linux/drivers/input/misc/adxl34x.c
2011-11-29 01:51:07 -08:00

915 lines
23 KiB
C

/*
* ADXL345/346 Three-Axis Digital Accelerometers
*
* Enter bugs at http://blackfin.uclinux.org/
*
* Copyright (C) 2009 Michael Hennerich, Analog Devices Inc.
* Licensed under the GPL-2 or later.
*/
#include <linux/device.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/input/adxl34x.h>
#include <linux/module.h>
#include "adxl34x.h"
/* ADXL345/6 Register Map */
#define DEVID 0x00 /* R Device ID */
#define THRESH_TAP 0x1D /* R/W Tap threshold */
#define OFSX 0x1E /* R/W X-axis offset */
#define OFSY 0x1F /* R/W Y-axis offset */
#define OFSZ 0x20 /* R/W Z-axis offset */
#define DUR 0x21 /* R/W Tap duration */
#define LATENT 0x22 /* R/W Tap latency */
#define WINDOW 0x23 /* R/W Tap window */
#define THRESH_ACT 0x24 /* R/W Activity threshold */
#define THRESH_INACT 0x25 /* R/W Inactivity threshold */
#define TIME_INACT 0x26 /* R/W Inactivity time */
#define ACT_INACT_CTL 0x27 /* R/W Axis enable control for activity and */
/* inactivity detection */
#define THRESH_FF 0x28 /* R/W Free-fall threshold */
#define TIME_FF 0x29 /* R/W Free-fall time */
#define TAP_AXES 0x2A /* R/W Axis control for tap/double tap */
#define ACT_TAP_STATUS 0x2B /* R Source of tap/double tap */
#define BW_RATE 0x2C /* R/W Data rate and power mode control */
#define POWER_CTL 0x2D /* R/W Power saving features control */
#define INT_ENABLE 0x2E /* R/W Interrupt enable control */
#define INT_MAP 0x2F /* R/W Interrupt mapping control */
#define INT_SOURCE 0x30 /* R Source of interrupts */
#define DATA_FORMAT 0x31 /* R/W Data format control */
#define DATAX0 0x32 /* R X-Axis Data 0 */
#define DATAX1 0x33 /* R X-Axis Data 1 */
#define DATAY0 0x34 /* R Y-Axis Data 0 */
#define DATAY1 0x35 /* R Y-Axis Data 1 */
#define DATAZ0 0x36 /* R Z-Axis Data 0 */
#define DATAZ1 0x37 /* R Z-Axis Data 1 */
#define FIFO_CTL 0x38 /* R/W FIFO control */
#define FIFO_STATUS 0x39 /* R FIFO status */
#define TAP_SIGN 0x3A /* R Sign and source for tap/double tap */
/* Orientation ADXL346 only */
#define ORIENT_CONF 0x3B /* R/W Orientation configuration */
#define ORIENT 0x3C /* R Orientation status */
/* DEVIDs */
#define ID_ADXL345 0xE5
#define ID_ADXL346 0xE6
/* INT_ENABLE/INT_MAP/INT_SOURCE Bits */
#define DATA_READY (1 << 7)
#define SINGLE_TAP (1 << 6)
#define DOUBLE_TAP (1 << 5)
#define ACTIVITY (1 << 4)
#define INACTIVITY (1 << 3)
#define FREE_FALL (1 << 2)
#define WATERMARK (1 << 1)
#define OVERRUN (1 << 0)
/* ACT_INACT_CONTROL Bits */
#define ACT_ACDC (1 << 7)
#define ACT_X_EN (1 << 6)
#define ACT_Y_EN (1 << 5)
#define ACT_Z_EN (1 << 4)
#define INACT_ACDC (1 << 3)
#define INACT_X_EN (1 << 2)
#define INACT_Y_EN (1 << 1)
#define INACT_Z_EN (1 << 0)
/* TAP_AXES Bits */
#define SUPPRESS (1 << 3)
#define TAP_X_EN (1 << 2)
#define TAP_Y_EN (1 << 1)
#define TAP_Z_EN (1 << 0)
/* ACT_TAP_STATUS Bits */
#define ACT_X_SRC (1 << 6)
#define ACT_Y_SRC (1 << 5)
#define ACT_Z_SRC (1 << 4)
#define ASLEEP (1 << 3)
#define TAP_X_SRC (1 << 2)
#define TAP_Y_SRC (1 << 1)
#define TAP_Z_SRC (1 << 0)
/* BW_RATE Bits */
#define LOW_POWER (1 << 4)
