linux/drivers/gpu/drm/ttm/ttm_bo.c
Ben Skeggs 9f1feed2e1 drm/ttm: fix two regressions since move_notify changes
Both changes in dc97b3409a cause serious
regressions in the nouveau driver.

move_notify() was originally able to presume that bo->mem is the old node,
and new_mem is the new node.  The above commit moves the call to
move_notify() to after move() has been done, which means that now, sometimes,
new_mem isn't the new node at all, bo->mem is, and new_mem points at a
stale, possibly-just-been-killed-by-move node.

This is clearly not a good situation.  This patch reverts this change, and
replaces it with a cleanup in the move() failure path instead.

The second issue is that the call to move_notify() from cleanup_memtype_use()
causes the TTM ghost objects to get passed into the driver.  This is clearly
bad as the driver knows nothing about these "fake" TTM BOs, and ends up
accessing uninitialised memory.

I worked around this in nouveau's move_notify() hook by ensuring the BO
destructor was nouveau's.  I don't particularly like this solution, and
would rather TTM never pass the driver these objects.  However, I don't
clearly understand the reason why we're calling move_notify() here anyway
and am happy to work around the problem in nouveau instead of breaking the
behaviour expected by other drivers.

Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Jerome Glisse <j.glisse@gmail.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
2012-01-25 18:54:28 +00:00

1913 lines
46 KiB
C

/**************************************************************************
*
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
#include "ttm/ttm_module.h"
#include "ttm/ttm_bo_driver.h"
#include "ttm/ttm_placement.h"
#include <linux/jiffies.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/module.h>
#include <linux/atomic.h>
#define TTM_ASSERT_LOCKED(param)
#define TTM_DEBUG(fmt, arg...)
#define TTM_BO_HASH_ORDER 13
static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
static void ttm_bo_global_kobj_release(struct kobject *kobj);
static struct attribute ttm_bo_count = {
.name = "bo_count",
.mode = S_IRUGO
};
static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
{
int i;
for (i = 0; i <= TTM_PL_PRIV5; i++)
if (flags & (1 << i)) {
*mem_type = i;
return 0;
}
return -EINVAL;
}
static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
{
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
printk(KERN_ERR TTM_PFX " has_type: %d\n", man->has_type);
printk(KERN_ERR TTM_PFX " use_type: %d\n", man->use_type);
printk(KERN_ERR TTM_PFX " flags: 0x%08X\n", man->flags);
printk(KERN_ERR TTM_PFX " gpu_offset: 0x%08lX\n", man->gpu_offset);
printk(KERN_ERR TTM_PFX " size: %llu\n", man->size);
printk(KERN_ERR TTM_PFX " available_caching: 0x%08X\n",
man->available_caching);
printk(KERN_ERR TTM_PFX " default_caching: 0x%08X\n",
man->default_caching);
if (mem_type != TTM_PL_SYSTEM)
(*man->func->debug)(man, TTM_PFX);
}
static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
int i, ret, mem_type;
printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
bo, bo->mem.num_pages, bo->mem.size >> 10,
bo->mem.size >> 20);
for (i = 0; i < placement->num_placement; i++) {
ret = ttm_mem_type_from_flags(placement->placement[i],
&mem_type);
if (ret)
return;
printk(KERN_ERR TTM_PFX " placement[%d]=0x%08X (%d)\n",
i, placement->placement[i], mem_type);
ttm_mem_type_debug(bo->bdev, mem_type);
}
}
static ssize_t ttm_bo_global_show(struct kobject *kobj,
struct attribute *attr,
char *buffer)
{
struct ttm_bo_global *glob =
container_of(kobj, struct ttm_bo_global, kobj);
return snprintf(buffer, PAGE_SIZE, "%lu\n",
(unsigned long) atomic_read(&glob->bo_count));
}
static struct attribute *ttm_bo_global_attrs[] = {
&ttm_bo_count,
NULL
};
static const struct sysfs_ops ttm_bo_global_ops = {
.show = &ttm_bo_global_show
};
static struct kobj_type ttm_bo_glob_kobj_type = {
.release = &ttm_bo_global_kobj_release,
.sysfs_ops = &ttm_bo_global_ops,
.default_attrs = ttm_bo_global_attrs
};
static inline uint32_t ttm_bo_type_flags(unsigned type)
{
return 1 << (type);
}
static void ttm_bo_release_list(struct kref *list_kref)
{
struct ttm_buffer_object *bo =
container_of(list_kref, struct ttm_buffer_object, list_kref);
struct ttm_bo_device *bdev = bo->bdev;
size_t acc_size = bo->acc_size;
BUG_ON(atomic_read(&bo->list_kref.refcount));
BUG_ON(atomic_read(&bo->kref.refcount));
BUG_ON(atomic_read(&bo->cpu_writers));
BUG_ON(bo->sync_obj != NULL);
BUG_ON(bo->mem.mm_node != NULL);
BUG_ON(!list_empty(&bo->lru));
BUG_ON(!list_empty(&bo->ddestroy));
if (bo->ttm)
ttm_tt_destroy(bo->ttm);
atomic_dec(&bo->glob->bo_count);
if (bo->destroy)
bo->destroy(bo);
else {
kfree(bo);
}
ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
}
int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
{
if (interruptible) {
return wait_event_interruptible(bo->event_queue,
atomic_read(&bo->reserved) == 0);
} else {
wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
return 0;
}
}
EXPORT_SYMBOL(ttm_bo_wait_unreserved);
void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man;
BUG_ON(!atomic_read(&bo->reserved));
if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
BUG_ON(!list_empty(&bo->lru));
man = &bdev->man[bo->mem.mem_type];
list_add_tail(&bo->lru, &man->lru);
kref_get(&bo->list_kref);
if (bo->ttm != NULL) {
list_add_tail(&bo->swap, &bo->glob->swap_lru);
kref_get(&bo->list_kref);
}
}
}
int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
{
int put_count = 0;
if (!list_empty(&bo->swap)) {
list_del_init(&bo->swap);
++put_count;
}
if (!list_empty(&bo->lru)) {
list_del_init(&bo->lru);
++put_count;
}
/*
* TODO: Add a driver hook to delete from
* driver-specific LRU's here.
