linux/drivers/net/cxgb4vf/t4vf_hw.c
Jesper Juhl 95cb3656c0 net: Remove unneeded version.h includes from drivers/net/
It was pointed out by 'make versioncheck' that some includes of
linux/version.h are not needed in drivers/net/.
This patch removes them.

Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-06-24 02:40:08 -07:00

1387 lines
42 KiB
C

/*
* This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
* driver for Linux.
*
* Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/pci.h>
#include "t4vf_common.h"
#include "t4vf_defs.h"
#include "../cxgb4/t4_regs.h"
#include "../cxgb4/t4fw_api.h"
/*
* Wait for the device to become ready (signified by our "who am I" register
* returning a value other than all 1's). Return an error if it doesn't
* become ready ...
*/
int __devinit t4vf_wait_dev_ready(struct adapter *adapter)
{
const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
const u32 notready1 = 0xffffffff;
const u32 notready2 = 0xeeeeeeee;
u32 val;
val = t4_read_reg(adapter, whoami);
if (val != notready1 && val != notready2)
return 0;
msleep(500);
val = t4_read_reg(adapter, whoami);
if (val != notready1 && val != notready2)
return 0;
else
return -EIO;
}
/*
* Get the reply to a mailbox command and store it in @rpl in big-endian order
* (since the firmware data structures are specified in a big-endian layout).
*/
static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
u32 mbox_data)
{
for ( ; size; size -= 8, mbox_data += 8)
*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
}
/*
* Dump contents of mailbox with a leading tag.
*/
static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
{
dev_err(adapter->pdev_dev,
"mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
(unsigned long long)t4_read_reg64(adapter, mbox_data + 0),
(unsigned long long)t4_read_reg64(adapter, mbox_data + 8),
(unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
(unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
(unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
(unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
(unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
(unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
}
/**
* t4vf_wr_mbox_core - send a command to FW through the mailbox
* @adapter: the adapter
* @cmd: the command to write
* @size: command length in bytes
* @rpl: where to optionally store the reply
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Sends the given command to FW through the mailbox and waits for the
* FW to execute the command. If @rpl is not %NULL it is used to store
* the FW's reply to the command. The command and its optional reply
* are of the same length. FW can take up to 500 ms to respond.
* @sleep_ok determines whether we may sleep while awaiting the response.
* If sleeping is allowed we use progressive backoff otherwise we spin.
*
* The return value is 0 on success or a negative errno on failure. A
* failure can happen either because we are not able to execute the
* command or FW executes it but signals an error. In the latter case
* the return value is the error code indicated by FW (negated).
*/
int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
void *rpl, bool sleep_ok)
{
static const int delay[] = {
1, 1, 3, 5, 10, 10, 20, 50, 100
};
u32 v;
int i, ms, delay_idx;
const __be64 *p;
u32 mbox_data = T4VF_MBDATA_BASE_ADDR;
u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
/*
* Commands must be multiples of 16 bytes in length and may not be
* larger than the size of the Mailbox Data register array.
*/
if ((size % 16) != 0 ||
size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
return -EINVAL;
/*
* Loop trying to get ownership of the mailbox. Return an error
* if we can't gain ownership.
*/
v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
if (v != MBOX_OWNER_DRV)
return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
/*
* Write the command array into the Mailbox Data register array and
* transfer ownership of the mailbox to the firmware.
*
* For the VFs, the Mailbox Data "registers" are actually backed by
* T4's "MA" interface rather than PL Registers (as is the case for
* the PFs). Because these are in different coherency domains, the
* write to the VF's PL-register-backed Mailbox Control can race in
* front of the writes to the MA-backed VF Mailbox Data "registers".
* So we need to do a read-back on at least one byte of the VF Mailbox
* Data registers before doing the write to the VF Mailbox Control
* register.
*/
for (i = 0, p = cmd; i < size; i += 8)
t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
t4_read_reg(adapter, mbox_data); /* flush write */
t4_write_reg(adapter, mbox_ctl,
MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
t4_read_reg(adapter, mbox_ctl); /* flush write */
/*
* Spin waiting for firmware to acknowledge processing our command.
*/
delay_idx = 0;
ms = delay[0];
for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
if (sleep_ok) {
ms = delay[delay_idx];
if (delay_idx < ARRAY_SIZE(delay) - 1)
delay_idx++;
msleep(ms);
} else
mdelay(ms);
/*
* If we're the owner, see if this is the reply we wanted.