#define RATE(x) ((x) & 0xF)
/* POWER_CTL Bits */
#define PCTL_LINK (1 << 5)
#define PCTL_AUTO_SLEEP (1 << 4)
#define PCTL_MEASURE (1 << 3)
#define PCTL_SLEEP (1 << 2)
#define PCTL_WAKEUP(x) ((x) & 0x3)
/* DATA_FORMAT Bits */
#define SELF_TEST (1 << 7)
#define SPI (1 << 6)
#define INT_INVERT (1 << 5)
#define FULL_RES (1 << 3)
#define JUSTIFY (1 << 2)
#define RANGE(x) ((x) & 0x3)
#define RANGE_PM_2g 0
#define RANGE_PM_4g 1
#define RANGE_PM_8g 2
#define RANGE_PM_16g 3
/*
* Maximum value our axis may get in full res mode for the input device
* (signed 13 bits)
*/
#define ADXL_FULLRES_MAX_VAL 4096
/*
* Maximum value our axis may get in fixed res mode for the input device
* (signed 10 bits)
*/
#define ADXL_FIXEDRES_MAX_VAL 512
/* FIFO_CTL Bits */
#define FIFO_MODE(x) (((x) & 0x3) << 6)
#define FIFO_BYPASS 0
#define FIFO_FIFO 1
#define FIFO_STREAM 2
#define FIFO_TRIGGER 3
#define TRIGGER (1 << 5)
#define SAMPLES(x) ((x) & 0x1F)
/* FIFO_STATUS Bits */
#define FIFO_TRIG (1 << 7)
#define ENTRIES(x) ((x) & 0x3F)
/* TAP_SIGN Bits ADXL346 only */
#define XSIGN (1 << 6)
#define YSIGN (1 << 5)
#define ZSIGN (1 << 4)
#define XTAP (1 << 3)
#define YTAP (1 << 2)
#define ZTAP (1 << 1)
/* ORIENT_CONF ADXL346 only */
#define ORIENT_DEADZONE(x) (((x) & 0x7) << 4)
#define ORIENT_DIVISOR(x) ((x) & 0x7)
/* ORIENT ADXL346 only */
#define ADXL346_2D_VALID (1 << 6)
#define ADXL346_2D_ORIENT(x) (((x) & 0x3) >> 4)
#define ADXL346_3D_VALID (1 << 3)
#define ADXL346_3D_ORIENT(x) ((x) & 0x7)
#define ADXL346_2D_PORTRAIT_POS 0 /* +X */
#define ADXL346_2D_PORTRAIT_NEG 1 /* -X */
#define ADXL346_2D_LANDSCAPE_POS 2 /* +Y */
#define ADXL346_2D_LANDSCAPE_NEG 3 /* -Y */
#define ADXL346_3D_FRONT 3 /* +X */
#define ADXL346_3D_BACK 4 /* -X */
#define ADXL346_3D_RIGHT 2 /* +Y */
#define ADXL346_3D_LEFT 5 /* -Y */
#define ADXL346_3D_TOP 1 /* +Z */
#define ADXL346_3D_BOTTOM 6 /* -Z */
#undef ADXL_DEBUG
#define ADXL_X_AXIS 0
#define ADXL_Y_AXIS 1
#define ADXL_Z_AXIS 2
#define AC_READ(ac, reg) ((ac)->bops->read((ac)->dev, reg))
#define AC_WRITE(ac, reg, val) ((ac)->bops->write((ac)->dev, reg, val))
struct axis_triple {
int x;
int y;
int z;
};
struct adxl34x {
struct device *dev;
struct input_dev *input;
struct mutex mutex; /* reentrant protection for struct */
struct adxl34x_platform_data pdata;
struct axis_triple swcal;
struct axis_triple hwcal;
struct axis_triple saved;
char phys[32];
unsigned orient2d_saved;
unsigned orient3d_saved;
bool disabled; /* P: mutex */
bool opened; /* P: mutex */
bool suspended; /* P: mutex */
bool fifo_delay;
int irq;
unsigned model;
unsigned int_mask;
const struct adxl34x_bus_ops *bops;
};
static const struct adxl34x_platform_data adxl34x_default_init = {
.tap_threshold = 35,
.tap_duration = 3,
.tap_latency = 20,
.tap_window = 20,
.tap_axis_control = ADXL_TAP_X_EN | ADXL_TAP_Y_EN | ADXL_TAP_Z_EN,
.act_axis_control = 0xFF,
.activity_threshold = 6,
.inactivity_threshold = 4,
.inactivity_time = 3,
.free_fall_threshold = 8,
.free_fall_time = 0x20,
.data_rate = 8,
.data_range = ADXL_FULL_RES,
.ev_type = EV_ABS,
.ev_code_x = ABS_X, /* EV_REL */
.ev_code_y = ABS_Y, /* EV_REL */
.ev_code_z = ABS_Z, /* EV_REL */