*/
return put_count;
}
int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
bool interruptible,
bool no_wait, bool use_sequence, uint32_t sequence)
{
struct ttm_bo_global *glob = bo->glob;
int ret;
while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
/**
* Deadlock avoidance for multi-bo reserving.
*/
if (use_sequence && bo->seq_valid) {
/**
* We've already reserved this one.
*/
if (unlikely(sequence == bo->val_seq))
return -EDEADLK;
/**
* Already reserved by a thread that will not back
* off for us. We need to back off.
*/
if (unlikely(sequence - bo->val_seq < (1 << 31)))
return -EAGAIN;
}
if (no_wait)
return -EBUSY;
spin_unlock(&glob->lru_lock);
ret = ttm_bo_wait_unreserved(bo, interruptible);
spin_lock(&glob->lru_lock);
if (unlikely(ret))
return ret;
}
if (use_sequence) {
/**
* Wake up waiters that may need to recheck for deadlock,
* if we decreased the sequence number.
*/
if (unlikely((bo->val_seq - sequence < (1 << 31))
|| !bo->seq_valid))
wake_up_all(&bo->event_queue);
bo->val_seq = sequence;
bo->seq_valid = true;
} else {
bo->seq_valid = false;
}
return 0;
}
EXPORT_SYMBOL(ttm_bo_reserve);
static void ttm_bo_ref_bug(struct kref *list_kref)
{
BUG();
}
void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
bool never_free)
{
kref_sub(&bo->list_kref, count,
(never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
}
int ttm_bo_reserve(struct ttm_buffer_object *bo,
bool interruptible,
bool no_wait, bool use_sequence, uint32_t sequence)
{
struct ttm_bo_global *glob = bo->glob;
int put_count = 0;
int ret;
spin_lock(&glob->lru_lock);
ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
sequence);
if (likely(ret == 0))
put_count = ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
ttm_bo_list_ref_sub(bo, put_count, true);
return ret;
}
void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
{
ttm_bo_add_to_lru(bo);
atomic_set(&bo->reserved, 0);
wake_up_all(&bo->event_queue);
}
void ttm_bo_unreserve(struct ttm_buffer_object *bo)
{
struct ttm_bo_global *glob = bo->glob;
spin_lock(&glob->lru_lock);
ttm_bo_unreserve_locked(bo);
spin_unlock(&glob->lru_lock);
}
EXPORT_SYMBOL(ttm_bo_unreserve);
/*
* Call bo->mutex locked.
*/
static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_bo_global *glob = bo->glob;
int ret = 0;
uint32_t page_flags = 0;
TTM_ASSERT_LOCKED(&bo->mutex);
bo->ttm = NULL;
if (bdev->need_dma32)
page_flags |= TTM_PAGE_FLAG_DMA32;
switch (bo->type) {
case ttm_bo_type_device:
if (zero_alloc)
page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
case ttm_bo_type_kernel:
bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
page_flags, glob->dummy_read_page);
if (unlikely(bo->ttm == NULL))
ret = -ENOMEM;
break;
default:
printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
ret = -EINVAL;
break;
}
return ret;
}
static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
struct ttm_mem_reg *mem,
bool evict, bool interruptible,
bool no_wait_reserve, bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
int ret = 0;
if (old_is_pci || new_is_pci ||
((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
ret = ttm_mem_io_lock(old_man, true);
if (unlikely(ret != 0))
goto out_err;
ttm_bo_unmap_virtual_locked(bo);
ttm_mem_io_unlock(old_man);
}
/*
* Create and bind a ttm if required.
*/
if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
if (bo->ttm == NULL) {
bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
ret = ttm_bo_add_ttm(bo, zero);
if (ret)
goto out_err;
}
ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
if (ret)
goto out_err;
if (mem->mem_type != TTM_PL_SYSTEM) {
ret = ttm_tt_bind(bo->ttm, mem);
if (ret)
goto out_err;
}
if (bo->mem.mem_type == TTM_PL_SYSTEM) {
if (bdev->driver->move_notify)
bdev->driver->move_notify(bo, mem);
bo->mem = *mem;
mem->mm_node = NULL;
goto moved;
}
}
if (bdev->driver->move_notify)
bdev->driver->move_notify(bo, mem);
if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
else if (bdev->driver->move)
ret = bdev->driver->move(bo, evict, interruptible,
no_wait_reserve, no_wait_gpu, mem);
else
ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
if (ret) {
if (bdev->driver->move_notify) {
struct ttm_mem_reg tmp_mem = *mem;
*mem = bo->mem;
bo->mem = tmp_mem;
bdev->driver->move_notify(bo, mem);
bo->mem = *mem;
}
goto out_err;
}
moved:
if (bo->evicted) {
ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
if (ret)
printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
bo->evicted = false;
}
if (bo->mem.mm_node) {
bo->offset = (bo->mem.start << PAGE_SHIFT) +
bdev->man[bo->mem.mem_type].gpu_offset;
bo->cur_placement = bo->mem.placement;
} else
bo->offset = 0;
return 0;
out_err:
new_man = &bdev->man[bo->mem.mem_type];
if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
ttm_tt_unbind(bo->ttm);
ttm_tt_destroy(bo->ttm);
bo->ttm = NULL;
}
return ret;
}
/**
* Call bo::reserved.
* Will release GPU memory type usage on destruction.
* This is the place to put in driver specific hooks to release
* driver private resources.
* Will release the bo::reserved lock.
