linux/arch/x86/kernel/machine_kexec_64.c
Christoph Lameter b263295dbf x86: 64-bit, make sparsemem vmemmap the only memory model
Use sparsemem as the only memory model for UP, SMP and NUMA.  Measurements
indicate that DISCONTIGMEM has a higher overhead than sparsemem.  And
FLATMEMs benefits are minimal.  So I think its best to simply standardize
on sparsemem.

Results of page allocator tests (test can be had via git from slab git
tree branch tests)

Measurements in cycle counts. 1000 allocations were performed and then the
average cycle count was calculated.

Order	FlatMem	Discontig	SparseMem
0	  639	  665		  641
1	  567	  647		  593
2	  679	  774		  692
3	  763	  967		  781
4	  961	 1501		  962
5	 1356	 2344		 1392
6	 2224	 3982		 2336
7	 4869	 7225		 5074
8	12500	14048		12732
9	27926	28223		28165
10	58578	58714		58682

(Note that FlatMem is an SMP config and the rest NUMA configurations)

Memory use:

SMP Sparsemem
-------------

Kernel size:

   text    data     bss     dec     hex filename
3849268  397739 1264856 5511863  541ab7 vmlinux

             total       used       free     shared    buffers     cached
Mem:       8242252      41164    8201088          0        352      11512
-/+ buffers/cache:      29300    8212952
Swap:      9775512          0    9775512

SMP Flatmem
-----------

Kernel size:

   text    data     bss     dec     hex filename
3844612  397739 1264536 5506887  540747 vmlinux

So 4.5k growth in text size vs. FLATMEM.

             total       used       free     shared    buffers     cached
Mem:       8244052      40544    8203508          0        352      11484
-/+ buffers/cache:      28708    8215344

2k growth in overall memory use after boot.

NUMA discontig:

   text    data     bss     dec     hex filename
3888124  470659 1276504 5635287  55fcd7 vmlinux

             total       used       free     shared    buffers     cached
Mem:       8256256      56908    8199348          0        352      11496
-/+ buffers/cache:      45060    8211196
Swap:      9775512          0    9775512

NUMA sparse:

   text    data     bss     dec     hex filename
3896428  470659 1276824 5643911  561e87 vmlinux

8k text growth. Given that we fully inline virt_to_page and friends now
that is rather good.

             total       used       free     shared    buffers     cached
Mem:       8264720      57240    8207480          0        352      11516
-/+ buffers/cache:      45372    8219348
Swap:      9775512          0    9775512

The total available memory is increased by 8k.

This patch makes sparsemem the default and removes discontig and
flatmem support from x86.

[ akpm@linux-foundation.org: allnoconfig build fix ]

Acked-by: Andi Kleen <ak@suse.de>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 13:30:47 +01:00

