
|
|
|
/* Last but not least: dsp_xclks */
|
|
dsp_xclks = ((multiplier << (vshift + 5)) + divider) / divider;
|
|
|
|
/* Get register values. */
|
|
pll->dsp_on_off = (dsp_on << 16) + dsp_off;
|
|
pll->dsp_config = (dsp_precision << 20) | (pll->dsp_loop_latency << 16) | dsp_xclks;
|
|
#ifdef DEBUG
|
|
printk("atyfb(%s): dsp_config 0x%08x, dsp_on_off 0x%08x\n",
|
|
__func__, pll->dsp_config, pll->dsp_on_off);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int aty_valid_pll_ct(const struct fb_info *info, u32 vclk_per, struct pll_ct *pll)
|
|
{
|
|
u32 q;
|
|
struct atyfb_par *par = (struct atyfb_par *) info->par;
|
|
int pllvclk;
|
|
|
|
/* FIXME: use the VTB/GTB /{3,6,12} post dividers if they're better suited */
|
|
q = par->ref_clk_per * pll->pll_ref_div * 4 / vclk_per;
|
|
if (q < 16*8 || q > 255*8) {
|
|
printk(KERN_CRIT "atyfb: vclk out of range\n");
|
|
return -EINVAL;
|
|
} else {
|
|
pll->vclk_post_div = (q < 128*8);
|
|
pll->vclk_post_div += (q < 64*8);
|
|
pll->vclk_post_div += (q < 32*8);
|
|
}
|
|
pll->vclk_post_div_real = postdividers[pll->vclk_post_div];
|
|
// pll->vclk_post_div <<= 6;
|
|
pll->vclk_fb_div = q * pll->vclk_post_div_real / 8;
|
|
pllvclk = (1000000 * 2 * pll->vclk_fb_div) /
|
|
(par->ref_clk_per * pll->pll_ref_div);
|
|
#ifdef DEBUG
|
|
printk("atyfb(%s): pllvclk=%d MHz, vclk=%d MHz\n",
|
|
__func__, pllvclk, pllvclk / pll->vclk_post_div_real);
|
|
#endif
|
|
pll->pll_vclk_cntl = 0x03; /* VCLK = PLL_VCLK/VCLKx_POST */
|
|
|
|
/* Set ECP (scaler/overlay clock) divider */
|
|
if (par->pll_limits.ecp_max) {
|
|
int ecp = pllvclk / pll->vclk_post_div_real;
|
|
int ecp_div = 0;
|
|
|
|
while (ecp > par->pll_limits.ecp_max && ecp_div < 2) {
|
|
ecp >>= 1;
|
|
ecp_div++;
|
|
}
|
|
pll->pll_vclk_cntl |= ecp_div << 4;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll)
|
|
{
|
|
struct atyfb_par *par = (struct atyfb_par *) info->par;
|
|
int err;
|
|
|
|
if ((err = aty_valid_pll_ct(info, vclk_per, &pll->ct)))
|
|
return err;
|
|
if (M64_HAS(GTB_DSP) && (err = aty_dsp_gt(info, bpp, &pll->ct)))
|
|
return err;
|
|
/*aty_calc_pll_ct(info, &pll->ct);*/
|
|
return 0;
|
|
}
|
|
|
|
static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll)
|
|
{
|
|
struct atyfb_par *par = (struct atyfb_par *) info->par;
|
|
u32 ret;
|
|
ret = par->ref_clk_per * pll->ct.pll_ref_div * pll->ct.vclk_post_div_real / pll->ct.vclk_fb_div / 2;
|
|
#ifdef CONFIG_FB_ATY_GENERIC_LCD
|
|
if(pll->ct.xres > 0) {
|
|
ret *= par->lcd_width;
|
|
ret /= pll->ct.xres;
|
|
}
|
|
#endif
|
|
#ifdef DEBUG
|
|
printk("atyfb(%s): calculated 0x%08X(%i)\n", __func__, ret, ret);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
void aty_set_pll_ct(const struct fb_info *info, const union aty_pll *pll)
|
|
{
|
|
struct atyfb_par *par = (struct atyfb_par *) info->par;
|
|
u32 crtc_gen_cntl, lcd_gen_cntrl;
|
|
u8 tmp, tmp2;
|
|
|
|
lcd_gen_cntrl = 0;
|
|
#ifdef DEBUG
|
|
printk("atyfb(%s): about to program:\n"
|
|
"pll_ext_cntl=0x%02x pll_gen_cntl=0x%02x pll_vclk_cntl=0x%02x\n",
|
|
__func__,
|
|
pll->ct.pll_ext_cntl, pll->ct.pll_gen_cntl, pll->ct.pll_vclk_cntl);
|
|
|
|
printk("atyfb(%s): setting clock %lu for FeedBackDivider %i, ReferenceDivider %i, PostDivider %i(%i)\n",
|
|
__func__,
|
|
par->clk_wr_offset, pll->ct.vclk_fb_div,
