linux/drivers/scsi/aacraid/aachba.c
Mark Haverkamp 404d9a900b [SCSI] aacraid: adjustable timeouts
Received From Mark Salyzyn

Add the ability to adjust for unusual corner case failures. Both of
these additional module parameters deal with embedded, non-intel or
complicated system scenarios.

Aif_timeout can be increased past the default 2 minute timeout to drop
application registrations when a system has an unusually high event load
resulting from continuing management requests, or simultaneous builds,
or sluggish user space as a result of system load.

Startup_timeout can be increased past the default 3 minute timeout to
drop an adapter initialization for systems that have a very large number
of targets, or slow to spin-up targets, or a complicated set of array
configurations that extend the time for the firmware to declare that it
is operational. This timeout would only have an affect on non-intel
based systems, as the (more patient) BIOS would generally be where the
startup delay would be dealt with.

Signed-off-by: Mark Haverkamp <markh@osdl.org>
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2006-05-20 09:22:25 -05:00

2427 lines
71 KiB
C

/*
* Adaptec AAC series RAID controller driver
* (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
*
* based on the old aacraid driver that is..
* Adaptec aacraid device driver for Linux.
*
* Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/completion.h>
#include <linux/blkdev.h>
#include <linux/dma-mapping.h>
#include <asm/semaphore.h>
#include <asm/uaccess.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include "aacraid.h"
/* values for inqd_pdt: Peripheral device type in plain English */
#define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
#define INQD_PDT_PROC 0x03 /* Processor device */
#define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
#define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
#define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
#define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
#define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
#define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
/*
* Sense codes
*/
#define SENCODE_NO_SENSE 0x00
#define SENCODE_END_OF_DATA 0x00
#define SENCODE_BECOMING_READY 0x04
#define SENCODE_INIT_CMD_REQUIRED 0x04
#define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
#define SENCODE_INVALID_COMMAND 0x20
#define SENCODE_LBA_OUT_OF_RANGE 0x21
#define SENCODE_INVALID_CDB_FIELD 0x24
#define SENCODE_LUN_NOT_SUPPORTED 0x25
#define SENCODE_INVALID_PARAM_FIELD 0x26
#define SENCODE_PARAM_NOT_SUPPORTED 0x26
#define SENCODE_PARAM_VALUE_INVALID 0x26
#define SENCODE_RESET_OCCURRED 0x29
#define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
#define SENCODE_INQUIRY_DATA_CHANGED 0x3F
#define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
#define SENCODE_DIAGNOSTIC_FAILURE 0x40
#define SENCODE_INTERNAL_TARGET_FAILURE 0x44
#define SENCODE_INVALID_MESSAGE_ERROR 0x49
#define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
#define SENCODE_OVERLAPPED_COMMAND 0x4E
/*
* Additional sense codes
*/
#define ASENCODE_NO_SENSE 0x00
#define ASENCODE_END_OF_DATA 0x05
#define ASENCODE_BECOMING_READY 0x01
#define ASENCODE_INIT_CMD_REQUIRED 0x02
#define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
#define ASENCODE_INVALID_COMMAND 0x00
#define ASENCODE_LBA_OUT_OF_RANGE 0x00
#define ASENCODE_INVALID_CDB_FIELD 0x00
#define ASENCODE_LUN_NOT_SUPPORTED 0x00
#define ASENCODE_INVALID_PARAM_FIELD 0x00
#define ASENCODE_PARAM_NOT_SUPPORTED 0x01
#define ASENCODE_PARAM_VALUE_INVALID 0x02
#define ASENCODE_RESET_OCCURRED 0x00
#define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
#define ASENCODE_INQUIRY_DATA_CHANGED 0x03
#define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
#define ASENCODE_DIAGNOSTIC_FAILURE 0x80
#define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
#define ASENCODE_INVALID_MESSAGE_ERROR 0x00
#define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
#define ASENCODE_OVERLAPPED_COMMAND 0x00
#define BYTE0(x) (unsigned char)(x)
#define BYTE1(x) (unsigned char)((x) >> 8)
#define BYTE2(x) (unsigned char)((x) >> 16)
#define BYTE3(x) (unsigned char)((x) >> 24)
/*------------------------------------------------------------------------------
* S T R U C T S / T Y P E D E F S
*----------------------------------------------------------------------------*/
/* SCSI inquiry data */
struct inquiry_data {
u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
u8 inqd_dtq; /* RMB | Device Type Qualifier */
u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
u8 inqd_len; /* Additional length (n-4) */
u8 inqd_pad1[2];/* Reserved - must be zero */
u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
u8 inqd_vid[8]; /* Vendor ID */
u8 inqd_pid[16];/* Product ID */
u8 inqd_prl[4]; /* Product Revision Level */
};
/*
* M O D U L E G L O B A L S
*/
static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
#ifdef AAC_DETAILED_STATUS_INFO
static char *aac_get_status_string(u32 status);
#endif
/*
* Non dasd selection is handled entirely in aachba now
*/
static int nondasd = -1;
static int dacmode = -1;
static int commit = -1;
int startup_timeout = 180;
int aif_timeout = 120;
module_param(nondasd, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on");
module_param(dacmode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on");
module_param(commit, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on");
module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for adapter to have it's kernel up and\nrunning. This is typically adjusted for large systems that do not have a BIOS.");
module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for applications to pick up AIFs before\nderegistering them. This is typically adjusted for heavily burdened systems.");
int numacb = -1;
module_param(numacb, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid values are 512 and down. Default is to use suggestion from Firmware.");
int acbsize = -1;
module_param(acbsize, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512, 2048, 4096 and 8192. Default is to use suggestion from Firmware.");
/**
* aac_get_config_status - check the adapter configuration
* @common: adapter to query
*
* Query config status, and commit the configuration if needed.
*/
int aac_get_config_status(struct aac_dev *dev)
{
int status = 0;
struct fib * fibptr;
if (!(fibptr = aac_fib_alloc(dev)))
return -ENOMEM;
aac_fib_init(fibptr);
{
struct aac_get_config_status *dinfo;
dinfo = (struct aac_get_config_status *) fib_data(fibptr);
dinfo->command = cpu_to_le32(VM_ContainerConfig);
dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
}
status = aac_fib_send(ContainerCommand,
fibptr,
sizeof (struct aac_get_config_status),
FsaNormal,
1, 1,
NULL, NULL);
if (status < 0 ) {
printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
} else {
struct aac_get_config_status_resp *reply
= (struct aac_get_config_status_resp *) fib_data(fibptr);
dprintk((KERN_WARNING
"aac_get_config_status: response=%d status=%d action=%d\n",
le32_to_cpu(reply->response),
le32_to_cpu(reply->status),
le32_to_cpu(reply->data.action)));
if ((le32_to_cpu(reply->response) != ST_OK) ||
(le32_to_cpu(reply->status) != CT_OK) ||
(le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
status = -EINVAL;
}
}
aac_fib_complete(fibptr);
/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
if (status >= 0) {
if (commit == 1) {
struct aac_commit_config * dinfo;
aac_fib_init(fibptr);
dinfo = (struct aac_commit_config *) fib_data(fibptr);
dinfo->command = cpu_to_le32(VM_ContainerConfig);
dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
status = aac_fib_send(ContainerCommand,
fibptr,
sizeof (struct aac_commit_config),
FsaNormal,
1, 1,
NULL, NULL);
aac_fib_complete(fibptr);
} else if (commit == 0) {
printk(KERN_WARNING
"aac_get_config_status: Foreign device configurations are being ignored\n");
}
}
aac_fib_free(fibptr);
return status;
}
/**
* aac_get_containers - list containers
* @common: adapter to probe
*
* Make a list of all containers on this controller
*/
int aac_get_containers(struct aac_dev *dev)
{
struct fsa_dev_info *fsa_dev_ptr;
u32 index;
int status = 0;
struct fib * fibptr;
unsigned instance;