.ev_code_tap = {BTN_TOUCH, BTN_TOUCH, BTN_TOUCH}, /* EV_KEY {x,y,z} */
.power_mode = ADXL_AUTO_SLEEP | ADXL_LINK,
.fifo_mode = FIFO_STREAM,
.watermark = 0,
};
static void adxl34x_get_triple(struct adxl34x *ac, struct axis_triple *axis)
{
short buf[3];
ac->bops->read_block(ac->dev, DATAX0, DATAZ1 - DATAX0 + 1, buf);
mutex_lock(&ac->mutex);
ac->saved.x = (s16) le16_to_cpu(buf[0]);
axis->x = ac->saved.x;
ac->saved.y = (s16) le16_to_cpu(buf[1]);
axis->y = ac->saved.y;
ac->saved.z = (s16) le16_to_cpu(buf[2]);
axis->z = ac->saved.z;
mutex_unlock(&ac->mutex);
}
static void adxl34x_service_ev_fifo(struct adxl34x *ac)
{
struct adxl34x_platform_data *pdata = &ac->pdata;
struct axis_triple axis;
adxl34x_get_triple(ac, &axis);
input_event(ac->input, pdata->ev_type, pdata->ev_code_x,
axis.x - ac->swcal.x);
input_event(ac->input, pdata->ev_type, pdata->ev_code_y,
axis.y - ac->swcal.y);
input_event(ac->input, pdata->ev_type, pdata->ev_code_z,
axis.z - ac->swcal.z);
}
static void adxl34x_report_key_single(struct input_dev *input, int key)
{
input_report_key(input, key, true);
input_sync(input);
input_report_key(input, key, false);
}
static void adxl34x_send_key_events(struct adxl34x *ac,
struct adxl34x_platform_data *pdata, int status, int press)
{
int i;
for (i = ADXL_X_AXIS; i <= ADXL_Z_AXIS; i++) {
if (status & (1 << (ADXL_Z_AXIS - i)))
input_report_key(ac->input,
pdata->ev_code_tap[i], press);
}
}
static void adxl34x_do_tap(struct adxl34x *ac,
struct adxl34x_platform_data *pdata, int status)
{
adxl34x_send_key_events(ac, pdata, status, true);
input_sync(ac->input);
adxl34x_send_key_events(ac, pdata, status, false);
}
static irqreturn_t adxl34x_irq(int irq, void *handle)
{
struct adxl34x *ac = handle;
struct adxl34x_platform_data *pdata = &ac->pdata;
int int_stat, tap_stat, samples, orient, orient_code;
/*
* ACT_TAP_STATUS should be read before clearing the interrupt
* Avoid reading ACT_TAP_STATUS in case TAP detection is disabled
*/
if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN))
tap_stat = AC_READ(ac, ACT_TAP_STATUS);
else
tap_stat = 0;
int_stat = AC_READ(ac, INT_SOURCE);
if (int_stat & FREE_FALL)
adxl34x_report_key_single(ac->input, pdata->ev_code_ff);
if (int_stat & OVERRUN)
dev_dbg(ac->dev, "OVERRUN\n");
if (int_stat & (SINGLE_TAP | DOUBLE_TAP)) {
adxl34x_do_tap(ac, pdata, tap_stat);
if (int_stat & DOUBLE_TAP)
adxl34x_do_tap(ac, pdata, tap_stat);
}
if (pdata->ev_code_act_inactivity) {
if (int_stat & ACTIVITY)
input_report_key(ac->input,
pdata->ev_code_act_inactivity, 1);
if (int_stat & INACTIVITY)
input_report_key(ac->input,
pdata->ev_code_act_inactivity, 0);
}
/*
* ORIENTATION SENSING ADXL346 only
*/
if (pdata->orientation_enable) {
orient = AC_READ(ac, ORIENT);
if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_2D) &&
(orient & ADXL346_2D_VALID)) {
orient_code = ADXL346_2D_ORIENT(orient);
/* Report orientation only when it changes */
if (ac->orient2d_saved != orient_code) {
ac->orient2d_saved = orient_code;
adxl34x_report_key_single(ac->input,
pdata->ev_codes_orient_2d[orient_code]);
}
}
if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_3D) &&