|
|
pll->ct.pll_ref_div, pll->ct.vclk_post_div, pll->ct.vclk_post_div_real);
|
|
#endif
|
|
#ifdef CONFIG_FB_ATY_GENERIC_LCD
|
|
if (par->lcd_table != 0) {
|
|
/* turn off LCD */
|
|
lcd_gen_cntrl = aty_ld_lcd(LCD_GEN_CNTL, par);
|
|
aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl & ~LCD_ON, par);
|
|
}
|
|
#endif
|
|
aty_st_8(CLOCK_CNTL, par->clk_wr_offset | CLOCK_STROBE, par);
|
|
|
|
/* Temporarily switch to accelerator mode */
|
|
crtc_gen_cntl = aty_ld_le32(CRTC_GEN_CNTL, par);
|
|
if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN))
|
|
aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl | CRTC_EXT_DISP_EN, par);
|
|
|
|
/* Reset VCLK generator */
|
|
aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par);
|
|
|
|
/* Set post-divider */
|
|
tmp2 = par->clk_wr_offset << 1;
|
|
tmp = aty_ld_pll_ct(VCLK_POST_DIV, par);
|
|
tmp &= ~(0x03U << tmp2);
|
|
tmp |= ((pll->ct.vclk_post_div & 0x03U) << tmp2);
|
|
aty_st_pll_ct(VCLK_POST_DIV, tmp, par);
|
|
|
|
/* Set extended post-divider */
|
|
tmp = aty_ld_pll_ct(PLL_EXT_CNTL, par);
|
|
tmp &= ~(0x10U << par->clk_wr_offset);
|
|
tmp &= 0xF0U;
|
|
tmp |= pll->ct.pll_ext_cntl;
|
|
aty_st_pll_ct(PLL_EXT_CNTL, tmp, par);
|
|
|
|
/* Set feedback divider */
|
|
tmp = VCLK0_FB_DIV + par->clk_wr_offset;
|
|
aty_st_pll_ct(tmp, (pll->ct.vclk_fb_div & 0xFFU), par);
|
|
|
|
aty_st_pll_ct(PLL_GEN_CNTL, (pll->ct.pll_gen_cntl & (~(PLL_OVERRIDE | PLL_MCLK_RST))) | OSC_EN, par);
|
|
|
|
/* End VCLK generator reset */
|
|
aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl & ~(PLL_VCLK_RST), par);
|
|
mdelay(5);
|
|
|
|
aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par);
|
|
aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par);
|
|
mdelay(1);
|
|
|
|
/* Restore mode register */
|
|
if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN))
|
|
aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl, par);
|
|
|
|
if (M64_HAS(GTB_DSP)) {
|
|
u8 dll_cntl;
|
|
|
|
if (M64_HAS(XL_DLL))
|
|
dll_cntl = 0x80;
|
|
else if (par->ram_type >= SDRAM)
|
|
dll_cntl = 0xa6;
|
|
else
|
|
dll_cntl = 0xa0;
|
|
aty_st_pll_ct(DLL_CNTL, dll_cntl, par);
|
|
aty_st_pll_ct(VFC_CNTL, 0x1b, par);
|
|
aty_st_le32(DSP_CONFIG, pll->ct.dsp_config, par);
|
|
aty_st_le32(DSP_ON_OFF, pll->ct.dsp_on_off, par);
|
|
|
|
mdelay(10);
|
|
aty_st_pll_ct(DLL_CNTL, dll_cntl, par);
|
|
mdelay(10);
|
|
aty_st_pll_ct(DLL_CNTL, dll_cntl | 0x40, par);
|
|
mdelay(10);
|
|
aty_st_pll_ct(DLL_CNTL, dll_cntl & ~0x40, par);
|
|
}
|
|
#ifdef CONFIG_FB_ATY_GENERIC_LCD
|
|
if (par->lcd_table != 0) {
|
|
/* restore LCD */
|
|
aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl, par);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void __devinit aty_get_pll_ct(const struct fb_info *info,
|
|
union aty_pll *pll)
|
|
{
|
|
struct atyfb_par *par = (struct atyfb_par *) info->par;
|
|
u8 tmp, clock;
|
|
|
|
clock = aty_ld_8(CLOCK_CNTL, par) & 0x03U;
|
|
tmp = clock << 1;
|
|
pll->ct.vclk_post_div = (aty_ld_pll_ct(VCLK_POST_DIV, par) >> tmp) & 0x03U;
|
|
|
|
pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par) & 0x0FU;
|
|
pll->ct.vclk_fb_div = aty_ld_pll_ct(VCLK0_FB_DIV + clock, par) & 0xFFU;
|
|
pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par);