238 lines
5.9 KiB
C

/*
* handle transition of Linux booting another kernel
* Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#include <linux/mm.h>
#include <linux/kexec.h>
#include <linux/string.h>
#include <linux/reboot.h>
#include <linux/numa.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/io.h>
#define PAGE_ALIGNED __attribute__ ((__aligned__(PAGE_SIZE)))
static u64 kexec_pgd[512] PAGE_ALIGNED;
static u64 kexec_pud0[512] PAGE_ALIGNED;
static u64 kexec_pmd0[512] PAGE_ALIGNED;
static u64 kexec_pte0[512] PAGE_ALIGNED;
static u64 kexec_pud1[512] PAGE_ALIGNED;
static u64 kexec_pmd1[512] PAGE_ALIGNED;
static u64 kexec_pte1[512] PAGE_ALIGNED;
static void init_level2_page(pmd_t *level2p, unsigned long addr)
{
unsigned long end_addr;
addr &= PAGE_MASK;
end_addr = addr + PUD_SIZE;
while (addr < end_addr) {
set_pmd(level2p++, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
addr += PMD_SIZE;
}
}
static int init_level3_page(struct kimage *image, pud_t *level3p,
unsigned long addr, unsigned long last_addr)
{
unsigned long end_addr;
int result;
result = 0;
addr &= PAGE_MASK;
end_addr = addr + PGDIR_SIZE;
while ((addr < last_addr) && (addr < end_addr)) {
struct page *page;
pmd_t *level2p;
page = kimage_alloc_control_pages(image, 0);
if (!page) {
result = -ENOMEM;
goto out;
}
level2p = (pmd_t *)page_address(page);
init_level2_page(level2p, addr);
set_pud(level3p++, __pud(__pa(level2p) | _KERNPG_TABLE));
addr += PUD_SIZE;
}
/* clear the unused entries */
while (addr < end_addr) {
pud_clear(level3p++);
addr += PUD_SIZE;
}
out:
return result;
}
static int init_level4_page(struct kimage *image, pgd_t *level4p,
unsigned long addr, unsigned long last_addr)
{
unsigned long end_addr;
int result;
result = 0;
addr &= PAGE_MASK;
end_addr = addr + (PTRS_PER_PGD * PGDIR_SIZE);
while ((addr < last_addr) && (addr < end_addr)) {
struct page *page;
pud_t *level3p;
page = kimage_alloc_control_pages(image, 0);
if (!page) {
result = -ENOMEM;
goto out;
}
level3p = (pud_t *)page_address(page);
result = init_level3_page(image, level3p, addr, last_addr);
if (result) {
goto out;
}
set_pgd(level4p++, __pgd(__pa(level3p) | _KERNPG_TABLE));
addr += PGDIR_SIZE;
}
/* clear the unused entries */
while (addr < end_addr) {
pgd_clear(level4p++);
addr += PGDIR_SIZE;
}
out:
return result;
}
static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
{
pgd_t *level4p;
level4p = (pgd_t *)__va(start_pgtable);
return init_level4_page(image, level4p, 0, end_pfn << PAGE_SHIFT);
}
static void set_idt(void *newidt, u16 limit)
{
struct desc_ptr curidt;
/* x86-64 supports unaliged loads & stores */
curidt.size = limit;
curidt.address = (unsigned long)newidt;
__asm__ __volatile__ (
"lidtq %0\n"
: : "m" (curidt)
);
};
static void set_gdt(void *newgdt, u16 limit)
{
struct desc_ptr curgdt;
/* x86-64 supports unaligned loads & stores */
curgdt.size = limit;
curgdt.address = (unsigned long)newgdt;
__asm__ __volatile__ (
"lgdtq %0\n"
: : "m" (curgdt)
);
};
static void load_segments(void)
{
__asm__ __volatile__ (
"\tmovl %0,%%ds\n"
"\tmovl %0,%%es\n"
"\tmovl %0,%%ss\n"
"\tmovl %0,%%fs\n"
"\tmovl %0,%%gs\n"
: : "a" (__KERNEL_DS) : "memory"
);
}
int machine_kexec_prepare(struct kimage *image)
{
unsigned long start_pgtable;
int result;
/* Calculate the offsets */
start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
/* Setup the identity mapped 64bit page table */
result = init_pgtable(image, start_pgtable);
if (result)
return result;
return 0;
}
void machine_kexec_cleanup(struct kimage *image)
{
return;
}
/*
* Do not allocate memory (or fail in any way) in machine_kexec().
* We are past the point of no return, committed to rebooting now.
*/
NORET_TYPE void machine_kexec(struct kimage *image)
{
unsigned long page_list[PAGES_NR];
void *control_page;
/* Interrupts aren't acceptable while we reboot */
local_irq_disable();
control_page = page_address(image->control_code_page) + PAGE_SIZE;
memcpy(control_page, relocate_kernel, PAGE_SIZE);
page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
page_list[VA_CONTROL_PAGE] = (unsigned long)relocate_kernel;
page_list[PA_PGD] = virt_to_phys(&kexec_pgd);
page_list[VA_PGD] = (unsigned long)kexec_pgd;
page_list[PA_PUD_0] = virt_to_phys(&kexec_pud0);
page_list[VA_PUD_0] = (unsigned long)kexec_pud0;
page_list[PA_PMD_0] = virt_to_phys(&kexec_pmd0);
page_list[VA_PMD_0] = (unsigned long)kexec_pmd0;
page_list[PA_PTE_0] = virt_to_phys(&kexec_pte0);
page_list[VA_PTE_0] = (unsigned long)kexec_pte0;
page_list[PA_PUD_1] = virt_to_phys(&kexec_pud1);
page_list[VA_PUD_1] = (unsigned long)kexec_pud1;
page_list[PA_PMD_1] = virt_to_phys(&kexec_pmd1);
page_list[VA_PMD_1] = (unsigned long)kexec_pmd1;
page_list[PA_PTE_1] = virt_to_phys(&kexec_pte1);
page_list[VA_PTE_1] = (unsigned long)kexec_pte1;
page_list[PA_TABLE_PAGE] =
(unsigned long)__pa(page_address(image->control_code_page));
/* The segment registers are funny things, they have both a
* visible and an invisible part. Whenever the visible part is
* set to a specific selector, the invisible part is loaded
* with from a table in memory. At no other time is the
* descriptor table in memory accessed.
*
* I take advantage of this here by force loading the
* segments, before I zap the gdt with an invalid value.
*/
load_segments();
/* The gdt & idt are now invalid.
* If you want to load them you must set up your own idt & gdt.
*/
set_gdt(phys_to_virt(0),0);
set_idt(phys_to_virt(0),0);
/* now call it */
relocate_kernel((unsigned long)image->head, (unsigned long)page_list,
image->start);
}
void arch_crash_save_vmcoreinfo(void)
{
VMCOREINFO_SYMBOL(init_level4_pgt);
}