(orient & ADXL346_3D_VALID)) {
orient_code = ADXL346_3D_ORIENT(orient) - 1;
/* Report orientation only when it changes */
if (ac->orient3d_saved != orient_code) {
ac->orient3d_saved = orient_code;
adxl34x_report_key_single(ac->input,
pdata->ev_codes_orient_3d[orient_code]);
}
}
}
if (int_stat & (DATA_READY | WATERMARK)) {
if (pdata->fifo_mode)
samples = ENTRIES(AC_READ(ac, FIFO_STATUS)) + 1;
else
samples = 1;
for (; samples > 0; samples--) {
adxl34x_service_ev_fifo(ac);
/*
* To ensure that the FIFO has
* completely popped, there must be at least 5 us between
* the end of reading the data registers, signified by the
* transition to register 0x38 from 0x37 or the CS pin
* going high, and the start of new reads of the FIFO or
* reading the FIFO_STATUS register. For SPI operation at
* 1.5 MHz or lower, the register addressing portion of the
* transmission is sufficient delay to ensure the FIFO has
* completely popped. It is necessary for SPI operation
* greater than 1.5 MHz to de-assert the CS pin to ensure a
* total of 5 us, which is at most 3.4 us at 5 MHz
* operation.
*/
if (ac->fifo_delay && (samples > 1))
udelay(3);
}
}
input_sync(ac->input);
return IRQ_HANDLED;
}
static void __adxl34x_disable(struct adxl34x *ac)
{
/*
* A '0' places the ADXL34x into standby mode
* with minimum power consumption.
*/
AC_WRITE(ac, POWER_CTL, 0);
}
static void __adxl34x_enable(struct adxl34x *ac)
{
AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE);
}
void adxl34x_suspend(struct adxl34x *ac)
{
mutex_lock(&ac->mutex);
if (!ac->suspended && !ac->disabled && ac->opened)
__adxl34x_disable(ac);
ac->suspended = true;
mutex_unlock(&ac->mutex);
}
EXPORT_SYMBOL_GPL(adxl34x_suspend);
void adxl34x_resume(struct adxl34x *ac)
{
mutex_lock(&ac->mutex);
if (ac->suspended && !ac->disabled && ac->opened)
__adxl34x_enable(ac);
ac->suspended = false;
mutex_unlock(&ac->mutex);
}
EXPORT_SYMBOL_GPL(adxl34x_resume);
static ssize_t adxl34x_disable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adxl34x *ac = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", ac->disabled);
}
static ssize_t adxl34x_disable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct adxl34x *ac = dev_get_drvdata(dev);
unsigned int val;
int error;
error = kstrtouint(buf, 10, &val);
if (error)
return error;
mutex_lock(&ac->mutex);
if (!ac->suspended && ac->opened) {
if (val) {
if (!ac->disabled)
__adxl34x_disable(ac);
} else {
if (ac->disabled)
__adxl34x_enable(ac);
}
}
ac->disabled = !!val;
mutex_unlock(&ac->mutex);
return count;
}
static DEVICE_ATTR(disable, 0664, adxl34x_disable_show, adxl34x_disable_store);
static ssize_t adxl34x_calibrate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adxl34x *ac = dev_get_drvdata(dev);
ssize_t count;
mutex_lock(&ac->mutex);
count = sprintf(buf, "%d,%d,%d\n",
ac->hwcal.x * 4 + ac->swcal.x,
ac->hwcal.y * 4 + ac->swcal.y,
ac->hwcal.z * 4 + ac->swcal.z);
mutex_unlock(&ac->mutex);
return count;
}
static ssize_t adxl34x_calibrate_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct adxl34x *ac = dev_get_drvdata(dev);
/*
* Hardware offset calibration has a resolution of 15.6 mg/LSB.