*/
v = t4_read_reg(adapter, mbox_ctl);
if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
/*
* If the Message Valid bit isn't on, revoke ownership
* of the mailbox and continue waiting for our reply.
*/
if ((v & MBMSGVALID) == 0) {
t4_write_reg(adapter, mbox_ctl,
MBOWNER(MBOX_OWNER_NONE));
continue;
}
/*
* We now have our reply. Extract the command return
* value, copy the reply back to our caller's buffer
* (if specified) and revoke ownership of the mailbox.
* We return the (negated) firmware command return
* code (this depends on FW_SUCCESS == 0).
*/
/* return value in low-order little-endian word */
v = t4_read_reg(adapter, mbox_data);
if (FW_CMD_RETVAL_GET(v))
dump_mbox(adapter, "FW Error", mbox_data);
if (rpl) {
/* request bit in high-order BE word */
WARN_ON((be32_to_cpu(*(const u32 *)cmd)
& FW_CMD_REQUEST) == 0);
get_mbox_rpl(adapter, rpl, size, mbox_data);
WARN_ON((be32_to_cpu(*(u32 *)rpl)
& FW_CMD_REQUEST) != 0);
}
t4_write_reg(adapter, mbox_ctl,
MBOWNER(MBOX_OWNER_NONE));
return -FW_CMD_RETVAL_GET(v);
}
}
/*
* We timed out. Return the error ...
*/
dump_mbox(adapter, "FW Timeout", mbox_data);
return -ETIMEDOUT;
}
/**
* hash_mac_addr - return the hash value of a MAC address
* @addr: the 48-bit Ethernet MAC address
*
* Hashes a MAC address according to the hash function used by hardware
* inexact (hash) address matching.
*/
static int hash_mac_addr(const u8 *addr)
{
u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
a ^= b;
a ^= (a >> 12);
a ^= (a >> 6);
return a & 0x3f;
}
/**
* init_link_config - initialize a link's SW state
* @lc: structure holding the link state
* @caps: link capabilities
*
* Initializes the SW state maintained for each link, including the link's
* capabilities and default speed/flow-control/autonegotiation settings.
*/
static void __devinit init_link_config(struct link_config *lc,
unsigned int caps)
{
lc->supported = caps;
lc->requested_speed = 0;
lc->speed = 0;
lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
if (lc->supported & SUPPORTED_Autoneg) {
lc->advertising = lc->supported;
lc->autoneg = AUTONEG_ENABLE;
lc->requested_fc |= PAUSE_AUTONEG;
} else {
lc->advertising = 0;
lc->autoneg = AUTONEG_DISABLE;
}
}
/**
* t4vf_port_init - initialize port hardware/software state
* @adapter: the adapter
* @pidx: the adapter port index
*/
int __devinit t4vf_port_init(struct adapter *adapter, int pidx)
{
struct port_info *pi = adap2pinfo(adapter, pidx);
struct fw_vi_cmd vi_cmd, vi_rpl;
struct fw_port_cmd port_cmd, port_rpl;
int v;
u32 word;
/*
* Execute a VI Read command to get our Virtual Interface information
* like MAC address, etc.
*/
memset(&vi_cmd, 0, sizeof(vi_cmd));
vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
FW_CMD_REQUEST |
FW_CMD_READ);
vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(pi->viid));
v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
if (v)
return v;
BUG_ON(pi->port_id != FW_VI_CMD_PORTID_GET(vi_rpl.portid_pkd));
pi->rss_size = FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl.rsssize_pkd));
t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
/*
* If we don't have read access to our port information, we're done
* now. Otherwise, execute a PORT Read command to get it ...
*/
if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
return 0;
memset(&port_cmd, 0, sizeof(port_cmd));
port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP(FW_PORT_CMD) |
FW_CMD_REQUEST |
FW_CMD_READ |
FW_PORT_CMD_PORTID(pi->port_id));
port_cmd.action_to_len16 =
cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
FW_LEN16(port_cmd));
v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
if (v)
return v;
v = 0;
word = be16_to_cpu(port_rpl.u.info.pcap);
if (word & FW_PORT_CAP_SPEED_100M)
v |= SUPPORTED_100baseT_Full;
if (word & FW_PORT_CAP_SPEED_1G)
v |= SUPPORTED_1000baseT_Full;
if (word & FW_PORT_CAP_SPEED_10G)
v |= SUPPORTED_10000baseT_Full;
if (word & FW_PORT_CAP_ANEG)
v |= SUPPORTED_Autoneg;
init_link_config(&pi->link_cfg, v);
return 0;
}
/**
* t4vf_fw_reset - issue a reset to FW
* @adapter: the adapter
*
* Issues a reset command to FW. For a Physical Function this would
* result in the Firmware reseting all of its state. For a Virtual
* Function this just resets the state associated with the VF.