struct aac_get_container_count *dinfo;
struct aac_get_container_count_resp *dresp;
int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
instance = dev->scsi_host_ptr->unique_id;
if (!(fibptr = aac_fib_alloc(dev)))
return -ENOMEM;
aac_fib_init(fibptr);
dinfo = (struct aac_get_container_count *) fib_data(fibptr);
dinfo->command = cpu_to_le32(VM_ContainerConfig);
dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
status = aac_fib_send(ContainerCommand,
fibptr,
sizeof (struct aac_get_container_count),
FsaNormal,
1, 1,
NULL, NULL);
if (status >= 0) {
dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
aac_fib_complete(fibptr);
}
if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
fsa_dev_ptr = (struct fsa_dev_info *) kmalloc(
sizeof(*fsa_dev_ptr) * maximum_num_containers, GFP_KERNEL);
if (!fsa_dev_ptr) {
aac_fib_free(fibptr);
return -ENOMEM;
}
memset(fsa_dev_ptr, 0, sizeof(*fsa_dev_ptr) * maximum_num_containers);
dev->fsa_dev = fsa_dev_ptr;
dev->maximum_num_containers = maximum_num_containers;
for (index = 0; index < dev->maximum_num_containers; index++) {
struct aac_query_mount *dinfo;
struct aac_mount *dresp;
fsa_dev_ptr[index].devname[0] = '\0';
aac_fib_init(fibptr);
dinfo = (struct aac_query_mount *) fib_data(fibptr);
dinfo->command = cpu_to_le32(VM_NameServe);
dinfo->count = cpu_to_le32(index);
dinfo->type = cpu_to_le32(FT_FILESYS);
status = aac_fib_send(ContainerCommand,
fibptr,
sizeof (struct aac_query_mount),
FsaNormal,
1, 1,
NULL, NULL);
if (status < 0 ) {
printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
break;
}
dresp = (struct aac_mount *)fib_data(fibptr);
if ((le32_to_cpu(dresp->status) == ST_OK) &&
(le32_to_cpu(dresp->mnt[0].vol) == CT_NONE)) {
dinfo->command = cpu_to_le32(VM_NameServe64);
dinfo->count = cpu_to_le32(index);
dinfo->type = cpu_to_le32(FT_FILESYS);
if (aac_fib_send(ContainerCommand,
fibptr,
sizeof(struct aac_query_mount),
FsaNormal,
1, 1,
NULL, NULL) < 0)
continue;
} else
dresp->mnt[0].capacityhigh = 0;
dprintk ((KERN_DEBUG
"VM_NameServe cid=%d status=%d vol=%d state=%d cap=%llu\n",
(int)index, (int)le32_to_cpu(dresp->status),
(int)le32_to_cpu(dresp->mnt[0].vol),
(int)le32_to_cpu(dresp->mnt[0].state),
((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
(((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32)));
if ((le32_to_cpu(dresp->status) == ST_OK) &&
(le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
(le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
fsa_dev_ptr[index].valid = 1;
fsa_dev_ptr[index].type = le32_to_cpu(dresp->mnt[0].vol);
fsa_dev_ptr[index].size
= ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
(((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
fsa_dev_ptr[index].ro = 1;
}
aac_fib_complete(fibptr);
/*
* If there are no more containers, then stop asking.
*/
if ((index + 1) >= le32_to_cpu(dresp->count)){
break;
}
}
aac_fib_free(fibptr);
return status;
}
static void aac_internal_transfer(struct scsi_cmnd *scsicmd, void *data, unsigned int offset, unsigned int len)
{
void *buf;
unsigned int transfer_len;
struct scatterlist *sg = scsicmd->request_buffer;
if (scsicmd->use_sg) {
buf = kmap_atomic(sg->page, KM_IRQ0) + sg->offset;
transfer_len = min(sg->length, len + offset);
} else {
buf = scsicmd->request_buffer;
transfer_len = min(scsicmd->request_bufflen, len + offset);
}
memcpy(buf + offset, data, transfer_len - offset);
if (scsicmd->use_sg)
kunmap_atomic(buf - sg->offset, KM_IRQ0);
}
static void get_container_name_callback(void *context, struct fib * fibptr)
{
struct aac_get_name_resp * get_name_reply;
struct scsi_cmnd * scsicmd;
scsicmd = (struct scsi_cmnd *) context;
scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
if (fibptr == NULL)
BUG();
get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
/* Failure is irrelevant, using default value instead */
if ((le32_to_cpu(get_name_reply->status) == CT_OK)
&& (get_name_reply->data[0] != '\0')) {
char *sp = get_name_reply->data;
sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
while (*sp == ' ')
++sp;
if (*sp) {
char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
int count = sizeof(d);
char *dp = d;
do {
*dp++ = (*sp) ? *sp++ : ' ';
} while (--count > 0);
aac_internal_transfer(scsicmd, d,
offsetof(struct inquiry_data, inqd_pid), sizeof(d));
}
}
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
aac_fib_complete(fibptr);
aac_fib_free(fibptr);
scsicmd->scsi_done(scsicmd);
}
/**
* aac_get_container_name - get container name, none blocking.
*/
static int aac_get_container_name(struct scsi_cmnd * scsicmd, int cid)
{
int status;
struct aac_get_name *dinfo;
struct fib * cmd_fibcontext;
struct aac_dev * dev;
dev = (struct aac_dev *)scsicmd->device->host->hostdata;
if (!(cmd_fibcontext = aac_fib_alloc(dev)))
return -ENOMEM;
aac_fib_init(cmd_fibcontext);
dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
dinfo->command = cpu_to_le32(VM_ContainerConfig);
dinfo->type = cpu_to_le32(CT_READ_NAME);
dinfo->cid = cpu_to_le32(cid);
dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
status = aac_fib_send(ContainerCommand,
cmd_fibcontext,
sizeof (struct aac_get_name),
FsaNormal,
0, 1,
(fib_callback) get_container_name_callback,
(void *) scsicmd);
/*
* Check that the command queued to the controller
*/
if (status == -EINPROGRESS) {
scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
return 0;
}
printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
aac_fib_complete(cmd_fibcontext);
aac_fib_free(cmd_fibcontext);
return -1;
}
/**
* aac_probe_container - query a logical volume
* @dev: device to query
* @cid: container identifier
*
* Queries the controller about the given volume. The volume information
* is updated in the struct fsa_dev_info structure rather than returned.
*/
int aac_probe_container(struct aac_dev *dev, int cid)
{
struct fsa_dev_info *fsa_dev_ptr;
int status;
struct aac_query_mount *dinfo;
struct aac_mount *dresp;
struct fib * fibptr;
unsigned instance;
fsa_dev_ptr = dev->fsa_dev;
instance = dev->scsi_host_ptr->unique_id;
if (!(fibptr = aac_fib_alloc(dev)))
return -ENOMEM;
aac_fib_init(fibptr);
dinfo = (struct aac_query_mount *)fib_data(fibptr);
dinfo->command = cpu_to_le32(VM_NameServe);
dinfo->count = cpu_to_le32(cid);
dinfo->type = cpu_to_le32(FT_FILESYS);
status = aac_fib_send(ContainerCommand,
fibptr,
sizeof(struct aac_query_mount),
FsaNormal,
1, 1,
NULL, NULL);
if (status < 0) {
printk(KERN_WARNING "aacraid: aac_probe_container query failed.\n");
goto error;
}
dresp = (struct aac_mount *) fib_data(fibptr);
if ((le32_to_cpu(dresp->status) == ST_OK) &&
(le32_to_cpu(dresp->mnt[0].vol) == CT_NONE)) {
dinfo->command = cpu_to_le32(VM_NameServe64);
dinfo->count = cpu_to_le32(cid);
dinfo->type = cpu_to_le32(FT_FILESYS);
if (aac_fib_send(ContainerCommand,
fibptr,
sizeof(struct aac_query_mount),
FsaNormal,
1, 1,
NULL, NULL) < 0)
goto error;
} else
dresp->mnt[0].capacityhigh = 0;
if ((le32_to_cpu(dresp->status) == ST_OK) &&
(le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
(le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
fsa_dev_ptr[cid].valid = 1;
fsa_dev_ptr[cid].type = le32_to_cpu(dresp->mnt[0].vol);
fsa_dev_ptr[cid].size
= ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
(((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
fsa_dev_ptr[cid].ro = 1;
}
error:
aac_fib_complete(fibptr);
aac_fib_free(fibptr);
return status;
}
/* Local Structure to set SCSI inquiry data strings */
struct scsi_inq {
char vid[8]; /* Vendor ID */
char pid[16]; /* Product ID */
char prl[4]; /* Product Revision Level */
};
/**
* InqStrCopy - string merge
* @a: string to copy from
* @b: string to copy to
*
* Copy a String from one location to another
* without copying \0
*/
static void inqstrcpy(char *a, char *b)
{
while(*a != (char)0)
*b++ = *a++;
}
static char *container_types[] = {
"None",
"Volume",
"Mirror",
"Stripe",
"RAID5",
"SSRW",
"SSRO",
"Morph",
"Legacy",
"RAID4",
"RAID10",
"RAID00",
"V-MIRRORS",
"PSEUDO R4",
"RAID50",
"RAID5D",
"RAID5D0",
"RAID1E",
"RAID6",
"RAID60",
"Unknown"
};
/* Function: setinqstr
*
* Arguments: [1] pointer to void [1] int
*
* Purpose: Sets SCSI inquiry data strings for vendor, product
* and revision level. Allows strings to be set in platform dependant
* files instead of in OS dependant driver source.