* We use HW calibration and handle the remaining bits in SW. (4mg/LSB)
*/
mutex_lock(&ac->mutex);
ac->hwcal.x -= (ac->saved.x / 4);
ac->swcal.x = ac->saved.x % 4;
ac->hwcal.y -= (ac->saved.y / 4);
ac->swcal.y = ac->saved.y % 4;
ac->hwcal.z -= (ac->saved.z / 4);
ac->swcal.z = ac->saved.z % 4;
AC_WRITE(ac, OFSX, (s8) ac->hwcal.x);
AC_WRITE(ac, OFSY, (s8) ac->hwcal.y);
AC_WRITE(ac, OFSZ, (s8) ac->hwcal.z);
mutex_unlock(&ac->mutex);
return count;
}
static DEVICE_ATTR(calibrate, 0664,
adxl34x_calibrate_show, adxl34x_calibrate_store);
static ssize_t adxl34x_rate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adxl34x *ac = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", RATE(ac->pdata.data_rate));
}
static ssize_t adxl34x_rate_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct adxl34x *ac = dev_get_drvdata(dev);
unsigned char val;
int error;
error = kstrtou8(buf, 10, &val);
if (error)
return error;
mutex_lock(&ac->mutex);
ac->pdata.data_rate = RATE(val);
AC_WRITE(ac, BW_RATE,
ac->pdata.data_rate |
(ac->pdata.low_power_mode ? LOW_POWER : 0));
mutex_unlock(&ac->mutex);
return count;
}
static DEVICE_ATTR(rate, 0664, adxl34x_rate_show, adxl34x_rate_store);
static ssize_t adxl34x_autosleep_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adxl34x *ac = dev_get_drvdata(dev);
return sprintf(buf, "%u\n",
ac->pdata.power_mode & (PCTL_AUTO_SLEEP | PCTL_LINK) ? 1 : 0);
}
static ssize_t adxl34x_autosleep_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct adxl34x *ac = dev_get_drvdata(dev);
unsigned int val;
int error;
error = kstrtouint(buf, 10, &val);
if (error)
return error;
mutex_lock(&ac->mutex);
if (val)
ac->pdata.power_mode |= (PCTL_AUTO_SLEEP | PCTL_LINK);
else
ac->pdata.power_mode &= ~(PCTL_AUTO_SLEEP | PCTL_LINK);
if (!ac->disabled && !ac->suspended && ac->opened)
AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE);
mutex_unlock(&ac->mutex);
return count;
}
static DEVICE_ATTR(autosleep, 0664,
adxl34x_autosleep_show, adxl34x_autosleep_store);
static ssize_t adxl34x_position_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adxl34x *ac = dev_get_drvdata(dev);
ssize_t count;
mutex_lock(&ac->mutex);
count = sprintf(buf, "(%d, %d, %d)\n",
ac->saved.x, ac->saved.y, ac->saved.z);
mutex_unlock(&ac->mutex);
return count;
}
static DEVICE_ATTR(position, S_IRUGO, adxl34x_position_show, NULL);
#ifdef ADXL_DEBUG
static ssize_t adxl34x_write_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct adxl34x *ac = dev_get_drvdata(dev);
unsigned int val;
int error;
/*
* This allows basic ADXL register write access for debug purposes.