*/
int t4vf_fw_reset(struct adapter *adapter)
{
struct fw_reset_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RESET_CMD) |
FW_CMD_WRITE);
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}
/**
* t4vf_query_params - query FW or device parameters
* @adapter: the adapter
* @nparams: the number of parameters
* @params: the parameter names
* @vals: the parameter values
*
* Reads the values of firmware or device parameters. Up to 7 parameters
* can be queried at once.
*/
int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
const u32 *params, u32 *vals)
{
int i, ret;
struct fw_params_cmd cmd, rpl;
struct fw_params_param *p;
size_t len16;
if (nparams > 7)
return -EINVAL;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
FW_CMD_REQUEST |
FW_CMD_READ);
len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
param[nparams].mnem), 16);
cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
p->mnem = htonl(*params++);
ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
if (ret == 0)
for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
*vals++ = be32_to_cpu(p->val);
return ret;
}
/**
* t4vf_set_params - sets FW or device parameters
* @adapter: the adapter
* @nparams: the number of parameters
* @params: the parameter names
* @vals: the parameter values
*
* Sets the values of firmware or device parameters. Up to 7 parameters
* can be specified at once.
*/
int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
const u32 *params, const u32 *vals)
{
int i;
struct fw_params_cmd cmd;
struct fw_params_param *p;
size_t len16;
if (nparams > 7)
return -EINVAL;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
FW_CMD_REQUEST |
FW_CMD_WRITE);
len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
param[nparams]), 16);
cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
p->mnem = cpu_to_be32(*params++);
p->val = cpu_to_be32(*vals++);
}
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}
/**
* t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
* @adapter: the adapter
*
* Retrieves various core SGE parameters in the form of hardware SGE
* register values. The caller is responsible for decoding these as
* needed. The SGE parameters are stored in @adapter->params.sge.
*/
int t4vf_get_sge_params(struct adapter *adapter)
{
struct sge_params *sge_params = &adapter->params.sge;
u32 params[7], vals[7];
int v;
params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ(SGE_CONTROL));
params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE));
params[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0));
params[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1));
params[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1));
params[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3));
params[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5));
v = t4vf_query_params(adapter, 7, params, vals);
if (v)
return v;
sge_params->sge_control = vals[0];
sge_params->sge_host_page_size = vals[1];
sge_params->sge_fl_buffer_size[0] = vals[2];
sge_params->sge_fl_buffer_size[1] = vals[3];
sge_params->sge_timer_value_0_and_1 = vals[4];
sge_params->sge_timer_value_2_and_3 = vals[5];
sge_params->sge_timer_value_4_and_5 = vals[6];
params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD));
v = t4vf_query_params(adapter, 1, params, vals);
if (v)
return v;
sge_params->sge_ingress_rx_threshold = vals[0];
return 0;
}
/**
* t4vf_get_vpd_params - retrieve device VPD paremeters
* @adapter: the adapter
*
* Retrives various device Vital Product Data parameters. The parameters
* are stored in @adapter->params.vpd.
*/
int t4vf_get_vpd_params(struct adapter *adapter)
{
struct vpd_params *vpd_params = &adapter->params.vpd;
u32 params[7], vals[7];
int v;
params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
v = t4vf_query_params(adapter, 1, params, vals);
if (v)
return v;
vpd_params->cclk = vals[0];
return 0;
}
/**
* t4vf_get_dev_params - retrieve device paremeters
* @adapter: the adapter
*
* Retrives various device parameters. The parameters are stored in
* @adapter->params.dev.
*/
int t4vf_get_dev_params(struct adapter *adapter)
{
struct dev_params *dev_params = &adapter->params.dev;
u32 params[7], vals[7];
int v;
params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV));
params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV));
v = t4vf_query_params(adapter, 2, params, vals);
if (v)
return v;
dev_params->fwrev = vals[0];
dev_params->tprev = vals[1];
return 0;
}
/**
* t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
* @adapter: the adapter
*
* Retrieves global RSS mode and parameters with which we have to live
* and stores them in the @adapter's RSS parameters.