*/
static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
{
if (bo->bdev->driver->move_notify)
bo->bdev->driver->move_notify(bo, NULL);
if (bo->ttm) {
ttm_tt_unbind(bo->ttm);
ttm_tt_destroy(bo->ttm);
bo->ttm = NULL;
}
ttm_bo_mem_put(bo, &bo->mem);
atomic_set(&bo->reserved, 0);
/*
* Make processes trying to reserve really pick it up.
*/
smp_mb__after_atomic_dec();
wake_up_all(&bo->event_queue);
}
static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_bo_global *glob = bo->glob;
struct ttm_bo_driver *driver;
void *sync_obj = NULL;
void *sync_obj_arg;
int put_count;
int ret;
spin_lock(&bdev->fence_lock);
(void) ttm_bo_wait(bo, false, false, true);
if (!bo->sync_obj) {
spin_lock(&glob->lru_lock);
/**
* Lock inversion between bo:reserve and bdev::fence_lock here,
* but that's OK, since we're only trylocking.
*/
ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
if (unlikely(ret == -EBUSY))
goto queue;
spin_unlock(&bdev->fence_lock);
put_count = ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
ttm_bo_cleanup_memtype_use(bo);
ttm_bo_list_ref_sub(bo, put_count, true);
return;
} else {
spin_lock(&glob->lru_lock);
}
queue:
driver = bdev->driver;
if (bo->sync_obj)
sync_obj = driver->sync_obj_ref(bo->sync_obj);
sync_obj_arg = bo->sync_obj_arg;
kref_get(&bo->list_kref);
list_add_tail(&bo->ddestroy, &bdev->ddestroy);
spin_unlock(&glob->lru_lock);
spin_unlock(&bdev->fence_lock);
if (sync_obj) {
driver->sync_obj_flush(sync_obj, sync_obj_arg);
driver->sync_obj_unref(&sync_obj);
}
schedule_delayed_work(&bdev->wq,
((HZ / 100) < 1) ? 1 : HZ / 100);
}
/**
* function ttm_bo_cleanup_refs
* If bo idle, remove from delayed- and lru lists, and unref.
* If not idle, do nothing.
*
* @interruptible Any sleeps should occur interruptibly.
* @no_wait_reserve Never wait for reserve. Return -EBUSY instead.
* @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
*/
static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
bool interruptible,
bool no_wait_reserve,
bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_bo_global *glob = bo->glob;
int put_count;
int ret = 0;
retry:
spin_lock(&bdev->fence_lock);
ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
spin_unlock(&bdev->fence_lock);
if (unlikely(ret != 0))
return ret;
spin_lock(&glob->lru_lock);
if (unlikely(list_empty(&bo->ddestroy))) {
spin_unlock(&glob->lru_lock);
return 0;
}
ret = ttm_bo_reserve_locked(bo, interruptible,
no_wait_reserve, false, 0);
if (unlikely(ret != 0)) {
spin_unlock(&glob->lru_lock);
return ret;
}
/**
* We can re-check for sync object without taking
* the bo::lock since setting the sync object requires
* also bo::reserved. A busy object at this point may
* be caused by another thread recently starting an accelerated
* eviction.
*/
if (unlikely(bo->sync_obj)) {
atomic_set(&bo->reserved, 0);
wake_up_all(&bo->event_queue);
spin_unlock(&glob->lru_lock);
goto retry;
}
put_count = ttm_bo_del_from_lru(bo);
list_del_init(&bo->ddestroy);
++put_count;
spin_unlock(&glob->lru_lock);
ttm_bo_cleanup_memtype_use(bo);
ttm_bo_list_ref_sub(bo, put_count, true);
return 0;
}
/**
* Traverse the delayed list, and call ttm_bo_cleanup_refs on all
* encountered buffers.
*/
static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
{
struct ttm_bo_global *glob = bdev->glob;
struct ttm_buffer_object *entry = NULL;
int ret = 0;
spin_lock(&glob->lru_lock);
if (list_empty(&bdev->ddestroy))
goto out_unlock;
entry = list_first_entry(&bdev->ddestroy,
struct ttm_buffer_object, ddestroy);
kref_get(&entry->list_kref);
for (;;) {
struct ttm_buffer_object *nentry = NULL;
if (entry->ddestroy.next != &bdev->ddestroy) {
nentry = list_first_entry(&entry->ddestroy,
struct ttm_buffer_object, ddestroy);
kref_get(&nentry->list_kref);
}
spin_unlock(&glob->lru_lock);
ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
!remove_all);
kref_put(&entry->list_kref, ttm_bo_release_list);
entry = nentry;
if (ret || !entry)
goto out;
spin_lock(&glob->lru_lock);
if (list_empty(&entry->ddestroy))
break;
}
out_unlock:
spin_unlock(&glob->lru_lock);
out:
if (entry)
kref_put(&entry->list_kref, ttm_bo_release_list);
return ret;
}
static void ttm_bo_delayed_workqueue(struct work_struct *work)
{
struct ttm_bo_device *bdev =
container_of(work, struct ttm_bo_device, wq.work);
if (ttm_bo_delayed_delete(bdev, false)) {
schedule_delayed_work(&bdev->wq,
((HZ / 100) < 1) ? 1 : HZ / 100);
}
}
static void ttm_bo_release(struct kref *kref)
{
struct ttm_buffer_object *bo =
container_of(kref, struct ttm_buffer_object, kref);
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
if (likely(bo->vm_node != NULL)) {
rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
drm_mm_put_block(bo->vm_node);
bo->vm_node = NULL;
}
write_unlock(&bdev->vm_lock);
ttm_mem_io_lock(man, false);
ttm_mem_io_free_vm(bo);
ttm_mem_io_unlock(man);
ttm_bo_cleanup_refs_or_queue(bo);
kref_put(&bo->list_kref, ttm_bo_release_list);
write_lock(&bdev->vm_lock);
}
void ttm_bo_unref(struct ttm_buffer_object **p_bo)
{
struct ttm_buffer_object *bo = *p_bo;
struct ttm_bo_device *bdev = bo->bdev;
*p_bo = NULL;
write_lock(&bdev->vm_lock);
kref_put(&bo->kref, ttm_bo_release);
write_unlock(&bdev->vm_lock);
}
EXPORT_SYMBOL(ttm_bo_unref);