*/
static void setinqstr(struct aac_dev *dev, void *data, int tindex)
{
struct scsi_inq *str;
str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
memset(str, ' ', sizeof(*str));
if (dev->supplement_adapter_info.AdapterTypeText[0]) {
char * cp = dev->supplement_adapter_info.AdapterTypeText;
int c = sizeof(str->vid);
while (*cp && *cp != ' ' && --c)
++cp;
c = *cp;
*cp = '\0';
inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
str->vid);
*cp = c;
while (*cp && *cp != ' ')
++cp;
while (*cp == ' ')
++cp;
/* last six chars reserved for vol type */
c = 0;
if (strlen(cp) > sizeof(str->pid)) {
c = cp[sizeof(str->pid)];
cp[sizeof(str->pid)] = '\0';
}
inqstrcpy (cp, str->pid);
if (c)
cp[sizeof(str->pid)] = c;
} else {
struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
inqstrcpy (mp->vname, str->vid);
/* last six chars reserved for vol type */
inqstrcpy (mp->model, str->pid);
}
if (tindex < (sizeof(container_types)/sizeof(char *))){
char *findit = str->pid;
for ( ; *findit != ' '; findit++); /* walk till we find a space */
/* RAID is superfluous in the context of a RAID device */
if (memcmp(findit-4, "RAID", 4) == 0)
*(findit -= 4) = ' ';
if (((findit - str->pid) + strlen(container_types[tindex]))
< (sizeof(str->pid) + sizeof(str->prl)))
inqstrcpy (container_types[tindex], findit + 1);
}
inqstrcpy ("V1.0", str->prl);
}
static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code,
u8 a_sense_code, u8 incorrect_length,
u8 bit_pointer, u16 field_pointer,
u32 residue)
{
sense_buf[0] = 0xF0; /* Sense data valid, err code 70h (current error) */
sense_buf[1] = 0; /* Segment number, always zero */
if (incorrect_length) {
sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */
sense_buf[3] = BYTE3(residue);
sense_buf[4] = BYTE2(residue);
sense_buf[5] = BYTE1(residue);
sense_buf[6] = BYTE0(residue);
} else
sense_buf[2] = sense_key; /* Sense key */
if (sense_key == ILLEGAL_REQUEST)
sense_buf[7] = 10; /* Additional sense length */
else
sense_buf[7] = 6; /* Additional sense length */
sense_buf[12] = sense_code; /* Additional sense code */
sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
if (sense_key == ILLEGAL_REQUEST) {
sense_buf[15] = 0;
if (sense_code == SENCODE_INVALID_PARAM_FIELD)
sense_buf[15] = 0x80;/* Std sense key specific field */
/* Illegal parameter is in the parameter block */
if (sense_code == SENCODE_INVALID_CDB_FIELD)
sense_buf[15] = 0xc0;/* Std sense key specific field */
/* Illegal parameter is in the CDB block */
sense_buf[15] |= bit_pointer;
sense_buf[16] = field_pointer >> 8; /* MSB */
sense_buf[17] = field_pointer; /* LSB */
}
}
int aac_get_adapter_info(struct aac_dev* dev)
{
struct fib* fibptr;
int rcode;
u32 tmp;
struct aac_adapter_info *info;
struct aac_bus_info *command;
struct aac_bus_info_response *bus_info;
if (!(fibptr = aac_fib_alloc(dev)))
return -ENOMEM;
aac_fib_init(fibptr);
info = (struct aac_adapter_info *) fib_data(fibptr);
memset(info,0,sizeof(*info));
rcode = aac_fib_send(RequestAdapterInfo,
fibptr,
sizeof(*info),
FsaNormal,
-1, 1, /* First `interrupt' command uses special wait */
NULL,
NULL);
if (rcode < 0) {
aac_fib_complete(fibptr);
aac_fib_free(fibptr);
return rcode;
}
memcpy(&dev->adapter_info, info, sizeof(*info));
if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
struct aac_supplement_adapter_info * info;
aac_fib_init(fibptr);
info = (struct aac_supplement_adapter_info *) fib_data(fibptr);
memset(info,0,sizeof(*info));
rcode = aac_fib_send(RequestSupplementAdapterInfo,
fibptr,
sizeof(*info),
FsaNormal,
1, 1,
NULL,
NULL);
if (rcode >= 0)
memcpy(&dev->supplement_adapter_info, info, sizeof(*info));
}
/*
* GetBusInfo
*/
aac_fib_init(fibptr);
bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
memset(bus_info, 0, sizeof(*bus_info));
command = (struct aac_bus_info *)bus_info;
command->Command = cpu_to_le32(VM_Ioctl);
command->ObjType = cpu_to_le32(FT_DRIVE);
command->MethodId = cpu_to_le32(1);
command->CtlCmd = cpu_to_le32(GetBusInfo);
rcode = aac_fib_send(ContainerCommand,
fibptr,
sizeof (*bus_info),
FsaNormal,
1, 1,
NULL, NULL);
if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
}
tmp = le32_to_cpu(dev->adapter_info.kernelrev);
printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
dev->name,
dev->id,
tmp>>24,
(tmp>>16)&0xff,
tmp&0xff,
le32_to_cpu(dev->adapter_info.kernelbuild),
(int)sizeof(dev->supplement_adapter_info.BuildDate),
dev->supplement_adapter_info.BuildDate);
tmp = le32_to_cpu(dev->adapter_info.monitorrev);
printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
dev->name, dev->id,
tmp>>24,(tmp>>16)&0xff,tmp&0xff,
le32_to_cpu(dev->adapter_info.monitorbuild));
tmp = le32_to_cpu(dev->adapter_info.biosrev);
printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
dev->name, dev->id,
tmp>>24,(tmp>>16)&0xff,tmp&0xff,
le32_to_cpu(dev->adapter_info.biosbuild));
if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
printk(KERN_INFO "%s%d: serial %x\n",
dev->name, dev->id,
le32_to_cpu(dev->adapter_info.serial[0]));
dev->nondasd_support = 0;
dev->raid_scsi_mode = 0;
if(dev->adapter_info.options & AAC_OPT_NONDASD){
dev->nondasd_support = 1;
}
/*
* If the firmware supports ROMB RAID/SCSI mode and we are currently
* in RAID/SCSI mode, set the flag. For now if in this mode we will
* force nondasd support on. If we decide to allow the non-dasd flag
* additional changes changes will have to be made to support
* RAID/SCSI. the function aac_scsi_cmd in this module will have to be
* changed to support the new dev->raid_scsi_mode flag instead of
* leaching off of the dev->nondasd_support flag. Also in linit.c the
* function aac_detect will have to be modified where it sets up the
* max number of channels based on the aac->nondasd_support flag only.
*/
if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
(dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
dev->nondasd_support = 1;
dev->raid_scsi_mode = 1;
}
if (dev->raid_scsi_mode != 0)
printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
dev->name, dev->id);
if(nondasd != -1) {
dev->nondasd_support = (nondasd!=0);
}
if(dev->nondasd_support != 0){
printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
}
dev->dac_support = 0;
if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id);
dev->dac_support = 1;
}
if(dacmode != -1) {
dev->dac_support = (dacmode!=0);
}
if(dev->dac_support != 0) {
if (!pci_set_dma_mask(dev->pdev, DMA_64BIT_MASK) &&
!pci_set_consistent_dma_mask(dev->pdev, DMA_64BIT_MASK)) {
printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
dev->name, dev->id);
} else if (!pci_set_dma_mask(dev->pdev, DMA_32BIT_MASK) &&
!pci_set_consistent_dma_mask(dev->pdev, DMA_32BIT_MASK)) {
printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
dev->name, dev->id);
dev->dac_support = 0;
} else {
printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
dev->name, dev->id);
rcode = -ENOMEM;
}
}
/*
* 57 scatter gather elements
*/
if (!(dev->raw_io_interface)) {
dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
sizeof(struct aac_fibhdr) -
sizeof(struct aac_write) + sizeof(struct sgentry)) /
sizeof(struct sgentry);
if (dev->dac_support) {
/*
* 38 scatter gather elements
*/
dev->scsi_host_ptr->sg_tablesize =
(dev->max_fib_size -
sizeof(struct aac_fibhdr) -
sizeof(struct aac_write64) +
sizeof(struct sgentry64)) /
sizeof(struct sgentry64);
}
dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
/*
* Worst case size that could cause sg overflow when
* we break up SG elements that are larger than 64KB.