*/
int t4vf_get_rss_glb_config(struct adapter *adapter)
{
struct rss_params *rss = &adapter->params.rss;
struct fw_rss_glb_config_cmd cmd, rpl;
int v;
/*
* Execute an RSS Global Configuration read command to retrieve
* our RSS configuration.
*/
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
FW_CMD_REQUEST |
FW_CMD_READ);
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
if (v)
return v;
/*
* Transate the big-endian RSS Global Configuration into our
* cpu-endian format based on the RSS mode. We also do first level
* filtering at this point to weed out modes which don't support
* VF Drivers ...
*/
rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_GET(
be32_to_cpu(rpl.u.manual.mode_pkd));
switch (rss->mode) {
case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
u32 word = be32_to_cpu(
rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
rss->u.basicvirtual.synmapen =
((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0);
rss->u.basicvirtual.syn4tupenipv6 =
((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0);
rss->u.basicvirtual.syn2tupenipv6 =
((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0);
rss->u.basicvirtual.syn4tupenipv4 =
((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0);
rss->u.basicvirtual.syn2tupenipv4 =
((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0);
rss->u.basicvirtual.ofdmapen =
((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0);
rss->u.basicvirtual.tnlmapen =
((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0);
rss->u.basicvirtual.tnlalllookup =
((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0);
rss->u.basicvirtual.hashtoeplitz =
((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0);
/* we need at least Tunnel Map Enable to be set */
if (!rss->u.basicvirtual.tnlmapen)
return -EINVAL;
break;
}
default:
/* all unknown/unsupported RSS modes result in an error */
return -EINVAL;
}
return 0;
}
/**
* t4vf_get_vfres - retrieve VF resource limits
* @adapter: the adapter
*
* Retrieves configured resource limits and capabilities for a virtual
* function. The results are stored in @adapter->vfres.
*/
int t4vf_get_vfres(struct adapter *adapter)
{
struct vf_resources *vfres = &adapter->params.vfres;
struct fw_pfvf_cmd cmd, rpl;
int v;
u32 word;
/*
* Execute PFVF Read command to get VF resource limits; bail out early
* with error on command failure.
*/
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD) |
FW_CMD_REQUEST |
FW_CMD_READ);
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
if (v)
return v;
/*
* Extract VF resource limits and return success.
*/
word = be32_to_cpu(rpl.niqflint_niq);
vfres->niqflint = FW_PFVF_CMD_NIQFLINT_GET(word);
vfres->niq = FW_PFVF_CMD_NIQ_GET(word);
word = be32_to_cpu(rpl.type_to_neq);
vfres->neq = FW_PFVF_CMD_NEQ_GET(word);
vfres->pmask = FW_PFVF_CMD_PMASK_GET(word);
word = be32_to_cpu(rpl.tc_to_nexactf);
vfres->tc = FW_PFVF_CMD_TC_GET(word);
vfres->nvi = FW_PFVF_CMD_NVI_GET(word);
vfres->nexactf = FW_PFVF_CMD_NEXACTF_GET(word);
word = be32_to_cpu(rpl.r_caps_to_nethctrl);
vfres->r_caps = FW_PFVF_CMD_R_CAPS_GET(word);
vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_GET(word);
vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_GET(word);
return 0;
}
/**
* t4vf_read_rss_vi_config - read a VI's RSS configuration
* @adapter: the adapter
* @viid: Virtual Interface ID
* @config: pointer to host-native VI RSS Configuration buffer
*
* Reads the Virtual Interface's RSS configuration information and
* translates it into CPU-native format.
*/
int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
union rss_vi_config *config)
{
struct fw_rss_vi_config_cmd cmd, rpl;
int v;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
FW_CMD_REQUEST |
FW_CMD_READ |
FW_RSS_VI_CONFIG_CMD_VIID(viid));
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
if (v)
return v;
switch (adapter->params.rss.mode) {
case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
config->basicvirtual.ip6fourtupen =
((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) != 0);
config->basicvirtual.ip6twotupen =
((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) != 0);
config->basicvirtual.ip4fourtupen =
((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) != 0);
config->basicvirtual.ip4twotupen =
((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) != 0);
config->basicvirtual.udpen =
((word & FW_RSS_VI_CONFIG_CMD_UDPEN) != 0);
config->basicvirtual.defaultq =
FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word);
break;
}
default:
return -EINVAL;
}
return 0;
}
/**
* t4vf_write_rss_vi_config - write a VI's RSS configuration
* @adapter: the adapter
* @viid: Virtual Interface ID
* @config: pointer to host-native VI RSS Configuration buffer
*
* Write the Virtual Interface's RSS configuration information
* (translating it into firmware-native format before writing).