int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
{
return cancel_delayed_work_sync(&bdev->wq);
}
EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
{
if (resched)
schedule_delayed_work(&bdev->wq,
((HZ / 100) < 1) ? 1 : HZ / 100);
}
EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
bool no_wait_reserve, bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_reg evict_mem;
struct ttm_placement placement;
int ret = 0;
spin_lock(&bdev->fence_lock);
ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
spin_unlock(&bdev->fence_lock);
if (unlikely(ret != 0)) {
if (ret != -ERESTARTSYS) {
printk(KERN_ERR TTM_PFX
"Failed to expire sync object before "
"buffer eviction.\n");
}
goto out;
}
BUG_ON(!atomic_read(&bo->reserved));
evict_mem = bo->mem;
evict_mem.mm_node = NULL;
evict_mem.bus.io_reserved_vm = false;
evict_mem.bus.io_reserved_count = 0;
placement.fpfn = 0;
placement.lpfn = 0;
placement.num_placement = 0;
placement.num_busy_placement = 0;
bdev->driver->evict_flags(bo, &placement);
ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
no_wait_reserve, no_wait_gpu);
if (ret) {
if (ret != -ERESTARTSYS) {
printk(KERN_ERR TTM_PFX
"Failed to find memory space for "
"buffer 0x%p eviction.\n", bo);
ttm_bo_mem_space_debug(bo, &placement);
}
goto out;
}
ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
no_wait_reserve, no_wait_gpu);
if (ret) {
if (ret != -ERESTARTSYS)
printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
ttm_bo_mem_put(bo, &evict_mem);
goto out;
}
bo->evicted = true;
out:
return ret;
}
static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
uint32_t mem_type,
bool interruptible, bool no_wait_reserve,
bool no_wait_gpu)
{
struct ttm_bo_global *glob = bdev->glob;
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
struct ttm_buffer_object *bo;
int ret, put_count = 0;
retry:
spin_lock(&glob->lru_lock);
if (list_empty(&man->lru)) {
spin_unlock(&glob->lru_lock);
return -EBUSY;
}
bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
kref_get(&bo->list_kref);
if (!list_empty(&bo->ddestroy)) {
spin_unlock(&glob->lru_lock);
ret = ttm_bo_cleanup_refs(bo, interruptible,
no_wait_reserve, no_wait_gpu);
kref_put(&bo->list_kref, ttm_bo_release_list);
if (likely(ret == 0 || ret == -ERESTARTSYS))
return ret;
goto retry;
}
ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
if (unlikely(ret == -EBUSY)) {
spin_unlock(&glob->lru_lock);
if (likely(!no_wait_gpu))
ret = ttm_bo_wait_unreserved(bo, interruptible);
kref_put(&bo->list_kref, ttm_bo_release_list);
/**
* We *need* to retry after releasing the lru lock.
*/
if (unlikely(ret != 0))
return ret;
goto retry;
}
put_count = ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
BUG_ON(ret != 0);
ttm_bo_list_ref_sub(bo, put_count, true);
ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
ttm_bo_unreserve(bo);
kref_put(&bo->list_kref, ttm_bo_release_list);
return ret;
}
void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
{
struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
if (mem->mm_node)
(*man->func->put_node)(man, mem);
}
EXPORT_SYMBOL(ttm_bo_mem_put);
/**
* Repeatedly evict memory from the LRU for @mem_type until we create enough
* space, or we've evicted everything and there isn't enough space.
*/
static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
uint32_t mem_type,
struct ttm_placement *placement,
struct ttm_mem_reg *mem,
bool interruptible,
bool no_wait_reserve,
bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
int ret;
do {
ret = (*man->func->get_node)(man, bo, placement, mem);
if (unlikely(ret != 0))
return ret;
if (mem->mm_node)
break;
ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
no_wait_reserve, no_wait_gpu);
if (unlikely(ret != 0))
return ret;
} while (1);
if (mem->mm_node == NULL)
return -ENOMEM;
mem->mem_type = mem_type;
return 0;
}
static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
uint32_t cur_placement,
uint32_t proposed_placement)
{
uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
/**
* Keep current caching if possible.
*/
if ((cur_placement & caching) != 0)
result |= (cur_placement & caching);
else if ((man->default_caching & caching) != 0)
result |= man->default_caching;
else if ((TTM_PL_FLAG_CACHED & caching) != 0)
result |= TTM_PL_FLAG_CACHED;
else if ((TTM_PL_FLAG_WC & caching) != 0)
result |= TTM_PL_FLAG_WC;
else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
result |= TTM_PL_FLAG_UNCACHED;
return result;
}
static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
uint32_t mem_type,
uint32_t proposed_placement,
uint32_t *masked_placement)
{
uint32_t cur_flags = ttm_bo_type_flags(mem_type);
if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
return false;
if ((proposed_placement & man->available_caching) == 0)
return false;
cur_flags |= (proposed_placement & man->available_caching);
*masked_placement = cur_flags;
return true;
}
/**
* Creates space for memory region @mem according to its type.
*
* This function first searches for free space in compatible memory types in
* the priority order defined by the driver. If free space isn't found, then
* ttm_bo_mem_force_space is attempted in priority order to evict and find
* space.