|
|
pll->ct.mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par);
|
|
|
|
pll->ct.pll_gen_cntl = aty_ld_pll_ct(PLL_GEN_CNTL, par);
|
|
pll->ct.pll_vclk_cntl = aty_ld_pll_ct(PLL_VCLK_CNTL, par);
|
|
|
|
if (M64_HAS(GTB_DSP)) {
|
|
pll->ct.dsp_config = aty_ld_le32(DSP_CONFIG, par);
|
|
pll->ct.dsp_on_off = aty_ld_le32(DSP_ON_OFF, par);
|
|
}
|
|
}
|
|
|
|
static int __devinit aty_init_pll_ct(const struct fb_info *info,
|
|
union aty_pll *pll)
|
|
{
|
|
struct atyfb_par *par = (struct atyfb_par *) info->par;
|
|
u8 mpost_div, xpost_div, sclk_post_div_real;
|
|
u32 q, memcntl, trp;
|
|
u32 dsp_config, dsp_on_off, vga_dsp_config, vga_dsp_on_off;
|
|
#ifdef DEBUG
|
|
int pllmclk, pllsclk;
|
|
#endif
|
|
pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par);
|
|
pll->ct.xclk_post_div = pll->ct.pll_ext_cntl & 0x07;
|
|
pll->ct.xclk_ref_div = 1;
|
|
switch (pll->ct.xclk_post_div) {
|
|
case 0: case 1: case 2: case 3:
|
|
break;
|
|
|
|
case 4:
|
|
pll->ct.xclk_ref_div = 3;
|
|
pll->ct.xclk_post_div = 0;
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_CRIT "atyfb: Unsupported xclk source: %d.\n", pll->ct.xclk_post_div);
|
|
return -EINVAL;
|
|
}
|
|
pll->ct.mclk_fb_mult = 2;
|
|
if(pll->ct.pll_ext_cntl & PLL_MFB_TIMES_4_2B) {
|
|
pll->ct.mclk_fb_mult = 4;
|
|
pll->ct.xclk_post_div -= 1;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
printk("atyfb(%s): mclk_fb_mult=%d, xclk_post_div=%d\n",
|
|
__func__, pll->ct.mclk_fb_mult, pll->ct.xclk_post_div);
|
|
#endif
|
|
|
|
memcntl = aty_ld_le32(MEM_CNTL, par);
|
|
trp = (memcntl & 0x300) >> 8;
|
|
|
|
pll->ct.xclkpagefaultdelay = ((memcntl & 0xc00) >> 10) + ((memcntl & 0x1000) >> 12) + trp + 2;
|
|
pll->ct.xclkmaxrasdelay = ((memcntl & 0x70000) >> 16) + trp + 2;
|
|
|
|
if (M64_HAS(FIFO_32)) {
|
|
pll->ct.fifo_size = 32;
|
|
} else {
|
|
pll->ct.fifo_size = 24;
|
|
pll->ct.xclkpagefaultdelay += 2;
|
|
pll->ct.xclkmaxrasdelay += 3;
|
|
}
|
|
|
|
switch (par->ram_type) {
|
|
case DRAM:
|
|
if (info->fix.smem_len<=ONE_MB) {
|
|
pll->ct.dsp_loop_latency = 10;
|
|
} else {
|
|
pll->ct.dsp_loop_latency = 8;
|
|
pll->ct.xclkpagefaultdelay += 2;
|
|
}
|
|
break;
|
|
case EDO:
|
|
case PSEUDO_EDO:
|
|
if (info->fix.smem_len<=ONE_MB) {
|
|
pll->ct.dsp_loop_latency = 9;
|
|
} else {
|
|
pll->ct.dsp_loop_latency = 8;
|
|
pll->ct.xclkpagefaultdelay += 1;
|
|
}
|
|
break;
|
|
case SDRAM:
|
|
if (info->fix.smem_len<=ONE_MB) {
|
|
pll->ct.dsp_loop_latency = 11;
|
|
} else {
|
|
pll->ct.dsp_loop_latency = 10;
|
|
pll->ct.xclkpagefaultdelay += 1;
|
|
}
|
|
break;
|
|
case SGRAM:
|
|
pll->ct.dsp_loop_latency = 8;
|
|
pll->ct.xclkpagefaultdelay += 3;
|
|
break;
|
|
default:
|
|
pll->ct.dsp_loop_latency = 11;
|
|
pll->ct.xclkpagefaultdelay += 3;
|
|
break;
|
|
}
|
|
|
|
if (pll->ct.xclkmaxrasdelay <= pll->ct.xclkpagefaultdelay)
|
|
pll->ct.xclkmaxrasdelay = pll->ct.xclkpagefaultdelay + 1;
|
|
|
|
/* Allow BIOS to override */
|
|
dsp_config = aty_ld_le32(DSP_CONFIG, par);
|
|
dsp_on_off = aty_ld_le32(DSP_ON_OFF, par);
|
|
vga_dsp_config = aty_ld_le32(VGA_DSP_CONFIG, par);
|
|
vga_dsp_on_off = aty_ld_le32(VGA_DSP_ON_OFF, par);
|
|
|
|
if (dsp_config)
|
|
pll->ct.dsp_loop_latency = (dsp_config & DSP_LOOP_LATENCY) >> 16;
|
|
#if 0
|
|
FIXME: is it relevant for us?