*/
int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
union rss_vi_config *config)
{
struct fw_rss_vi_config_cmd cmd, rpl;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
FW_CMD_REQUEST |
FW_CMD_WRITE |
FW_RSS_VI_CONFIG_CMD_VIID(viid));
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
switch (adapter->params.rss.mode) {
case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
u32 word = 0;
if (config->basicvirtual.ip6fourtupen)
word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
if (config->basicvirtual.ip6twotupen)
word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
if (config->basicvirtual.ip4fourtupen)
word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
if (config->basicvirtual.ip4twotupen)
word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
if (config->basicvirtual.udpen)
word |= FW_RSS_VI_CONFIG_CMD_UDPEN;
word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ(
config->basicvirtual.defaultq);
cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
break;
}
default:
return -EINVAL;
}
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
}
/**
* t4vf_config_rss_range - configure a portion of the RSS mapping table
* @adapter: the adapter
* @viid: Virtual Interface of RSS Table Slice
* @start: starting entry in the table to write
* @n: how many table entries to write
* @rspq: values for the "Response Queue" (Ingress Queue) lookup table
* @nrspq: number of values in @rspq
*
* Programs the selected part of the VI's RSS mapping table with the
* provided values. If @nrspq < @n the supplied values are used repeatedly
* until the full table range is populated.
*
* The caller must ensure the values in @rspq are in the range 0..1023.
*/
int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
int start, int n, const u16 *rspq, int nrspq)
{
const u16 *rsp = rspq;
const u16 *rsp_end = rspq+nrspq;
struct fw_rss_ind_tbl_cmd cmd;
/*
* Initialize firmware command template to write the RSS table.
*/
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
FW_CMD_REQUEST |
FW_CMD_WRITE |
FW_RSS_IND_TBL_CMD_VIID(viid));
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
/*
* Each firmware RSS command can accommodate up to 32 RSS Ingress
* Queue Identifiers. These Ingress Queue IDs are packed three to
* a 32-bit word as 10-bit values with the upper remaining 2 bits
* reserved.
*/
while (n > 0) {
__be32 *qp = &cmd.iq0_to_iq2;
int nq = min(n, 32);
int ret;
/*
* Set up the firmware RSS command header to send the next
* "nq" Ingress Queue IDs to the firmware.
*/
cmd.niqid = cpu_to_be16(nq);
cmd.startidx = cpu_to_be16(start);
/*
* "nq" more done for the start of the next loop.
*/
start += nq;
n -= nq;
/*
* While there are still Ingress Queue IDs to stuff into the
* current firmware RSS command, retrieve them from the
* Ingress Queue ID array and insert them into the command.
*/
while (nq > 0) {
/*
* Grab up to the next 3 Ingress Queue IDs (wrapping
* around the Ingress Queue ID array if necessary) and
* insert them into the firmware RSS command at the
* current 3-tuple position within the commad.
*/
u16 qbuf[3];
u16 *qbp = qbuf;
int nqbuf = min(3, nq);
nq -= nqbuf;
qbuf[0] = qbuf[1] = qbuf[2] = 0;
while (nqbuf) {
nqbuf--;
*qbp++ = *rsp++;
if (rsp >= rsp_end)
rsp = rspq;
}
*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
}
/*
* Send this portion of the RRS table update to the firmware;
* bail out on any errors.
*/
ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
if (ret)
return ret;
}
return 0;
}
/**
* t4vf_alloc_vi - allocate a virtual interface on a port
* @adapter: the adapter
* @port_id: physical port associated with the VI
*
* Allocate a new Virtual Interface and bind it to the indicated
* physical port. Return the new Virtual Interface Identifier on
* success, or a [negative] error number on failure.
*/
int t4vf_alloc_vi(struct adapter *adapter, int port_id)
{
struct fw_vi_cmd cmd, rpl;
int v;
/*
* Execute a VI command to allocate Virtual Interface and return its
* VIID.