*/
int ttm_bo_mem_space(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_mem_reg *mem,
bool interruptible, bool no_wait_reserve,
bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man;
uint32_t mem_type = TTM_PL_SYSTEM;
uint32_t cur_flags = 0;
bool type_found = false;
bool type_ok = false;
bool has_erestartsys = false;
int i, ret;
mem->mm_node = NULL;
for (i = 0; i < placement->num_placement; ++i) {
ret = ttm_mem_type_from_flags(placement->placement[i],
&mem_type);
if (ret)
return ret;
man = &bdev->man[mem_type];
type_ok = ttm_bo_mt_compatible(man,
mem_type,
placement->placement[i],
&cur_flags);
if (!type_ok)
continue;
cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
cur_flags);
/*
* Use the access and other non-mapping-related flag bits from
* the memory placement flags to the current flags
*/
ttm_flag_masked(&cur_flags, placement->placement[i],
~TTM_PL_MASK_MEMTYPE);
if (mem_type == TTM_PL_SYSTEM)
break;
if (man->has_type && man->use_type) {
type_found = true;
ret = (*man->func->get_node)(man, bo, placement, mem);
if (unlikely(ret))
return ret;
}
if (mem->mm_node)
break;
}
if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
mem->mem_type = mem_type;
mem->placement = cur_flags;
return 0;
}
if (!type_found)
return -EINVAL;
for (i = 0; i < placement->num_busy_placement; ++i) {
ret = ttm_mem_type_from_flags(placement->busy_placement[i],
&mem_type);
if (ret)
return ret;
man = &bdev->man[mem_type];
if (!man->has_type)
continue;
if (!ttm_bo_mt_compatible(man,
mem_type,
placement->busy_placement[i],
&cur_flags))
continue;
cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
cur_flags);
/*
* Use the access and other non-mapping-related flag bits from
* the memory placement flags to the current flags
*/
ttm_flag_masked(&cur_flags, placement->busy_placement[i],
~TTM_PL_MASK_MEMTYPE);
if (mem_type == TTM_PL_SYSTEM) {
mem->mem_type = mem_type;
mem->placement = cur_flags;
mem->mm_node = NULL;
return 0;
}
ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
interruptible, no_wait_reserve, no_wait_gpu);
if (ret == 0 && mem->mm_node) {
mem->placement = cur_flags;
return 0;
}
if (ret == -ERESTARTSYS)
has_erestartsys = true;
}
ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
return ret;
}
EXPORT_SYMBOL(ttm_bo_mem_space);
int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
{
if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
return -EBUSY;
return wait_event_interruptible(bo->event_queue,
atomic_read(&bo->cpu_writers) == 0);
}
EXPORT_SYMBOL(ttm_bo_wait_cpu);
int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
bool interruptible, bool no_wait_reserve,
bool no_wait_gpu)
{
int ret = 0;
struct ttm_mem_reg mem;
struct ttm_bo_device *bdev = bo->bdev;
BUG_ON(!atomic_read(&bo->reserved));
/*
* FIXME: It's possible to pipeline buffer moves.
* Have the driver move function wait for idle when necessary,
* instead of doing it here.
*/
spin_lock(&bdev->fence_lock);
ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
spin_unlock(&bdev->fence_lock);
if (ret)
return ret;
mem.num_pages = bo->num_pages;
mem.size = mem.num_pages << PAGE_SHIFT;
mem.page_alignment = bo->mem.page_alignment;
mem.bus.io_reserved_vm = false;
mem.bus.io_reserved_count = 0;
/*
* Determine where to move the buffer.
*/
ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
if (ret)
goto out_unlock;
ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
out_unlock:
if (ret && mem.mm_node)
ttm_bo_mem_put(bo, &mem);
return ret;
}
static int ttm_bo_mem_compat(struct ttm_placement *placement,
struct ttm_mem_reg *mem)
{
int i;
if (mem->mm_node && placement->lpfn != 0 &&
(mem->start < placement->fpfn ||
mem->start + mem->num_pages > placement->lpfn))
return -1;
for (i = 0; i < placement->num_placement; i++) {
if ((placement->placement[i] & mem->placement &
TTM_PL_MASK_CACHING) &&
(placement->placement[i] & mem->placement &
TTM_PL_MASK_MEM))
return i;
}
return -1;
}
int ttm_bo_validate(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
bool interruptible, bool no_wait_reserve,
bool no_wait_gpu)
{
int ret;
BUG_ON(!atomic_read(&bo->reserved));
/* Check that range is valid */
if (placement->lpfn || placement->fpfn)
if (placement->fpfn > placement->lpfn ||
(placement->lpfn - placement->fpfn) < bo->num_pages)
return -EINVAL;
/*
* Check whether we need to move buffer.
*/
ret = ttm_bo_mem_compat(placement, &bo->mem);
if (ret < 0) {
ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
if (ret)
return ret;
} else {
/*
* Use the access and other non-mapping-related flag bits from
* the compatible memory placement flags to the active flags
*/
ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
~TTM_PL_MASK_MEMTYPE);
}
/*
* We might need to add a TTM.