*/
error = kstrtouint(buf, 16, &val);
if (error)
return error;
mutex_lock(&ac->mutex);
AC_WRITE(ac, val >> 8, val & 0xFF);
mutex_unlock(&ac->mutex);
return count;
}
static DEVICE_ATTR(write, 0664, NULL, adxl34x_write_store);
#endif
static struct attribute *adxl34x_attributes[] = {
&dev_attr_disable.attr,
&dev_attr_calibrate.attr,
&dev_attr_rate.attr,
&dev_attr_autosleep.attr,
&dev_attr_position.attr,
#ifdef ADXL_DEBUG
&dev_attr_write.attr,
#endif
NULL
};
static const struct attribute_group adxl34x_attr_group = {
.attrs = adxl34x_attributes,
};
static int adxl34x_input_open(struct input_dev *input)
{
struct adxl34x *ac = input_get_drvdata(input);
mutex_lock(&ac->mutex);
if (!ac->suspended && !ac->disabled)
__adxl34x_enable(ac);
ac->opened = true;
mutex_unlock(&ac->mutex);
return 0;
}
static void adxl34x_input_close(struct input_dev *input)
{
struct adxl34x *ac = input_get_drvdata(input);
mutex_lock(&ac->mutex);
if (!ac->suspended && !ac->disabled)
__adxl34x_disable(ac);
ac->opened = false;
mutex_unlock(&ac->mutex);
}
struct adxl34x *adxl34x_probe(struct device *dev, int irq,
bool fifo_delay_default,
const struct adxl34x_bus_ops *bops)
{
struct adxl34x *ac;
struct input_dev *input_dev;
const struct adxl34x_platform_data *pdata;
int err, range, i;
unsigned char revid;
if (!irq) {
dev_err(dev, "no IRQ?\n");
err = -ENODEV;
goto err_out;
}
ac = kzalloc(sizeof(*ac), GFP_KERNEL);
input_dev = input_allocate_device();
if (!ac || !input_dev) {
err = -ENOMEM;
goto err_free_mem;
}
ac->fifo_delay = fifo_delay_default;
pdata = dev->platform_data;
if (!pdata) {
dev_dbg(dev,
"No platform data: Using default initialization\n");
pdata = &adxl34x_default_init;
}
ac->pdata = *pdata;
pdata = &ac->pdata;
ac->input = input_dev;
ac->dev = dev;
ac->irq = irq;
ac->bops = bops;
mutex_init(&ac->mutex);
input_dev->name = "ADXL34x accelerometer";
revid = ac->bops->read(dev, DEVID);
switch (revid) {
case ID_ADXL345:
ac->model = 345;
break;
case ID_ADXL346:
ac->model = 346;
break;
default:
dev_err(dev, "Failed to probe %s\n", input_dev->name);
err = -ENODEV;
goto err_free_mem;
}
snprintf(ac->phys, sizeof(ac->phys), "%s/input0", dev_name(dev));
input_dev->phys = ac->phys;
input_dev->dev.parent = dev;
input_dev->id.product = ac->model;
input_dev->id.bustype = bops->bustype;
input_dev->open = adxl34x_input_open;
input_dev->close = adxl34x_input_close;
input_set_drvdata(input_dev, ac);
__set_bit(ac->pdata.ev_type, input_dev->evbit);
if (ac->pdata.ev_type == EV_REL) {
__set_bit(REL_X, input_dev->relbit);
__set_bit(REL_Y, input_dev->relbit);
__set_bit(REL_Z, input_dev->relbit);
} else {
/* EV_ABS */
__set_bit(ABS_X, input_dev->absbit);
__set_bit(ABS_Y, input_dev->absbit);
__set_bit(ABS_Z, input_dev->absbit);
if (pdata->data_range & FULL_RES)
range = ADXL_FULLRES_MAX_VAL; /* Signed 13-bit */
else
range = ADXL_FIXEDRES_MAX_VAL; /* Signed 10-bit */
input_set_abs_params(input_dev, ABS_X, -range, range, 3, 3);
input_set_abs_params(input_dev, ABS_Y, -range, range, 3, 3);
input_set_abs_params(input_dev, ABS_Z, -range, range, 3, 3);
}
__set_bit(EV_KEY, input_dev->evbit);
__set_bit(pdata->ev_code_tap[ADXL_X_AXIS], input_dev->keybit);
__set_bit(pdata->ev_code_tap[ADXL_Y_AXIS], input_dev->keybit);
__set_bit(pdata->ev_code_tap[ADXL_Z_AXIS], input_dev->keybit);
if (pdata->ev_code_ff) {
ac->int_mask = FREE_FALL;
__set_bit(pdata->ev_code_ff, input_dev->keybit);
}
if (pdata->ev_code_act_inactivity)