*/
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
FW_CMD_REQUEST |
FW_CMD_WRITE |
FW_CMD_EXEC);
cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
FW_VI_CMD_ALLOC);
cmd.portid_pkd = FW_VI_CMD_PORTID(port_id);
v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
if (v)
return v;
return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl.type_viid));
}
/**
* t4vf_free_vi -- free a virtual interface
* @adapter: the adapter
* @viid: the virtual interface identifier
*
* Free a previously allocated Virtual Interface. Return an error on
* failure.
*/
int t4vf_free_vi(struct adapter *adapter, int viid)
{
struct fw_vi_cmd cmd;
/*
* Execute a VI command to free the Virtual Interface.
*/
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
FW_CMD_REQUEST |
FW_CMD_EXEC);
cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
FW_VI_CMD_FREE);
cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(viid));
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}
/**
* t4vf_enable_vi - enable/disable a virtual interface
* @adapter: the adapter
* @viid: the Virtual Interface ID
* @rx_en: 1=enable Rx, 0=disable Rx
* @tx_en: 1=enable Tx, 0=disable Tx
*
* Enables/disables a virtual interface.
*/
int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
bool rx_en, bool tx_en)
{
struct fw_vi_enable_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
FW_CMD_REQUEST |
FW_CMD_EXEC |
FW_VI_ENABLE_CMD_VIID(viid));
cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en) |
FW_VI_ENABLE_CMD_EEN(tx_en) |
FW_LEN16(cmd));
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}
/**
* t4vf_identify_port - identify a VI's port by blinking its LED
* @adapter: the adapter
* @viid: the Virtual Interface ID
* @nblinks: how many times to blink LED at 2.5 Hz
*
* Identifies a VI's port by blinking its LED.
*/
int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
unsigned int nblinks)
{
struct fw_vi_enable_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
FW_CMD_REQUEST |
FW_CMD_EXEC |
FW_VI_ENABLE_CMD_VIID(viid));
cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED |
FW_LEN16(cmd));
cmd.blinkdur = cpu_to_be16(nblinks);
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}
/**
* t4vf_set_rxmode - set Rx properties of a virtual interface
* @adapter: the adapter
* @viid: the VI id
* @mtu: the new MTU or -1 for no change
* @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
* @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
* @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
* @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
* -1 no change
*
* Sets Rx properties of a virtual interface.
*/
int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
int mtu, int promisc, int all_multi, int bcast, int vlanex,
bool sleep_ok)
{
struct fw_vi_rxmode_cmd cmd;
/* convert to FW values */
if (mtu < 0)
mtu = FW_VI_RXMODE_CMD_MTU_MASK;
if (promisc < 0)
promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
if (all_multi < 0)
all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
if (bcast < 0)
bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
if (vlanex < 0)
vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD) |
FW_CMD_REQUEST |
FW_CMD_WRITE |
FW_VI_RXMODE_CMD_VIID(viid));
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
cmd.mtu_to_vlanexen =
cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu) |
FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
}
/**
* t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
* @adapter: the adapter
* @viid: the Virtual Interface Identifier
* @free: if true any existing filters for this VI id are first removed
* @naddr: the number of MAC addresses to allocate filters for (up to 7)
* @addr: the MAC address(es)
* @idx: where to store the index of each allocated filter
* @hash: pointer to hash address filter bitmap
* @sleep_ok: call is allowed to sleep
*
* Allocates an exact-match filter for each of the supplied addresses and
* sets it to the corresponding address. If @idx is not %NULL it should
* have at least @naddr entries, each of which will be set to the index of
* the filter allocated for the corresponding MAC address. If a filter
* could not be allocated for an address its index is set to 0xffff.
* If @hash is not %NULL addresses that fail to allocate an exact filter
* are hashed and update the hash filter bitmap pointed at by @hash.
*
* Returns a negative error number or the number of filters allocated.