* Would be nice if we could tell the SCSI layer what
* the maximum SG element size can be. Worst case is
* (sg_tablesize-1) 4KB elements with one 64KB
* element.
* 32bit -> 468 or 238KB 64bit -> 424 or 212KB
*/
dev->scsi_host_ptr->max_sectors =
(dev->scsi_host_ptr->sg_tablesize * 8) + 112;
}
}
aac_fib_complete(fibptr);
aac_fib_free(fibptr);
return rcode;
}
static void io_callback(void *context, struct fib * fibptr)
{
struct aac_dev *dev;
struct aac_read_reply *readreply;
struct scsi_cmnd *scsicmd;
u32 cid;
scsicmd = (struct scsi_cmnd *) context;
scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
dev = (struct aac_dev *)scsicmd->device->host->hostdata;
cid = scmd_id(scsicmd);
if (nblank(dprintk(x))) {
u64 lba;
switch (scsicmd->cmnd[0]) {
case WRITE_6:
case READ_6:
lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
break;
case WRITE_16:
case READ_16:
lba = ((u64)scsicmd->cmnd[2] << 56) |
((u64)scsicmd->cmnd[3] << 48) |
((u64)scsicmd->cmnd[4] << 40) |
((u64)scsicmd->cmnd[5] << 32) |
((u64)scsicmd->cmnd[6] << 24) |
(scsicmd->cmnd[7] << 16) |
(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
break;
case WRITE_12:
case READ_12:
lba = ((u64)scsicmd->cmnd[2] << 24) |
(scsicmd->cmnd[3] << 16) |
(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
break;
default:
lba = ((u64)scsicmd->cmnd[2] << 24) |
(scsicmd->cmnd[3] << 16) |
(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
break;
}
printk(KERN_DEBUG
"io_callback[cpu %d]: lba = %llu, t = %ld.\n",
smp_processor_id(), (unsigned long long)lba, jiffies);
}
if (fibptr == NULL)
BUG();
if(scsicmd->use_sg)
pci_unmap_sg(dev->pdev,
(struct scatterlist *)scsicmd->buffer,
scsicmd->use_sg,
scsicmd->sc_data_direction);
else if(scsicmd->request_bufflen)
pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle,
scsicmd->request_bufflen,
scsicmd->sc_data_direction);
readreply = (struct aac_read_reply *)fib_data(fibptr);
if (le32_to_cpu(readreply->status) == ST_OK)
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
else {
#ifdef AAC_DETAILED_STATUS_INFO
printk(KERN_WARNING "io_callback: io failed, status = %d\n",
le32_to_cpu(readreply->status));
#endif
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
HARDWARE_ERROR,
SENCODE_INTERNAL_TARGET_FAILURE,
ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
0, 0);
memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
(sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
? sizeof(scsicmd->sense_buffer)
: sizeof(dev->fsa_dev[cid].sense_data));
}
aac_fib_complete(fibptr);
aac_fib_free(fibptr);
scsicmd->scsi_done(scsicmd);
}
static int aac_read(struct scsi_cmnd * scsicmd, int cid)
{
u64 lba;
u32 count;
int status;
u16 fibsize;
struct aac_dev *dev;
struct fib * cmd_fibcontext;
dev = (struct aac_dev *)scsicmd->device->host->hostdata;
/*
* Get block address and transfer length
*/
switch (scsicmd->cmnd[0]) {
case READ_6:
dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", cid));
lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
count = scsicmd->cmnd[4];
if (count == 0)
count = 256;
break;
case READ_16:
dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", cid));
lba = ((u64)scsicmd->cmnd[2] << 56) |
((u64)scsicmd->cmnd[3] << 48) |
((u64)scsicmd->cmnd[4] << 40) |
((u64)scsicmd->cmnd[5] << 32) |
((u64)scsicmd->cmnd[6] << 24) |
(scsicmd->cmnd[7] << 16) |
(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
count = (scsicmd->cmnd[10] << 24) |
(scsicmd->cmnd[11] << 16) |
(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
break;
case READ_12:
dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", cid));
lba = ((u64)scsicmd->cmnd[2] << 24) |
(scsicmd->cmnd[3] << 16) |
(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
count = (scsicmd->cmnd[6] << 24) |
(scsicmd->cmnd[7] << 16) |
(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
break;
default:
dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", cid));
lba = ((u64)scsicmd->cmnd[2] << 24) |
(scsicmd->cmnd[3] << 16) |
(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
break;
}
dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
smp_processor_id(), (unsigned long long)lba, jiffies));
if ((!(dev->raw_io_interface) || !(dev->raw_io_64)) &&
(lba & 0xffffffff00000000LL)) {
dprintk((KERN_DEBUG "aac_read: Illegal lba\n"));
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
SAM_STAT_CHECK_CONDITION;
set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
HARDWARE_ERROR,
SENCODE_INTERNAL_TARGET_FAILURE,
ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
0, 0);
memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
(sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
? sizeof(scsicmd->sense_buffer)
: sizeof(dev->fsa_dev[cid].sense_data));
scsicmd->scsi_done(scsicmd);
return 0;
}
/*
* Alocate and initialize a Fib
*/
if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
return -1;
}
aac_fib_init(cmd_fibcontext);
if (dev->raw_io_interface) {
struct aac_raw_io *readcmd;
readcmd = (struct aac_raw_io *) fib_data(cmd_fibcontext);
readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
readcmd->count = cpu_to_le32(count<<9);
readcmd->cid = cpu_to_le16(cid);
readcmd->flags = cpu_to_le16(1);
readcmd->bpTotal = 0;
readcmd->bpComplete = 0;
aac_build_sgraw(scsicmd, &readcmd->sg);
fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))
BUG();
/*
* Now send the Fib to the adapter
*/
status = aac_fib_send(ContainerRawIo,
cmd_fibcontext,
fibsize,
FsaNormal,
0, 1,
(fib_callback) io_callback,
(void *) scsicmd);
} else if (dev->dac_support == 1) {
struct aac_read64 *readcmd;
readcmd = (struct aac_read64 *) fib_data(cmd_fibcontext);
readcmd->command = cpu_to_le32(VM_CtHostRead64);
readcmd->cid = cpu_to_le16(cid);
readcmd->sector_count = cpu_to_le16(count);
readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
readcmd->pad = 0;
readcmd->flags = 0;
aac_build_sg64(scsicmd, &readcmd->sg);
fibsize = sizeof(struct aac_read64) +
((le32_to_cpu(readcmd->sg.count) - 1) *
sizeof (struct sgentry64));
BUG_ON (fibsize > (dev->max_fib_size -
sizeof(struct aac_fibhdr)));
/*
* Now send the Fib to the adapter
*/
status = aac_fib_send(ContainerCommand64,
cmd_fibcontext,
fibsize,
FsaNormal,
0, 1,
(fib_callback) io_callback,
(void *) scsicmd);
} else {
struct aac_read *readcmd;
readcmd = (struct aac_read *) fib_data(cmd_fibcontext);
readcmd->command = cpu_to_le32(VM_CtBlockRead);
readcmd->cid = cpu_to_le32(cid);
readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
readcmd->count = cpu_to_le32(count * 512);
aac_build_sg(scsicmd, &readcmd->sg);
fibsize = sizeof(struct aac_read) +
((le32_to_cpu(readcmd->sg.count) - 1) *
sizeof (struct sgentry));
BUG_ON (fibsize > (dev->max_fib_size -
sizeof(struct aac_fibhdr)));
/*
* Now send the Fib to the adapter
*/
status = aac_fib_send(ContainerCommand,
cmd_fibcontext,
fibsize,
FsaNormal,
0, 1,
(fib_callback) io_callback,
(void *) scsicmd);
}
/*
* Check that the command queued to the controller
*/
if (status == -EINPROGRESS) {
scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
return 0;
}
printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
/*
* For some reason, the Fib didn't queue, return QUEUE_FULL
*/
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
scsicmd->scsi_done(scsicmd);
aac_fib_complete(cmd_fibcontext);
aac_fib_free(cmd_fibcontext);
return 0;
}
static int aac_write(struct scsi_cmnd * scsicmd, int cid)
{
u64 lba;
u32 count;
int status;
u16 fibsize;
struct aac_dev *dev;
struct fib * cmd_fibcontext;
dev = (struct aac_dev *)scsicmd->device->host->hostdata;
/*
* Get block address and transfer length
*/