|
|
if ((!dsp_on_off && !M64_HAS(RESET_3D)) ||
|
|
((dsp_on_off == vga_dsp_on_off) &&
|
|
(!dsp_config || !((dsp_config ^ vga_dsp_config) & DSP_XCLKS_PER_QW)))) {
|
|
vga_dsp_on_off &= VGA_DSP_OFF;
|
|
vga_dsp_config &= VGA_DSP_XCLKS_PER_QW;
|
|
if (ATIDivide(vga_dsp_on_off, vga_dsp_config, 5, 1) > 24)
|
|
pll->ct.fifo_size = 32;
|
|
else
|
|
pll->ct.fifo_size = 24;
|
|
}
|
|
#endif
|
|
/* Exit if the user does not want us to tamper with the clock
|
|
rates of her chip. */
|
|
if (par->mclk_per == 0) {
|
|
u8 mclk_fb_div, pll_ext_cntl;
|
|
pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par);
|
|
pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par);
|
|
pll->ct.xclk_post_div_real = postdividers[pll_ext_cntl & 0x07];
|
|
mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par);
|
|
if (pll_ext_cntl & PLL_MFB_TIMES_4_2B)
|
|
mclk_fb_div <<= 1;
|
|
pll->ct.mclk_fb_div = mclk_fb_div;
|
|
return 0;
|
|
}
|
|
|
|
pll->ct.pll_ref_div = par->pll_per * 2 * 255 / par->ref_clk_per;
|
|
|
|
/* FIXME: use the VTB/GTB /3 post divider if it's better suited */
|
|
q = par->ref_clk_per * pll->ct.pll_ref_div * 8 /
|
|
(pll->ct.mclk_fb_mult * par->xclk_per);
|
|
|
|
if (q < 16*8 || q > 255*8) {
|
|
printk(KERN_CRIT "atxfb: xclk out of range\n");
|
|
return -EINVAL;
|
|
} else {
|
|
xpost_div = (q < 128*8);
|
|
xpost_div += (q < 64*8);
|
|
xpost_div += (q < 32*8);
|
|
}
|
|
pll->ct.xclk_post_div_real = postdividers[xpost_div];
|
|
pll->ct.mclk_fb_div = q * pll->ct.xclk_post_div_real / 8;
|
|
|
|
#ifdef CONFIG_PPC
|
|
if (machine_is(powermac)) {
|
|
/* Override PLL_EXT_CNTL & 0x07. */
|
|
pll->ct.xclk_post_div = xpost_div;
|
|
pll->ct.xclk_ref_div = 1;
|
|
}
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
pllmclk = (1000000 * pll->ct.mclk_fb_mult * pll->ct.mclk_fb_div) /
|
|
(par->ref_clk_per * pll->ct.pll_ref_div);
|
|
printk("atyfb(%s): pllmclk=%d MHz, xclk=%d MHz\n",
|
|
__func__, pllmclk, pllmclk / pll->ct.xclk_post_div_real);
|
|
#endif
|
|
|
|
if (M64_HAS(SDRAM_MAGIC_PLL) && (par->ram_type >= SDRAM))
|
|
pll->ct.pll_gen_cntl = OSC_EN;
|
|
else
|
|
pll->ct.pll_gen_cntl = OSC_EN | DLL_PWDN /* | FORCE_DCLK_TRI_STATE */;
|
|
|
|
if (M64_HAS(MAGIC_POSTDIV))
|
|
pll->ct.pll_ext_cntl = 0;
|
|
else
|
|
pll->ct.pll_ext_cntl = xpost_div;
|
|
|
|
if (pll->ct.mclk_fb_mult == 4)
|
|
pll->ct.pll_ext_cntl |= PLL_MFB_TIMES_4_2B;
|
|
|
|
if (par->mclk_per == par->xclk_per) {
|
|
pll->ct.pll_gen_cntl |= (xpost_div << 4); /* mclk == xclk */
|
|
} else {
|
|
/*
|
|
* The chip clock is not equal to the memory clock.