*/
int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
unsigned int naddr, const u8 **addr, u16 *idx,
u64 *hash, bool sleep_ok)
{
int offset, ret = 0;
unsigned nfilters = 0;
unsigned int rem = naddr;
struct fw_vi_mac_cmd cmd, rpl;
if (naddr > FW_CLS_TCAM_NUM_ENTRIES)
return -EINVAL;
for (offset = 0; offset < naddr; /**/) {
unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
? rem
: ARRAY_SIZE(cmd.u.exact));
size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
u.exact[fw_naddr]), 16);
struct fw_vi_mac_exact *p;
int i;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
FW_CMD_REQUEST |
FW_CMD_WRITE |
(free ? FW_CMD_EXEC : 0) |
FW_VI_MAC_CMD_VIID(viid));
cmd.freemacs_to_len16 =
cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free) |
FW_CMD_LEN16(len16));
for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
p->valid_to_idx = cpu_to_be16(
FW_VI_MAC_CMD_VALID |
FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
}
ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
sleep_ok);
if (ret && ret != -ENOMEM)
break;
for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
u16 index = FW_VI_MAC_CMD_IDX_GET(
be16_to_cpu(p->valid_to_idx));
if (idx)
idx[offset+i] =
(index >= FW_CLS_TCAM_NUM_ENTRIES
? 0xffff
: index);
if (index < FW_CLS_TCAM_NUM_ENTRIES)
nfilters++;
else if (hash)
*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
}
free = false;
offset += fw_naddr;
rem -= fw_naddr;
}
/*
* If there were no errors or we merely ran out of room in our MAC
* address arena, return the number of filters actually written.
*/
if (ret == 0 || ret == -ENOMEM)
ret = nfilters;
return ret;
}
/**
* t4vf_change_mac - modifies the exact-match filter for a MAC address
* @adapter: the adapter
* @viid: the Virtual Interface ID
* @idx: index of existing filter for old value of MAC address, or -1
* @addr: the new MAC address value
* @persist: if idx < 0, the new MAC allocation should be persistent
*
* Modifies an exact-match filter and sets it to the new MAC address.
* Note that in general it is not possible to modify the value of a given
* filter so the generic way to modify an address filter is to free the
* one being used by the old address value and allocate a new filter for
* the new address value. @idx can be -1 if the address is a new
* addition.
*
* Returns a negative error number or the index of the filter with the new
* MAC value.
*/
int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
int idx, const u8 *addr, bool persist)
{
int ret;
struct fw_vi_mac_cmd cmd, rpl;
struct fw_vi_mac_exact *p = &cmd.u.exact[0];
size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
u.exact[1]), 16);
/*
* If this is a new allocation, determine whether it should be
* persistent (across a "freemacs" operation) or not.
*/
if (idx < 0)
idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
FW_CMD_REQUEST |
FW_CMD_WRITE |
FW_VI_MAC_CMD_VIID(viid));
cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID |
FW_VI_MAC_CMD_IDX(idx));
memcpy(p->macaddr, addr, sizeof(p->macaddr));
ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
if (ret == 0) {
p = &rpl.u.exact[0];
ret = FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p->valid_to_idx));
if (ret >= FW_CLS_TCAM_NUM_ENTRIES)
ret = -ENOMEM;
}
return ret;
}
/**
* t4vf_set_addr_hash - program the MAC inexact-match hash filter
* @adapter: the adapter
* @viid: the Virtual Interface Identifier
* @ucast: whether the hash filter should also match unicast addresses
* @vec: the value to be written to the hash filter
* @sleep_ok: call is allowed to sleep
*
* Sets the 64-bit inexact-match hash filter for a virtual interface.
*/
int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
bool ucast, u64 vec, bool sleep_ok)
{
struct fw_vi_mac_cmd cmd;
size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
u.exact[0]), 16);
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
FW_CMD_REQUEST |
FW_CMD_WRITE |
FW_VI_ENABLE_CMD_VIID(viid));
cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN |
FW_VI_MAC_CMD_HASHUNIEN(ucast) |
FW_CMD_LEN16(len16));
cmd.u.hash.hashvec = cpu_to_be64(vec);
return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
}
/**
* t4vf_get_port_stats - collect "port" statistics
* @adapter: the adapter
* @pidx: the port index
* @s: the stats structure to fill
*
* Collect statistics for the "port"'s Virtual Interface.
*/
int t4vf_get_port_stats(struct adapter *adapter, int pidx,
struct t4vf_port_stats *s)
{
struct port_info *pi = adap2pinfo(adapter, pidx);
struct fw_vi_stats_vf fwstats;
unsigned int rem = VI_VF_NUM_STATS;
__be64 *fwsp = (__be64 *)&fwstats;
/*
* Grab the Virtual Interface statistics a chunk at a time via mailbox
* commands. We could use a Work Request and get all of them at once
* but that's an asynchronous interface which is awkward to use.