if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
{
lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
count = scsicmd->cmnd[4];
if (count == 0)
count = 256;
} else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", cid));
lba = ((u64)scsicmd->cmnd[2] << 56) |
((u64)scsicmd->cmnd[3] << 48) |
((u64)scsicmd->cmnd[4] << 40) |
((u64)scsicmd->cmnd[5] << 32) |
((u64)scsicmd->cmnd[6] << 24) |
(scsicmd->cmnd[7] << 16) |
(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
} else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", cid));
lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
| (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
| (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
} else {
dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", cid));
lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
}
dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
smp_processor_id(), (unsigned long long)lba, jiffies));
if ((!(dev->raw_io_interface) || !(dev->raw_io_64))
&& (lba & 0xffffffff00000000LL)) {
dprintk((KERN_DEBUG "aac_write: Illegal lba\n"));
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
HARDWARE_ERROR,
SENCODE_INTERNAL_TARGET_FAILURE,
ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
0, 0);
memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
(sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
? sizeof(scsicmd->sense_buffer)
: sizeof(dev->fsa_dev[cid].sense_data));
scsicmd->scsi_done(scsicmd);
return 0;
}
/*
* Allocate and initialize a Fib then setup a BlockWrite command
*/
if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
scsicmd->result = DID_ERROR << 16;
scsicmd->scsi_done(scsicmd);
return 0;
}
aac_fib_init(cmd_fibcontext);
if (dev->raw_io_interface) {
struct aac_raw_io *writecmd;
writecmd = (struct aac_raw_io *) fib_data(cmd_fibcontext);
writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
writecmd->count = cpu_to_le32(count<<9);
writecmd->cid = cpu_to_le16(cid);
writecmd->flags = 0;
writecmd->bpTotal = 0;
writecmd->bpComplete = 0;
aac_build_sgraw(scsicmd, &writecmd->sg);
fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))
BUG();
/*
* Now send the Fib to the adapter
*/
status = aac_fib_send(ContainerRawIo,
cmd_fibcontext,
fibsize,
FsaNormal,
0, 1,
(fib_callback) io_callback,
(void *) scsicmd);
} else if (dev->dac_support == 1) {
struct aac_write64 *writecmd;
writecmd = (struct aac_write64 *) fib_data(cmd_fibcontext);
writecmd->command = cpu_to_le32(VM_CtHostWrite64);
writecmd->cid = cpu_to_le16(cid);
writecmd->sector_count = cpu_to_le16(count);
writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
writecmd->pad = 0;
writecmd->flags = 0;
aac_build_sg64(scsicmd, &writecmd->sg);
fibsize = sizeof(struct aac_write64) +
((le32_to_cpu(writecmd->sg.count) - 1) *
sizeof (struct sgentry64));
BUG_ON (fibsize > (dev->max_fib_size -
sizeof(struct aac_fibhdr)));
/*
* Now send the Fib to the adapter
*/
status = aac_fib_send(ContainerCommand64,
cmd_fibcontext,
fibsize,
FsaNormal,
0, 1,
(fib_callback) io_callback,
(void *) scsicmd);
} else {
struct aac_write *writecmd;
writecmd = (struct aac_write *) fib_data(cmd_fibcontext);
writecmd->command = cpu_to_le32(VM_CtBlockWrite);
writecmd->cid = cpu_to_le32(cid);
writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
writecmd->count = cpu_to_le32(count * 512);
writecmd->sg.count = cpu_to_le32(1);
/* ->stable is not used - it did mean which type of write */
aac_build_sg(scsicmd, &writecmd->sg);
fibsize = sizeof(struct aac_write) +
((le32_to_cpu(writecmd->sg.count) - 1) *
sizeof (struct sgentry));
BUG_ON (fibsize > (dev->max_fib_size -
sizeof(struct aac_fibhdr)));
/*
* Now send the Fib to the adapter
*/
status = aac_fib_send(ContainerCommand,
cmd_fibcontext,
fibsize,
FsaNormal,
0, 1,
(fib_callback) io_callback,
(void *) scsicmd);
}
/*
* Check that the command queued to the controller
*/
if (status == -EINPROGRESS) {
scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
return 0;
}
printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
/*
* For some reason, the Fib didn't queue, return QUEUE_FULL
*/
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
scsicmd->scsi_done(scsicmd);
aac_fib_complete(cmd_fibcontext);
aac_fib_free(cmd_fibcontext);
return 0;
}
static void synchronize_callback(void *context, struct fib *fibptr)
{
struct aac_synchronize_reply *synchronizereply;
struct scsi_cmnd *cmd;
cmd = context;
cmd->SCp.phase = AAC_OWNER_MIDLEVEL;
dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
smp_processor_id(), jiffies));
BUG_ON(fibptr == NULL);
synchronizereply = fib_data(fibptr);
if (le32_to_cpu(synchronizereply->status) == CT_OK)
cmd->result = DID_OK << 16 |
COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
else {
struct scsi_device *sdev = cmd->device;
struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
u32 cid = sdev_id(sdev);
printk(KERN_WARNING
"synchronize_callback: synchronize failed, status = %d\n",
le32_to_cpu(synchronizereply->status));
cmd->result = DID_OK << 16 |
COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
set_sense((u8 *)&dev->fsa_dev[cid].sense_data,
HARDWARE_ERROR,
SENCODE_INTERNAL_TARGET_FAILURE,
ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
0, 0);
memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
min(sizeof(dev->fsa_dev[cid].sense_data),
sizeof(cmd->sense_buffer)));
}
aac_fib_complete(fibptr);
aac_fib_free(fibptr);
cmd->scsi_done(cmd);
}
static int aac_synchronize(struct scsi_cmnd *scsicmd, int cid)
{
int status;
struct fib *cmd_fibcontext;
struct aac_synchronize *synchronizecmd;
struct scsi_cmnd *cmd;
struct scsi_device *sdev = scsicmd->device;
int active = 0;
unsigned long flags;
/*
* Wait for all outstanding queued commands to complete to this
* specific target (block).
*/
spin_lock_irqsave(&sdev->list_lock, flags);
list_for_each_entry(cmd, &sdev->cmd_list, list)
if (cmd != scsicmd && cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
++active;
break;
}
spin_unlock_irqrestore(&sdev->list_lock, flags);
/*
* Yield the processor (requeue for later)
*/
if (active)
return SCSI_MLQUEUE_DEVICE_BUSY;
/*
* Allocate and initialize a Fib
*/
if (!(cmd_fibcontext =
aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata)))
return SCSI_MLQUEUE_HOST_BUSY;
aac_fib_init(cmd_fibcontext);
synchronizecmd = fib_data(cmd_fibcontext);
synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
synchronizecmd->cid = cpu_to_le32(cid);
synchronizecmd->count =
cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
/*
* Now send the Fib to the adapter
*/
status = aac_fib_send(ContainerCommand,
cmd_fibcontext,
sizeof(struct aac_synchronize),
FsaNormal,
0, 1,
(fib_callback)synchronize_callback,
(void *)scsicmd);
/*
* Check that the command queued to the controller
*/
if (status == -EINPROGRESS) {
scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
return 0;
}
printk(KERN_WARNING
"aac_synchronize: aac_fib_send failed with status: %d.\n", status);
aac_fib_complete(cmd_fibcontext);
aac_fib_free(cmd_fibcontext);
return SCSI_MLQUEUE_HOST_BUSY;
}
/**
* aac_scsi_cmd() - Process SCSI command
* @scsicmd: SCSI command block
*
* Emulate a SCSI command and queue the required request for the
* aacraid firmware.
*/
int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
{
u32 cid = 0;
struct Scsi_Host *host = scsicmd->device->host;
struct aac_dev *dev = (struct aac_dev *)host->hostdata;
struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
/*
* If the bus, id or lun is out of range, return fail
* Test does not apply to ID 16, the pseudo id for the controller
* itself.