*/
if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
ret = ttm_bo_add_ttm(bo, true);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL(ttm_bo_validate);
int ttm_bo_check_placement(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
BUG_ON((placement->fpfn || placement->lpfn) &&
(bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
return 0;
}
int ttm_bo_init(struct ttm_bo_device *bdev,
struct ttm_buffer_object *bo,
unsigned long size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
unsigned long buffer_start,
bool interruptible,
struct file *persistent_swap_storage,
size_t acc_size,
void (*destroy) (struct ttm_buffer_object *))
{
int ret = 0;
unsigned long num_pages;
struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
if (ret) {
printk(KERN_ERR TTM_PFX "Out of kernel memory.\n");
if (destroy)
(*destroy)(bo);
else
kfree(bo);
return -ENOMEM;
}
size += buffer_start & ~PAGE_MASK;
num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (num_pages == 0) {
printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
if (destroy)
(*destroy)(bo);
else
kfree(bo);
return -EINVAL;
}
bo->destroy = destroy;
kref_init(&bo->kref);
kref_init(&bo->list_kref);
atomic_set(&bo->cpu_writers, 0);
atomic_set(&bo->reserved, 1);
init_waitqueue_head(&bo->event_queue);
INIT_LIST_HEAD(&bo->lru);
INIT_LIST_HEAD(&bo->ddestroy);
INIT_LIST_HEAD(&bo->swap);
INIT_LIST_HEAD(&bo->io_reserve_lru);
bo->bdev = bdev;
bo->glob = bdev->glob;
bo->type = type;
bo->num_pages = num_pages;
bo->mem.size = num_pages << PAGE_SHIFT;
bo->mem.mem_type = TTM_PL_SYSTEM;
bo->mem.num_pages = bo->num_pages;
bo->mem.mm_node = NULL;
bo->mem.page_alignment = page_alignment;
bo->mem.bus.io_reserved_vm = false;
bo->mem.bus.io_reserved_count = 0;
bo->buffer_start = buffer_start & PAGE_MASK;
bo->priv_flags = 0;
bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
bo->seq_valid = false;
bo->persistent_swap_storage = persistent_swap_storage;
bo->acc_size = acc_size;
atomic_inc(&bo->glob->bo_count);
ret = ttm_bo_check_placement(bo, placement);
if (unlikely(ret != 0))
goto out_err;
/*
* For ttm_bo_type_device buffers, allocate
* address space from the device.
*/
if (bo->type == ttm_bo_type_device) {
ret = ttm_bo_setup_vm(bo);
if (ret)
goto out_err;
}
ret = ttm_bo_validate(bo, placement, interruptible, false, false);
if (ret)
goto out_err;
ttm_bo_unreserve(bo);
return 0;
out_err:
ttm_bo_unreserve(bo);
ttm_bo_unref(&bo);
return ret;
}
EXPORT_SYMBOL(ttm_bo_init);
size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
unsigned long bo_size,
unsigned struct_size)
{
unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
size_t size = 0;
size += ttm_round_pot(struct_size);
size += PAGE_ALIGN(npages * sizeof(void *));
size += ttm_round_pot(sizeof(struct ttm_tt));
return size;
}
EXPORT_SYMBOL(ttm_bo_acc_size);
size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
unsigned long bo_size,
unsigned struct_size)
{
unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
size_t size = 0;
size += ttm_round_pot(struct_size);
size += PAGE_ALIGN(npages * sizeof(void *));
size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
size += ttm_round_pot(sizeof(struct ttm_dma_tt));
return size;
}
EXPORT_SYMBOL(ttm_bo_dma_acc_size);
int ttm_bo_create(struct ttm_bo_device *bdev,
unsigned long size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
unsigned long buffer_start,
bool interruptible,
struct file *persistent_swap_storage,
struct ttm_buffer_object **p_bo)
{
struct ttm_buffer_object *bo;
struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
size_t acc_size;
int ret;
acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
if (unlikely(ret != 0))
return ret;
bo = kzalloc(sizeof(*bo), GFP_KERNEL);
if (unlikely(bo == NULL)) {
ttm_mem_global_free(mem_glob, acc_size);
return -ENOMEM;
}
ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
buffer_start, interruptible,
persistent_swap_storage, acc_size, NULL);
if (likely(ret == 0))
*p_bo = bo;
return ret;
}
EXPORT_SYMBOL(ttm_bo_create);
static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
unsigned mem_type, bool allow_errors)
{
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
struct ttm_bo_global *glob = bdev->glob;
int ret;
/*
* Can't use standard list traversal since we're unlocking.
*/
spin_lock(&glob->lru_lock);
while (!list_empty(&man->lru)) {
spin_unlock(&glob->lru_lock);
ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
if (ret) {
if (allow_errors) {
return ret;
} else {
printk(KERN_ERR TTM_PFX
"Cleanup eviction failed\n");
}
}
spin_lock(&glob->lru_lock);
}
spin_unlock(&glob->lru_lock);
return 0;
}
int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
{
struct ttm_mem_type_manager *man;
int ret = -EINVAL;
if (mem_type >= TTM_NUM_MEM_TYPES) {
printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
return ret;
}
man = &bdev->man[mem_type];
if (!man->has_type) {
printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
"memory manager type %u\n", mem_type);
return ret;
}
man->use_type = false;
man->has_type = false;
ret = 0;
if (mem_type > 0) {
ttm_bo_force_list_clean(bdev, mem_type, false);
ret = (*man->func->takedown)(man);
}
return ret;
}
EXPORT_SYMBOL(ttm_bo_clean_mm);
int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
{
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
printk(KERN_ERR TTM_PFX
"Illegal memory manager memory type %u.\n",
mem_type);
return -EINVAL;
}
if (!man->has_type) {
printk(KERN_ERR TTM_PFX
"Memory type %u has not been initialized.\n",
mem_type);
return 0;
}
return ttm_bo_force_list_clean(bdev, mem_type, true);
}
EXPORT_SYMBOL(ttm_bo_evict_mm);
int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
unsigned long p_size)
{
int ret = -EINVAL;