*/
while (rem) {
unsigned int ix = VI_VF_NUM_STATS - rem;
unsigned int nstats = min(6U, rem);
struct fw_vi_stats_cmd cmd, rpl;
size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
sizeof(struct fw_vi_stats_ctl));
size_t len16 = DIV_ROUND_UP(len, 16);
int ret;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD) |
FW_VI_STATS_CMD_VIID(pi->viid) |
FW_CMD_REQUEST |
FW_CMD_READ);
cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
cmd.u.ctl.nstats_ix =
cpu_to_be16(FW_VI_STATS_CMD_IX(ix) |
FW_VI_STATS_CMD_NSTATS(nstats));
ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
if (ret)
return ret;
memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
rem -= nstats;
fwsp += nstats;
}
/*
* Translate firmware statistics into host native statistics.
*/
s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
return 0;
}
/**
* t4vf_iq_free - free an ingress queue and its free lists
* @adapter: the adapter
* @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
* @iqid: ingress queue ID
* @fl0id: FL0 queue ID or 0xffff if no attached FL0
* @fl1id: FL1 queue ID or 0xffff if no attached FL1
*
* Frees an ingress queue and its associated free lists, if any.
*/
int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
{
struct fw_iq_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
FW_CMD_REQUEST |
FW_CMD_EXEC);
cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE |
FW_LEN16(cmd));
cmd.type_to_iqandstindex =
cpu_to_be32(FW_IQ_CMD_TYPE(iqtype));
cmd.iqid = cpu_to_be16(iqid);
cmd.fl0id = cpu_to_be16(fl0id);
cmd.fl1id = cpu_to_be16(fl1id);
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}
/**
* t4vf_eth_eq_free - free an Ethernet egress queue
* @adapter: the adapter
* @eqid: egress queue ID
*
* Frees an Ethernet egress queue.
*/
int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
{
struct fw_eq_eth_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
FW_CMD_REQUEST |
FW_CMD_EXEC);
cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE |
FW_LEN16(cmd));
cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid));
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}
/**
* t4vf_handle_fw_rpl - process a firmware reply message
* @adapter: the adapter
* @rpl: start of the firmware message
*
* Processes a firmware message, such as link state change messages.
*/
int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
{
const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
u8 opcode = FW_CMD_OP_GET(be32_to_cpu(cmd_hdr->hi));
switch (opcode) {
case FW_PORT_CMD: {
/*
* Link/module state change message.
*/
const struct fw_port_cmd *port_cmd =
(const struct fw_port_cmd *)rpl;
u32 word;
int action, port_id, link_ok, speed, fc, pidx;
/*
* Extract various fields from port status change message.
*/
action = FW_PORT_CMD_ACTION_GET(
be32_to_cpu(port_cmd->action_to_len16));
if (action != FW_PORT_ACTION_GET_PORT_INFO) {
dev_err(adapter->pdev_dev,
"Unknown firmware PORT reply action %x\n",
action);
break;
}
port_id = FW_PORT_CMD_PORTID_GET(
be32_to_cpu(port_cmd->op_to_portid));
word = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
link_ok = (word & FW_PORT_CMD_LSTATUS) != 0;
speed = 0;
fc = 0;
if (word & FW_PORT_CMD_RXPAUSE)
fc |= PAUSE_RX;
if (word & FW_PORT_CMD_TXPAUSE)
fc |= PAUSE_TX;
if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
speed = SPEED_100;
else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
speed = SPEED_1000;
else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
speed = SPEED_10000;
/*
* Scan all of our "ports" (Virtual Interfaces) looking for
* those bound to the physical port which has changed. If
* our recorded state doesn't match the current state,
* signal that change to the OS code.
*/
for_each_port(adapter, pidx) {
struct port_info *pi = adap2pinfo(adapter, pidx);
struct link_config *lc;
if (pi->port_id != port_id)
continue;
lc = &pi->link_cfg;
if (link_ok != lc->link_ok || speed != lc->speed ||
fc != lc->fc) {
/* something changed */
lc->link_ok = link_ok;
lc->speed = speed;
lc->fc = fc;
t4vf_os_link_changed(adapter, pidx, link_ok);
}
}
break;
}
default:
dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
opcode);
}
return 0;
}