*/
if (scmd_id(scsicmd) != host->this_id) {
if ((scmd_channel(scsicmd) == CONTAINER_CHANNEL)) {
if((scmd_id(scsicmd) >= dev->maximum_num_containers) ||
(scsicmd->device->lun != 0)) {
scsicmd->result = DID_NO_CONNECT << 16;
scsicmd->scsi_done(scsicmd);
return 0;
}
cid = scmd_id(scsicmd);
/*
* If the target container doesn't exist, it may have
* been newly created
*/
if ((fsa_dev_ptr[cid].valid & 1) == 0) {
switch (scsicmd->cmnd[0]) {
case SERVICE_ACTION_IN:
if (!(dev->raw_io_interface) ||
!(dev->raw_io_64) ||
((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
break;
case INQUIRY:
case READ_CAPACITY:
case TEST_UNIT_READY:
spin_unlock_irq(host->host_lock);
aac_probe_container(dev, cid);
if ((fsa_dev_ptr[cid].valid & 1) == 0)
fsa_dev_ptr[cid].valid = 0;
spin_lock_irq(host->host_lock);
if (fsa_dev_ptr[cid].valid == 0) {
scsicmd->result = DID_NO_CONNECT << 16;
scsicmd->scsi_done(scsicmd);
return 0;
}
default:
break;
}
}
/*
* If the target container still doesn't exist,
* return failure
*/
if (fsa_dev_ptr[cid].valid == 0) {
scsicmd->result = DID_BAD_TARGET << 16;
scsicmd->scsi_done(scsicmd);
return 0;
}
} else { /* check for physical non-dasd devices */
if(dev->nondasd_support == 1){
return aac_send_srb_fib(scsicmd);
} else {
scsicmd->result = DID_NO_CONNECT << 16;
scsicmd->scsi_done(scsicmd);
return 0;
}
}
}
/*
* else Command for the controller itself
*/
else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
(scsicmd->cmnd[0] != TEST_UNIT_READY))
{
dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
ILLEGAL_REQUEST,
SENCODE_INVALID_COMMAND,
ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
(sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
? sizeof(scsicmd->sense_buffer)
: sizeof(dev->fsa_dev[cid].sense_data));
scsicmd->scsi_done(scsicmd);
return 0;
}
/* Handle commands here that don't really require going out to the adapter */
switch (scsicmd->cmnd[0]) {
case INQUIRY:
{
struct inquiry_data inq_data;
dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", scmd_id(scsicmd)));
memset(&inq_data, 0, sizeof (struct inquiry_data));
inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
inq_data.inqd_len = 31;
/*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
/*
* Set the Vendor, Product, and Revision Level
* see: <vendor>.c i.e. aac.c
*/
if (scmd_id(scsicmd) == host->this_id) {
setinqstr(dev, (void *) (inq_data.inqd_vid), (sizeof(container_types)/sizeof(char *)));
inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
scsicmd->scsi_done(scsicmd);
return 0;
}
setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
return aac_get_container_name(scsicmd, cid);
}
case SERVICE_ACTION_IN:
if (!(dev->raw_io_interface) ||
!(dev->raw_io_64) ||
((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
break;
{
u64 capacity;
char cp[13];
dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
capacity = fsa_dev_ptr[cid].size - 1;
cp[0] = (capacity >> 56) & 0xff;
cp[1] = (capacity >> 48) & 0xff;
cp[2] = (capacity >> 40) & 0xff;
cp[3] = (capacity >> 32) & 0xff;
cp[4] = (capacity >> 24) & 0xff;
cp[5] = (capacity >> 16) & 0xff;
cp[6] = (capacity >> 8) & 0xff;
cp[7] = (capacity >> 0) & 0xff;
cp[8] = 0;
cp[9] = 0;
cp[10] = 2;
cp[11] = 0;
cp[12] = 0;
aac_internal_transfer(scsicmd, cp, 0,
min_t(size_t, scsicmd->cmnd[13], sizeof(cp)));
if (sizeof(cp) < scsicmd->cmnd[13]) {
unsigned int len, offset = sizeof(cp);
memset(cp, 0, offset);
do {
len = min_t(size_t, scsicmd->cmnd[13] - offset,
sizeof(cp));
aac_internal_transfer(scsicmd, cp, offset, len);
} while ((offset += len) < scsicmd->cmnd[13]);
}
/* Do not cache partition table for arrays */
scsicmd->device->removable = 1;
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
scsicmd->scsi_done(scsicmd);
return 0;
}
case READ_CAPACITY:
{
u32 capacity;
char cp[8];
dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
capacity = fsa_dev_ptr[cid].size - 1;
else
capacity = (u32)-1;
cp[0] = (capacity >> 24) & 0xff;
cp[1] = (capacity >> 16) & 0xff;
cp[2] = (capacity >> 8) & 0xff;
cp[3] = (capacity >> 0) & 0xff;
cp[4] = 0;
cp[5] = 0;
cp[6] = 2;
cp[7] = 0;
aac_internal_transfer(scsicmd, cp, 0, sizeof(cp));
/* Do not cache partition table for arrays */
scsicmd->device->removable = 1;
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
scsicmd->scsi_done(scsicmd);
return 0;
}
case MODE_SENSE:
{
char mode_buf[4];
dprintk((KERN_DEBUG "MODE SENSE command.\n"));
mode_buf[0] = 3; /* Mode data length */
mode_buf[1] = 0; /* Medium type - default */
mode_buf[2] = 0; /* Device-specific param, bit 8: 0/1 = write enabled/protected */
mode_buf[3] = 0; /* Block descriptor length */
aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf));
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
scsicmd->scsi_done(scsicmd);
return 0;
}
case MODE_SENSE_10:
{
char mode_buf[8];
dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
mode_buf[0] = 0; /* Mode data length (MSB) */
mode_buf[1] = 6; /* Mode data length (LSB) */
mode_buf[2] = 0; /* Medium type - default */
mode_buf[3] = 0; /* Device-specific param, bit 8: 0/1 = write enabled/protected */
mode_buf[4] = 0; /* reserved */
mode_buf[5] = 0; /* reserved */
mode_buf[6] = 0; /* Block descriptor length (MSB) */
mode_buf[7] = 0; /* Block descriptor length (LSB) */
aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf));
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
scsicmd->scsi_done(scsicmd);
return 0;
}
case REQUEST_SENSE:
dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
scsicmd->scsi_done(scsicmd);
return 0;
case ALLOW_MEDIUM_REMOVAL:
dprintk((KERN_DEBUG "LOCK command.\n"));
if (scsicmd->cmnd[4])
fsa_dev_ptr[cid].locked = 1;
else
fsa_dev_ptr[cid].locked = 0;
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
scsicmd->scsi_done(scsicmd);
return 0;
/*
* These commands are all No-Ops
*/
case TEST_UNIT_READY:
case RESERVE:
case RELEASE:
case REZERO_UNIT:
case REASSIGN_BLOCKS:
case SEEK_10:
case START_STOP:
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
scsicmd->scsi_done(scsicmd);
return 0;
}
switch (scsicmd->cmnd[0])
{
case READ_6:
case READ_10:
case READ_12:
case READ_16:
/*
* Hack to keep track of ordinal number of the device that
* corresponds to a container. Needed to convert
* containers to /dev/sd device names
*/
if (scsicmd->request->rq_disk)
strlcpy(fsa_dev_ptr[cid].devname,
scsicmd->request->rq_disk->disk_name,
min(sizeof(fsa_dev_ptr[cid].devname),
sizeof(scsicmd->request->rq_disk->disk_name) + 1));
return aac_read(scsicmd, cid);
case WRITE_6:
case WRITE_10:
case WRITE_12:
case WRITE_16:
return aac_write(scsicmd, cid);
case SYNCHRONIZE_CACHE:
/* Issue FIB to tell Firmware to flush it's cache */
return aac_synchronize(scsicmd, cid);
default:
/*
* Unhandled commands
*/
dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
(sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
? sizeof(scsicmd->sense_buffer)
: sizeof(dev->fsa_dev[cid].sense_data));
scsicmd->scsi_done(scsicmd);
return 0;
}
}
static int query_disk(struct aac_dev *dev, void __user *arg)
{
struct aac_query_disk qd;
struct fsa_dev_info *fsa_dev_ptr;
fsa_dev_ptr = dev->fsa_dev;
if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
return -EFAULT;
if (qd.cnum == -1)
qd.cnum = qd.id;
else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
{
if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
return -EINVAL;
qd.instance = dev->scsi_host_ptr->host_no;
qd.bus = 0;
qd.id = CONTAINER_TO_ID(qd.cnum);
qd.lun = CONTAINER_TO_LUN(qd.cnum);
}
else return -EINVAL;
qd.valid = fsa_dev_ptr[qd.cnum].valid;
qd.locked = fsa_dev_ptr[qd.cnum].locked;
qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
qd.unmapped = 1;
else
qd.unmapped = 0;
strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
return -EFAULT;
return 0;
}
static int force_delete_disk(struct aac_dev *dev, void __user *arg)
{
struct aac_delete_disk dd;
struct fsa_dev_info *fsa_dev_ptr;
fsa_dev_ptr = dev->fsa_dev;
if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
return -EFAULT;
if (dd.cnum >= dev->maximum_num_containers)
return -EINVAL;
/*
* Mark this container as being deleted.