|
|
* Therefore we will use sclk to clock the chip.
|
|
*/
|
|
pll->ct.pll_gen_cntl |= (6 << 4); /* mclk == sclk */
|
|
|
|
q = par->ref_clk_per * pll->ct.pll_ref_div * 4 / par->mclk_per;
|
|
if (q < 16*8 || q > 255*8) {
|
|
printk(KERN_CRIT "atyfb: mclk out of range\n");
|
|
return -EINVAL;
|
|
} else {
|
|
mpost_div = (q < 128*8);
|
|
mpost_div += (q < 64*8);
|
|
mpost_div += (q < 32*8);
|
|
}
|
|
sclk_post_div_real = postdividers[mpost_div];
|
|
pll->ct.sclk_fb_div = q * sclk_post_div_real / 8;
|
|
pll->ct.spll_cntl2 = mpost_div << 4;
|
|
#ifdef DEBUG
|
|
pllsclk = (1000000 * 2 * pll->ct.sclk_fb_div) /
|
|
(par->ref_clk_per * pll->ct.pll_ref_div);
|
|
printk("atyfb(%s): use sclk, pllsclk=%d MHz, sclk=mclk=%d MHz\n",
|
|
__func__, pllsclk, pllsclk / sclk_post_div_real);
|
|
#endif
|
|
}
|
|
|
|
/* Disable the extra precision pixel clock controls since we do not use them. */
|
|
pll->ct.ext_vpll_cntl = aty_ld_pll_ct(EXT_VPLL_CNTL, par);
|
|
pll->ct.ext_vpll_cntl &= ~(EXT_VPLL_EN | EXT_VPLL_VGA_EN | EXT_VPLL_INSYNC);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void aty_resume_pll_ct(const struct fb_info *info,
|
|
union aty_pll *pll)
|
|
{
|
|
struct atyfb_par *par = info->par;
|
|
|
|
if (par->mclk_per != par->xclk_per) {
|
|
/*
|
|
* This disables the sclk, crashes the computer as reported:
|
|
* aty_st_pll_ct(SPLL_CNTL2, 3, info);
|
|
*
|
|
* So it seems the sclk must be enabled before it is used;
|
|
* so PLL_GEN_CNTL must be programmed *after* the sclk.
|
|
*/
|
|
aty_st_pll_ct(SCLK_FB_DIV, pll->ct.sclk_fb_div, par);
|
|
aty_st_pll_ct(SPLL_CNTL2, pll->ct.spll_cntl2, par);
|
|
/*
|
|
* SCLK has been started. Wait for the PLL to lock. 5 ms
|
|
* should be enough according to mach64 programmer's guide.
|
|
*/
|
|
mdelay(5);
|
|
}
|
|
|
|
aty_st_pll_ct(PLL_REF_DIV, pll->ct.pll_ref_div, par);
|
|
aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par);
|
|
aty_st_pll_ct(MCLK_FB_DIV, pll->ct.mclk_fb_div, par);
|
|
aty_st_pll_ct(PLL_EXT_CNTL, pll->ct.pll_ext_cntl, par);
|
|
aty_st_pll_ct(EXT_VPLL_CNTL, pll->ct.ext_vpll_cntl, par);
|
|
}
|
|
|
|
static int dummy(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
const struct aty_dac_ops aty_dac_ct = {
|
|
.set_dac = (void *) dummy,
|
|
};
|
|
|
|
const struct aty_pll_ops aty_pll_ct = {
|
|
.var_to_pll = aty_var_to_pll_ct,
|
|
.pll_to_var = aty_pll_to_var_ct,
|
|
.set_pll = aty_set_pll_ct,
|
|
.get_pll = aty_get_pll_ct,
|
|
.init_pll = aty_init_pll_ct,
|
|
.resume_pll = aty_resume_pll_ct,
|
|
};
|