__set_bit(pdata->ev_code_act_inactivity, input_dev->keybit);
ac->int_mask |= ACTIVITY | INACTIVITY;
if (pdata->watermark) {
ac->int_mask |= WATERMARK;
if (!FIFO_MODE(pdata->fifo_mode))
ac->pdata.fifo_mode |= FIFO_STREAM;
} else {
ac->int_mask |= DATA_READY;
}
if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN))
ac->int_mask |= SINGLE_TAP | DOUBLE_TAP;
if (FIFO_MODE(pdata->fifo_mode) == FIFO_BYPASS)
ac->fifo_delay = false;
ac->bops->write(dev, POWER_CTL, 0);
err = request_threaded_irq(ac->irq, NULL, adxl34x_irq,
IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
dev_name(dev), ac);
if (err) {
dev_err(dev, "irq %d busy?\n", ac->irq);
goto err_free_mem;
}
err = sysfs_create_group(&dev->kobj, &adxl34x_attr_group);
if (err)
goto err_free_irq;
err = input_register_device(input_dev);
if (err)
goto err_remove_attr;
AC_WRITE(ac, THRESH_TAP, pdata->tap_threshold);
AC_WRITE(ac, OFSX, pdata->x_axis_offset);
ac->hwcal.x = pdata->x_axis_offset;
AC_WRITE(ac, OFSY, pdata->y_axis_offset);
ac->hwcal.y = pdata->y_axis_offset;
AC_WRITE(ac, OFSZ, pdata->z_axis_offset);
ac->hwcal.z = pdata->z_axis_offset;
AC_WRITE(ac, THRESH_TAP, pdata->tap_threshold);
AC_WRITE(ac, DUR, pdata->tap_duration);
AC_WRITE(ac, LATENT, pdata->tap_latency);
AC_WRITE(ac, WINDOW, pdata->tap_window);
AC_WRITE(ac, THRESH_ACT, pdata->activity_threshold);
AC_WRITE(ac, THRESH_INACT, pdata->inactivity_threshold);
AC_WRITE(ac, TIME_INACT, pdata->inactivity_time);
AC_WRITE(ac, THRESH_FF, pdata->free_fall_threshold);
AC_WRITE(ac, TIME_FF, pdata->free_fall_time);
AC_WRITE(ac, TAP_AXES, pdata->tap_axis_control);
AC_WRITE(ac, ACT_INACT_CTL, pdata->act_axis_control);
AC_WRITE(ac, BW_RATE, RATE(ac->pdata.data_rate) |
(pdata->low_power_mode ? LOW_POWER : 0));
AC_WRITE(ac, DATA_FORMAT, pdata->data_range);
AC_WRITE(ac, FIFO_CTL, FIFO_MODE(pdata->fifo_mode) |
SAMPLES(pdata->watermark));
if (pdata->use_int2) {
/* Map all INTs to INT2 */
AC_WRITE(ac, INT_MAP, ac->int_mask | OVERRUN);
} else {
/* Map all INTs to INT1 */
AC_WRITE(ac, INT_MAP, 0);
}
if (ac->model == 346 && ac->pdata.orientation_enable) {
AC_WRITE(ac, ORIENT_CONF,
ORIENT_DEADZONE(ac->pdata.deadzone_angle) |
ORIENT_DIVISOR(ac->pdata.divisor_length));
ac->orient2d_saved = 1234;
ac->orient3d_saved = 1234;
if (pdata->orientation_enable & ADXL_EN_ORIENTATION_3D)
for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_3d); i++)
__set_bit(pdata->ev_codes_orient_3d[i],
input_dev->keybit);
if (pdata->orientation_enable & ADXL_EN_ORIENTATION_2D)
for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_2d); i++)
__set_bit(pdata->ev_codes_orient_2d[i],
input_dev->keybit);
} else {
ac->pdata.orientation_enable = 0;
}
AC_WRITE(ac, INT_ENABLE, ac->int_mask | OVERRUN);
ac->pdata.power_mode &= (PCTL_AUTO_SLEEP | PCTL_LINK);
return ac;
err_remove_attr:
sysfs_remove_group(&dev->kobj, &adxl34x_attr_group);
err_free_irq:
free_irq(ac->irq, ac);
err_free_mem:
input_free_device(input_dev);
kfree(ac);
err_out:
return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(adxl34x_probe);
int adxl34x_remove(struct adxl34x *ac)
{
sysfs_remove_group(&ac->dev->kobj, &adxl34x_attr_group);
free_irq(ac->irq, ac);
input_unregister_device(ac->input);
dev_dbg(ac->dev, "unregistered accelerometer\n");
kfree(ac);
return 0;
}
EXPORT_SYMBOL_GPL(adxl34x_remove);
MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>");
MODULE_DESCRIPTION("ADXL345/346 Three-Axis Digital Accelerometer Driver");
MODULE_LICENSE("GPL");