*/
fsa_dev_ptr[dd.cnum].deleted = 1;
/*
* Mark the container as no longer valid
*/
fsa_dev_ptr[dd.cnum].valid = 0;
return 0;
}
static int delete_disk(struct aac_dev *dev, void __user *arg)
{
struct aac_delete_disk dd;
struct fsa_dev_info *fsa_dev_ptr;
fsa_dev_ptr = dev->fsa_dev;
if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
return -EFAULT;
if (dd.cnum >= dev->maximum_num_containers)
return -EINVAL;
/*
* If the container is locked, it can not be deleted by the API.
*/
if (fsa_dev_ptr[dd.cnum].locked)
return -EBUSY;
else {
/*
* Mark the container as no longer being valid.
*/
fsa_dev_ptr[dd.cnum].valid = 0;
fsa_dev_ptr[dd.cnum].devname[0] = '\0';
return 0;
}
}
int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
{
switch (cmd) {
case FSACTL_QUERY_DISK:
return query_disk(dev, arg);
case FSACTL_DELETE_DISK:
return delete_disk(dev, arg);
case FSACTL_FORCE_DELETE_DISK:
return force_delete_disk(dev, arg);
case FSACTL_GET_CONTAINERS:
return aac_get_containers(dev);
default:
return -ENOTTY;
}
}
/**
*
* aac_srb_callback
* @context: the context set in the fib - here it is scsi cmd
* @fibptr: pointer to the fib
*
* Handles the completion of a scsi command to a non dasd device
*
*/
static void aac_srb_callback(void *context, struct fib * fibptr)
{
struct aac_dev *dev;
struct aac_srb_reply *srbreply;
struct scsi_cmnd *scsicmd;
scsicmd = (struct scsi_cmnd *) context;
scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
dev = (struct aac_dev *)scsicmd->device->host->hostdata;
if (fibptr == NULL)
BUG();
srbreply = (struct aac_srb_reply *) fib_data(fibptr);
scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
/*
* Calculate resid for sg
*/
scsicmd->resid = scsicmd->request_bufflen -
le32_to_cpu(srbreply->data_xfer_length);
if(scsicmd->use_sg)
pci_unmap_sg(dev->pdev,
(struct scatterlist *)scsicmd->buffer,
scsicmd->use_sg,
scsicmd->sc_data_direction);
else if(scsicmd->request_bufflen)
pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle, scsicmd->request_bufflen,
scsicmd->sc_data_direction);
/*
* First check the fib status
*/
if (le32_to_cpu(srbreply->status) != ST_OK){
int len;
printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
len = (le32_to_cpu(srbreply->sense_data_size) >
sizeof(scsicmd->sense_buffer)) ?
sizeof(scsicmd->sense_buffer) :
le32_to_cpu(srbreply->sense_data_size);
scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
}
/*
* Next check the srb status
*/
switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
case SRB_STATUS_ERROR_RECOVERY:
case SRB_STATUS_PENDING:
case SRB_STATUS_SUCCESS:
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
break;
case SRB_STATUS_DATA_OVERRUN:
switch(scsicmd->cmnd[0]){
case READ_6:
case WRITE_6:
case READ_10:
case WRITE_10:
case READ_12:
case WRITE_12:
case READ_16:
case WRITE_16:
if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
} else {
printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
}
scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
break;
case INQUIRY: {
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
break;
}
default:
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
break;
}
break;
case SRB_STATUS_ABORTED:
scsicmd->result = DID_ABORT << 16 | ABORT << 8;
break;
case SRB_STATUS_ABORT_FAILED:
// Not sure about this one - but assuming the hba was trying to abort for some reason
scsicmd->result = DID_ERROR << 16 | ABORT << 8;
break;
case SRB_STATUS_PARITY_ERROR:
scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
break;
case SRB_STATUS_NO_DEVICE:
case SRB_STATUS_INVALID_PATH_ID:
case SRB_STATUS_INVALID_TARGET_ID:
case SRB_STATUS_INVALID_LUN:
case SRB_STATUS_SELECTION_TIMEOUT:
scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
break;
case SRB_STATUS_COMMAND_TIMEOUT:
case SRB_STATUS_TIMEOUT:
scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
break;
case SRB_STATUS_BUSY:
scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
break;
case SRB_STATUS_BUS_RESET:
scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
break;
case SRB_STATUS_MESSAGE_REJECTED:
scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
break;
case SRB_STATUS_REQUEST_FLUSHED:
case SRB_STATUS_ERROR:
case SRB_STATUS_INVALID_REQUEST:
case SRB_STATUS_REQUEST_SENSE_FAILED:
case SRB_STATUS_NO_HBA:
case SRB_STATUS_UNEXPECTED_BUS_FREE:
case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
case SRB_STATUS_DELAYED_RETRY:
case SRB_STATUS_BAD_FUNCTION:
case SRB_STATUS_NOT_STARTED:
case SRB_STATUS_NOT_IN_USE:
case SRB_STATUS_FORCE_ABORT:
case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
default:
#ifdef AAC_DETAILED_STATUS_INFO
printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
le32_to_cpu(srbreply->srb_status) & 0x3F,
aac_get_status_string(
le32_to_cpu(srbreply->srb_status) & 0x3F),
scsicmd->cmnd[0],
le32_to_cpu(srbreply->scsi_status));
#endif
scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
break;
}
if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){ // Check Condition
int len;
scsicmd->result |= SAM_STAT_CHECK_CONDITION;
len = (le32_to_cpu(srbreply->sense_data_size) >
sizeof(scsicmd->sense_buffer)) ?
sizeof(scsicmd->sense_buffer) :
le32_to_cpu(srbreply->sense_data_size);
#ifdef AAC_DETAILED_STATUS_INFO
printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
le32_to_cpu(srbreply->status), len);
#endif
memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
}
/*
* OR in the scsi status (already shifted up a bit)
*/
scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
aac_fib_complete(fibptr);
aac_fib_free(fibptr);
scsicmd->scsi_done(scsicmd);
}
/**
*
* aac_send_scb_fib
* @scsicmd: the scsi command block
*
* This routine will form a FIB and fill in the aac_srb from the
* scsicmd passed in.