struct ttm_mem_type_manager *man;
BUG_ON(type >= TTM_NUM_MEM_TYPES);
man = &bdev->man[type];
BUG_ON(man->has_type);
man->io_reserve_fastpath = true;
man->use_io_reserve_lru = false;
mutex_init(&man->io_reserve_mutex);
INIT_LIST_HEAD(&man->io_reserve_lru);
ret = bdev->driver->init_mem_type(bdev, type, man);
if (ret)
return ret;
man->bdev = bdev;
ret = 0;
if (type != TTM_PL_SYSTEM) {
ret = (*man->func->init)(man, p_size);
if (ret)
return ret;
}
man->has_type = true;
man->use_type = true;
man->size = p_size;
INIT_LIST_HEAD(&man->lru);
return 0;
}
EXPORT_SYMBOL(ttm_bo_init_mm);
static void ttm_bo_global_kobj_release(struct kobject *kobj)
{
struct ttm_bo_global *glob =
container_of(kobj, struct ttm_bo_global, kobj);
ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
__free_page(glob->dummy_read_page);
kfree(glob);
}
void ttm_bo_global_release(struct drm_global_reference *ref)
{
struct ttm_bo_global *glob = ref->object;
kobject_del(&glob->kobj);
kobject_put(&glob->kobj);
}
EXPORT_SYMBOL(ttm_bo_global_release);
int ttm_bo_global_init(struct drm_global_reference *ref)
{
struct ttm_bo_global_ref *bo_ref =
container_of(ref, struct ttm_bo_global_ref, ref);
struct ttm_bo_global *glob = ref->object;
int ret;
mutex_init(&glob->device_list_mutex);
spin_lock_init(&glob->lru_lock);
glob->mem_glob = bo_ref->mem_glob;
glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
if (unlikely(glob->dummy_read_page == NULL)) {
ret = -ENOMEM;
goto out_no_drp;
}
INIT_LIST_HEAD(&glob->swap_lru);
INIT_LIST_HEAD(&glob->device_list);
ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
if (unlikely(ret != 0)) {
printk(KERN_ERR TTM_PFX
"Could not register buffer object swapout.\n");
goto out_no_shrink;
}
atomic_set(&glob->bo_count, 0);
ret = kobject_init_and_add(
&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
if (unlikely(ret != 0))
kobject_put(&glob->kobj);
return ret;
out_no_shrink:
__free_page(glob->dummy_read_page);
out_no_drp:
kfree(glob);
return ret;
}
EXPORT_SYMBOL(ttm_bo_global_init);
int ttm_bo_device_release(struct ttm_bo_device *bdev)
{
int ret = 0;
unsigned i = TTM_NUM_MEM_TYPES;
struct ttm_mem_type_manager *man;
struct ttm_bo_global *glob = bdev->glob;
while (i--) {
man = &bdev->man[i];
if (man->has_type) {
man->use_type = false;
if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
ret = -EBUSY;
printk(KERN_ERR TTM_PFX
"DRM memory manager type %d "
"is not clean.\n", i);
}
man->has_type = false;
}
}
mutex_lock(&glob->device_list_mutex);
list_del(&bdev->device_list);
mutex_unlock(&glob->device_list_mutex);
cancel_delayed_work_sync(&bdev->wq);
while (ttm_bo_delayed_delete(bdev, true))
;
spin_lock(&glob->lru_lock);
if (list_empty(&bdev->ddestroy))
TTM_DEBUG("Delayed destroy list was clean\n");
if (list_empty(&bdev->man[0].lru))
TTM_DEBUG("Swap list was clean\n");
spin_unlock(&glob->lru_lock);
BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
write_lock(&bdev->vm_lock);
drm_mm_takedown(&bdev->addr_space_mm);
write_unlock(&bdev->vm_lock);
return ret;
}
EXPORT_SYMBOL(ttm_bo_device_release);
int ttm_bo_device_init(struct ttm_bo_device *bdev,
struct ttm_bo_global *glob,
struct ttm_bo_driver *driver,
uint64_t file_page_offset,
bool need_dma32)
{
int ret = -EINVAL;
rwlock_init(&bdev->vm_lock);
bdev->driver = driver;
memset(bdev->man, 0, sizeof(bdev->man));
/*
* Initialize the system memory buffer type.
* Other types need to be driver / IOCTL initialized.
*/
ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
if (unlikely(ret != 0))
goto out_no_sys;
bdev->addr_space_rb = RB_ROOT;
ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
if (unlikely(ret != 0))
goto out_no_addr_mm;
INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
bdev->nice_mode = true;
INIT_LIST_HEAD(&bdev->ddestroy);
bdev->dev_mapping = NULL;
bdev->glob = glob;
bdev->need_dma32 = need_dma32;
bdev->val_seq = 0;
spin_lock_init(&bdev->fence_lock);
mutex_lock(&glob->device_list_mutex);
list_add_tail(&bdev->device_list, &glob->device_list);
mutex_unlock(&glob->device_list_mutex);
return 0;
out_no_addr_mm:
ttm_bo_clean_mm(bdev, 0);
out_no_sys:
return ret;
}
EXPORT_SYMBOL(ttm_bo_device_init);
/*
* buffer object vm functions.
*/
bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
if (mem->mem_type == TTM_PL_SYSTEM)
return false;
if (man->flags & TTM_MEMTYPE_FLAG_CMA)
return false;
if (mem->placement & TTM_PL_FLAG_CACHED)
return false;
}
return true;
}
void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
loff_t offset = (loff_t) bo->addr_space_offset;
loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
if (!bdev->dev_mapping)
return;
unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
ttm_mem_io_free_vm(bo);
}
void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
ttm_mem_io_lock(man, false);
ttm_bo_unmap_virtual_locked(bo);
ttm_mem_io_unlock(man);
}
EXPORT_SYMBOL(ttm_bo_unmap_virtual);
static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct rb_node **cur = &bdev->addr_space_rb.rb_node;
struct rb_node *parent = NULL;
struct ttm_buffer_object *cur_bo;
unsigned long offset = bo->vm_node->start;
unsigned long cur_offset;
while (*cur) {
parent = *cur;
cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
cur_offset = cur_bo->vm_node->start;
if (offset < cur_offset)
cur = &parent->rb_left;
else if (offset > cur_offset)
cur = &parent->rb_right;
else
BUG();
}
rb_link_node(&bo->vm_rb, parent, cur);
rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
}
/**
* ttm_bo_setup_vm:
*
* @bo: the buffer to allocate address space for
*
* Allocate address space in the drm device so that applications
* can mmap the buffer and access the contents. This only
* applies to ttm_bo_type_device objects as others are not
* placed in the drm device address space.
*/
static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
int ret;
retry_pre_get:
ret = drm_mm_pre_get(&bdev->addr_space_mm);
if (unlikely(ret != 0))
return ret;
write_lock(&bdev->vm_lock);
bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
bo->mem.num_pages, 0, 0);
if (unlikely(bo->vm_node == NULL)) {
ret = -ENOMEM;
goto out_unlock;
}
bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
bo->mem.num_pages, 0);
if (unlikely(bo->vm_node == NULL)) {
write_unlock(&bdev->vm_lock);
goto retry_pre_get;
}
ttm_bo_vm_insert_rb(bo);
write_unlock(&bdev->vm_lock);
bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
return 0;
out_unlock:
write_unlock(&bdev->vm_lock);
return ret;
}
int ttm_bo_wait(struct ttm_buffer_object *bo,
bool lazy, bool interruptible, bool no_wait)
{
struct ttm_bo_driver *driver = bo->bdev->driver;
struct ttm_bo_device *bdev = bo->bdev;
void *sync_obj;
void *sync_obj_arg;
int ret = 0;
if (likely(bo->sync_obj == NULL))
return 0;
while (bo->sync_obj) {
if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
void *tmp_obj = bo->sync_obj;
bo->sync_obj = NULL;
clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
spin_unlock(&bdev->fence_lock);
driver->sync_obj_unref(&tmp_obj);
spin_lock(&bdev->fence_lock);
continue;
}
if (no_wait)
return -EBUSY;
sync_obj = driver->sync_obj_ref(bo->sync_obj);
sync_obj_arg = bo->sync_obj_arg;
spin_unlock(&bdev->fence_lock);
ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
lazy, interruptible);
if (unlikely(ret != 0)) {
driver->sync_obj_unref(&sync_obj);
spin_lock(&bdev->fence_lock);
return ret;
}
spin_lock(&bdev->fence_lock);
if (likely(bo->sync_obj == sync_obj &&
bo->sync_obj_arg == sync_obj_arg)) {
void *tmp_obj = bo->sync_obj;
bo->sync_obj = NULL;
clear_bit(TTM_BO_PRIV_FLAG_MOVING,
&bo->priv_flags);
spin_unlock(&bdev->fence_lock);
driver->sync_obj_unref(&sync_obj);
driver->sync_obj_unref(&tmp_obj);
spin_lock(&bdev->fence_lock);
} else {
spin_unlock(&bdev->fence_lock);
driver->sync_obj_unref(&sync_obj);
spin_lock(&bdev->fence_lock);
}
}
return 0;
}
EXPORT_SYMBOL(ttm_bo_wait);
int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
{
struct ttm_bo_device *bdev = bo->bdev;
int ret = 0;
/*
* Using ttm_bo_reserve makes sure the lru lists are updated.
*/
ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
if (unlikely(ret != 0))
return ret;
spin_lock(&bdev->fence_lock);
ret = ttm_bo_wait(bo, false, true, no_wait);
spin_unlock(&bdev->fence_lock);
if (likely(ret == 0))
atomic_inc(&bo->cpu_writers);
ttm_bo_unreserve(bo);
return ret;
}
EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
{
if (atomic_dec_and_test(&bo->cpu_writers))
wake_up_all(&bo->event_queue);
}
EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
/**
* A buffer object shrink method that tries to swap out the first
* buffer object on the bo_global::swap_lru list.
*/
static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
{
struct ttm_bo_global *glob =
container_of(shrink, struct ttm_bo_global, shrink);
struct ttm_buffer_object *bo;
int ret = -EBUSY;
int put_count;
uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
spin_lock(&glob->lru_lock);
while (ret == -EBUSY) {
if (unlikely(list_empty(&glob->swap_lru))) {
spin_unlock(&glob->lru_lock);
return -EBUSY;
}
bo = list_first_entry(&glob->swap_lru,
struct ttm_buffer_object, swap);
kref_get(&bo->list_kref);
if (!list_empty(&bo->ddestroy)) {
spin_unlock(&glob->lru_lock);
(void) ttm_bo_cleanup_refs(bo, false, false, false);
kref_put(&bo->list_kref, ttm_bo_release_list);
continue;
}
/**
* Reserve buffer. Since we unlock while sleeping, we need
* to re-check that nobody removed us from the swap-list while
* we slept.
*/
ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
if (unlikely(ret == -EBUSY)) {
spin_unlock(&glob->lru_lock);
ttm_bo_wait_unreserved(bo, false);
kref_put(&bo->list_kref, ttm_bo_release_list);
spin_lock(&glob->lru_lock);
}
}
BUG_ON(ret != 0);
put_count = ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
ttm_bo_list_ref_sub(bo, put_count, true);
/**
* Wait for GPU, then move to system cached.
*/
spin_lock(&bo->bdev->fence_lock);
ret = ttm_bo_wait(bo, false, false, false);
spin_unlock(&bo->bdev->fence_lock);
if (unlikely(ret != 0))
goto out;
if ((bo->mem.placement & swap_placement) != swap_placement) {
struct ttm_mem_reg evict_mem;
evict_mem = bo->mem;
evict_mem.mm_node = NULL;
evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
evict_mem.mem_type = TTM_PL_SYSTEM;
ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
false, false, false);
if (unlikely(ret != 0))
goto out;
}
ttm_bo_unmap_virtual(bo);
/**
* Swap out. Buffer will be swapped in again as soon as
* anyone tries to access a ttm page.
*/
if (bo->bdev->driver->swap_notify)
bo->bdev->driver->swap_notify(bo);
ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
out:
/**
*
* Unreserve without putting on LRU to avoid swapping out an
* already swapped buffer.
*/
atomic_set(&bo->reserved, 0);
wake_up_all(&bo->event_queue);
kref_put(&bo->list_kref, ttm_bo_release_list);
return ret;
}
void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
{
while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
;
}
EXPORT_SYMBOL(ttm_bo_swapout_all);