*/
static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
{
struct fib* cmd_fibcontext;
struct aac_dev* dev;
int status;
struct aac_srb *srbcmd;
u16 fibsize;
u32 flag;
u32 timeout;
dev = (struct aac_dev *)scsicmd->device->host->hostdata;
if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
scsicmd->device->lun > 7) {
scsicmd->result = DID_NO_CONNECT << 16;
scsicmd->scsi_done(scsicmd);
return 0;
}
switch(scsicmd->sc_data_direction){
case DMA_TO_DEVICE:
flag = SRB_DataOut;
break;
case DMA_BIDIRECTIONAL:
flag = SRB_DataIn | SRB_DataOut;
break;
case DMA_FROM_DEVICE:
flag = SRB_DataIn;
break;
case DMA_NONE:
default: /* shuts up some versions of gcc */
flag = SRB_NoDataXfer;
break;
}
/*
* Allocate and initialize a Fib then setup a BlockWrite command
*/
if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
return -1;
}
aac_fib_init(cmd_fibcontext);
srbcmd = (struct aac_srb*) fib_data(cmd_fibcontext);
srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(scsicmd)));
srbcmd->id = cpu_to_le32(scmd_id(scsicmd));
srbcmd->lun = cpu_to_le32(scsicmd->device->lun);
srbcmd->flags = cpu_to_le32(flag);
timeout = scsicmd->timeout_per_command/HZ;
if(timeout == 0){
timeout = 1;
}
srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
srbcmd->retry_limit = 0; /* Obsolete parameter */
srbcmd->cdb_size = cpu_to_le32(scsicmd->cmd_len);
if( dev->dac_support == 1 ) {
aac_build_sg64(scsicmd, (struct sgmap64*) &srbcmd->sg);
srbcmd->count = cpu_to_le32(scsicmd->request_bufflen);
memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len);
/*
* Build Scatter/Gather list
*/
fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
((le32_to_cpu(srbcmd->sg.count) & 0xff) *
sizeof (struct sgentry64));
BUG_ON (fibsize > (dev->max_fib_size -
sizeof(struct aac_fibhdr)));
/*
* Now send the Fib to the adapter
*/
status = aac_fib_send(ScsiPortCommand64, cmd_fibcontext,
fibsize, FsaNormal, 0, 1,
(fib_callback) aac_srb_callback,
(void *) scsicmd);
} else {
aac_build_sg(scsicmd, (struct sgmap*)&srbcmd->sg);
srbcmd->count = cpu_to_le32(scsicmd->request_bufflen);
memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len);
/*
* Build Scatter/Gather list
*/
fibsize = sizeof (struct aac_srb) +
(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
sizeof (struct sgentry));
BUG_ON (fibsize > (dev->max_fib_size -
sizeof(struct aac_fibhdr)));
/*
* Now send the Fib to the adapter
*/
status = aac_fib_send(ScsiPortCommand, cmd_fibcontext, fibsize, FsaNormal, 0, 1,
(fib_callback) aac_srb_callback, (void *) scsicmd);
}
/*
* Check that the command queued to the controller
*/
if (status == -EINPROGRESS) {
scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
return 0;
}
printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
aac_fib_complete(cmd_fibcontext);
aac_fib_free(cmd_fibcontext);
return -1;
}
static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
{
struct aac_dev *dev;
unsigned long byte_count = 0;
dev = (struct aac_dev *)scsicmd->device->host->hostdata;
// Get rid of old data
psg->count = 0;
psg->sg[0].addr = 0;
psg->sg[0].count = 0;
if (scsicmd->use_sg) {
struct scatterlist *sg;
int i;
int sg_count;
sg = (struct scatterlist *) scsicmd->request_buffer;
sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
scsicmd->sc_data_direction);
psg->count = cpu_to_le32(sg_count);
for (i = 0; i < sg_count; i++) {
psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
byte_count += sg_dma_len(sg);
sg++;
}
/* hba wants the size to be exact */
if(byte_count > scsicmd->request_bufflen){
u32 temp = le32_to_cpu(psg->sg[i-1].count) -
(byte_count - scsicmd->request_bufflen);
psg->sg[i-1].count = cpu_to_le32(temp);
byte_count = scsicmd->request_bufflen;
}
/* Check for command underflow */
if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
byte_count, scsicmd->underflow);
}
}
else if(scsicmd->request_bufflen) {
u32 addr;
scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
scsicmd->request_buffer,
scsicmd->request_bufflen,
scsicmd->sc_data_direction);
addr = scsicmd->SCp.dma_handle;
psg->count = cpu_to_le32(1);
psg->sg[0].addr = cpu_to_le32(addr);
psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
byte_count = scsicmd->request_bufflen;
}
return byte_count;
}
static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
{
struct aac_dev *dev;
unsigned long byte_count = 0;
u64 addr;
dev = (struct aac_dev *)scsicmd->device->host->hostdata;
// Get rid of old data
psg->count = 0;
psg->sg[0].addr[0] = 0;
psg->sg[0].addr[1] = 0;
psg->sg[0].count = 0;
if (scsicmd->use_sg) {
struct scatterlist *sg;
int i;
int sg_count;
sg = (struct scatterlist *) scsicmd->request_buffer;
sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
scsicmd->sc_data_direction);
for (i = 0; i < sg_count; i++) {
int count = sg_dma_len(sg);
addr = sg_dma_address(sg);
psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
psg->sg[i].count = cpu_to_le32(count);
byte_count += count;
sg++;
}
psg->count = cpu_to_le32(sg_count);
/* hba wants the size to be exact */
if(byte_count > scsicmd->request_bufflen){
u32 temp = le32_to_cpu(psg->sg[i-1].count) -
(byte_count - scsicmd->request_bufflen);
psg->sg[i-1].count = cpu_to_le32(temp);
byte_count = scsicmd->request_bufflen;
}
/* Check for command underflow */
if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
byte_count, scsicmd->underflow);
}
}
else if(scsicmd->request_bufflen) {
scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
scsicmd->request_buffer,
scsicmd->request_bufflen,
scsicmd->sc_data_direction);
addr = scsicmd->SCp.dma_handle;
psg->count = cpu_to_le32(1);
psg->sg[0].addr[0] = cpu_to_le32(addr & 0xffffffff);
psg->sg[0].addr[1] = cpu_to_le32(addr >> 32);
psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
byte_count = scsicmd->request_bufflen;
}
return byte_count;
}
static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
{
struct Scsi_Host *host = scsicmd->device->host;
struct aac_dev *dev = (struct aac_dev *)host->hostdata;
unsigned long byte_count = 0;
// Get rid of old data
psg->count = 0;
psg->sg[0].next = 0;
psg->sg[0].prev = 0;
psg->sg[0].addr[0] = 0;
psg->sg[0].addr[1] = 0;
psg->sg[0].count = 0;
psg->sg[0].flags = 0;
if (scsicmd->use_sg) {
struct scatterlist *sg;
int i;
int sg_count;
sg = (struct scatterlist *) scsicmd->request_buffer;
sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
scsicmd->sc_data_direction);
for (i = 0; i < sg_count; i++) {
int count = sg_dma_len(sg);
u64 addr = sg_dma_address(sg);
psg->sg[i].next = 0;
psg->sg[i].prev = 0;
psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
psg->sg[i].count = cpu_to_le32(count);
psg->sg[i].flags = 0;
byte_count += count;
sg++;
}
psg->count = cpu_to_le32(sg_count);
/* hba wants the size to be exact */
if(byte_count > scsicmd->request_bufflen){
u32 temp = le32_to_cpu(psg->sg[i-1].count) -
(byte_count - scsicmd->request_bufflen);
psg->sg[i-1].count = cpu_to_le32(temp);
byte_count = scsicmd->request_bufflen;
}
/* Check for command underflow */
if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
byte_count, scsicmd->underflow);
}
}
else if(scsicmd->request_bufflen) {
int count;
u64 addr;
scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
scsicmd->request_buffer,
scsicmd->request_bufflen,
scsicmd->sc_data_direction);
addr = scsicmd->SCp.dma_handle;
count = scsicmd->request_bufflen;
psg->count = cpu_to_le32(1);
psg->sg[0].next = 0;
psg->sg[0].prev = 0;
psg->sg[0].addr[1] = cpu_to_le32((u32)(addr>>32));
psg->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
psg->sg[0].count = cpu_to_le32(count);
psg->sg[0].flags = 0;
byte_count = scsicmd->request_bufflen;
}
return byte_count;
}
#ifdef AAC_DETAILED_STATUS_INFO
struct aac_srb_status_info {
u32 status;
char *str;
};
static struct aac_srb_status_info srb_status_info[] = {
{ SRB_STATUS_PENDING, "Pending Status"},
{ SRB_STATUS_SUCCESS, "Success"},
{ SRB_STATUS_ABORTED, "Aborted Command"},
{ SRB_STATUS_ABORT_FAILED, "Abort Failed"},
{ SRB_STATUS_ERROR, "Error Event"},
{ SRB_STATUS_BUSY, "Device Busy"},
{ SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
{ SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
{ SRB_STATUS_NO_DEVICE, "No Device"},
{ SRB_STATUS_TIMEOUT, "Timeout"},
{ SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
{ SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
{ SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
{ SRB_STATUS_BUS_RESET, "Bus Reset"},
{ SRB_STATUS_PARITY_ERROR, "Parity Error"},
{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
{ SRB_STATUS_NO_HBA, "No HBA"},
{ SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
{ SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
{ SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
{ SRB_STATUS_INVALID_LUN, "Invalid LUN"},
{ SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
{ SRB_STATUS_BAD_FUNCTION, "Bad Function"},
{ SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
{ SRB_STATUS_NOT_STARTED, "Not Started"},
{ SRB_STATUS_NOT_IN_USE, "Not In Use"},
{ SRB_STATUS_FORCE_ABORT, "Force Abort"},
{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
{ 0xff, "Unknown Error"}
};
char *aac_get_status_string(u32 status)
{
int i;
for(i=0; i < (sizeof(srb_status_info)/sizeof(struct aac_srb_status_info)); i++ ){
if(srb_status_info[i].status == status){
return srb_status_info[i].str;
}
}
return "Bad Status Code";
}
#endif