2f569afd9c
Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
383 lines
9.5 KiB
C
383 lines
9.5 KiB
C
/*
|
|
* linux/arch/i386/mm/pgtable.c
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/module.h>
|
|
#include <linux/quicklist.h>
|
|
|
|
#include <asm/system.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/e820.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
void show_mem(void)
|
|
{
|
|
int total = 0, reserved = 0;
|
|
int shared = 0, cached = 0;
|
|
int highmem = 0;
|
|
struct page *page;
|
|
pg_data_t *pgdat;
|
|
unsigned long i;
|
|
unsigned long flags;
|
|
|
|
printk(KERN_INFO "Mem-info:\n");
|
|
show_free_areas();
|
|
printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
|
|
for_each_online_pgdat(pgdat) {
|
|
pgdat_resize_lock(pgdat, &flags);
|
|
for (i = 0; i < pgdat->node_spanned_pages; ++i) {
|
|
if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
|
|
touch_nmi_watchdog();
|
|
page = pgdat_page_nr(pgdat, i);
|
|
total++;
|
|
if (PageHighMem(page))
|
|
highmem++;
|
|
if (PageReserved(page))
|
|
reserved++;
|
|
else if (PageSwapCache(page))
|
|
cached++;
|
|
else if (page_count(page))
|
|
shared += page_count(page) - 1;
|
|
}
|
|
pgdat_resize_unlock(pgdat, &flags);
|
|
}
|
|
printk(KERN_INFO "%d pages of RAM\n", total);
|
|
printk(KERN_INFO "%d pages of HIGHMEM\n", highmem);
|
|
printk(KERN_INFO "%d reserved pages\n", reserved);
|
|
printk(KERN_INFO "%d pages shared\n", shared);
|
|
printk(KERN_INFO "%d pages swap cached\n", cached);
|
|
|
|
printk(KERN_INFO "%lu pages dirty\n", global_page_state(NR_FILE_DIRTY));
|
|
printk(KERN_INFO "%lu pages writeback\n",
|
|
global_page_state(NR_WRITEBACK));
|
|
printk(KERN_INFO "%lu pages mapped\n", global_page_state(NR_FILE_MAPPED));
|
|
printk(KERN_INFO "%lu pages slab\n",
|
|
global_page_state(NR_SLAB_RECLAIMABLE) +
|
|
global_page_state(NR_SLAB_UNRECLAIMABLE));
|
|
printk(KERN_INFO "%lu pages pagetables\n",
|
|
global_page_state(NR_PAGETABLE));
|
|
}
|
|
|
|
/*
|
|
* Associate a virtual page frame with a given physical page frame
|
|
* and protection flags for that frame.
|
|
*/
|
|
static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
pgd = swapper_pg_dir + pgd_index(vaddr);
|
|
if (pgd_none(*pgd)) {
|
|
BUG();
|
|
return;
|
|
}
|
|
pud = pud_offset(pgd, vaddr);
|
|
if (pud_none(*pud)) {
|
|
BUG();
|
|
return;
|
|
}
|
|
pmd = pmd_offset(pud, vaddr);
|
|
if (pmd_none(*pmd)) {
|
|
BUG();
|
|
return;
|
|
}
|
|
pte = pte_offset_kernel(pmd, vaddr);
|
|
if (pgprot_val(flags))
|
|
set_pte_present(&init_mm, vaddr, pte, pfn_pte(pfn, flags));
|
|
else
|
|
pte_clear(&init_mm, vaddr, pte);
|
|
|
|
/*
|
|
* It's enough to flush this one mapping.
|
|
* (PGE mappings get flushed as well)
|
|
*/
|
|
__flush_tlb_one(vaddr);
|
|
}
|
|
|
|
/*
|
|
* Associate a large virtual page frame with a given physical page frame
|
|
* and protection flags for that frame. pfn is for the base of the page,
|
|
* vaddr is what the page gets mapped to - both must be properly aligned.
|
|
* The pmd must already be instantiated. Assumes PAE mode.
|
|
*/
|
|
void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */
|
|
printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n");
|
|
return; /* BUG(); */
|
|
}
|
|
if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */
|
|
printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n");
|
|
return; /* BUG(); */
|
|
}
|
|
pgd = swapper_pg_dir + pgd_index(vaddr);
|
|
if (pgd_none(*pgd)) {
|
|
printk(KERN_WARNING "set_pmd_pfn: pgd_none\n");
|
|
return; /* BUG(); */
|
|
}
|
|
pud = pud_offset(pgd, vaddr);
|
|
pmd = pmd_offset(pud, vaddr);
|
|
set_pmd(pmd, pfn_pmd(pfn, flags));
|
|
/*
|
|
* It's enough to flush this one mapping.
|
|
* (PGE mappings get flushed as well)
|
|
*/
|
|
__flush_tlb_one(vaddr);
|
|
}
|
|
|
|
static int fixmaps;
|
|
unsigned long __FIXADDR_TOP = 0xfffff000;
|
|
EXPORT_SYMBOL(__FIXADDR_TOP);
|
|
|
|
void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
|
|
{
|
|
unsigned long address = __fix_to_virt(idx);
|
|
|
|
if (idx >= __end_of_fixed_addresses) {
|
|
BUG();
|
|
return;
|
|
}
|
|
set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
|
|
fixmaps++;
|
|
}
|
|
|
|
/**
|
|
* reserve_top_address - reserves a hole in the top of kernel address space
|
|
* @reserve - size of hole to reserve
|
|
*
|
|
* Can be used to relocate the fixmap area and poke a hole in the top
|
|
* of kernel address space to make room for a hypervisor.
|
|
*/
|
|
void reserve_top_address(unsigned long reserve)
|
|
{
|
|
BUG_ON(fixmaps > 0);
|
|
printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
|
|
(int)-reserve);
|
|
__FIXADDR_TOP = -reserve - PAGE_SIZE;
|
|
__VMALLOC_RESERVE += reserve;
|
|
}
|
|
|
|
pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
|
|
{
|
|
return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
|
|
}
|
|
|
|
pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
|
|
{
|
|
struct page *pte;
|
|
|
|
#ifdef CONFIG_HIGHPTE
|
|
pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
|
|
#else
|
|
pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
|
|
#endif
|
|
if (pte)
|
|
pgtable_page_ctor(pte);
|
|
return pte;
|
|
}
|
|
|
|
/*
|
|
* List of all pgd's needed for non-PAE so it can invalidate entries
|
|
* in both cached and uncached pgd's; not needed for PAE since the
|
|
* kernel pmd is shared. If PAE were not to share the pmd a similar
|
|
* tactic would be needed. This is essentially codepath-based locking
|
|
* against pageattr.c; it is the unique case in which a valid change
|
|
* of kernel pagetables can't be lazily synchronized by vmalloc faults.
|
|
* vmalloc faults work because attached pagetables are never freed.
|
|
* -- wli
|
|
*/
|
|
static inline void pgd_list_add(pgd_t *pgd)
|
|
{
|
|
struct page *page = virt_to_page(pgd);
|
|
|
|
list_add(&page->lru, &pgd_list);
|
|
}
|
|
|
|
static inline void pgd_list_del(pgd_t *pgd)
|
|
{
|
|
struct page *page = virt_to_page(pgd);
|
|
|
|
list_del(&page->lru);
|
|
}
|
|
|
|
#define UNSHARED_PTRS_PER_PGD \
|
|
(SHARED_KERNEL_PMD ? USER_PTRS_PER_PGD : PTRS_PER_PGD)
|
|
|
|
static void pgd_ctor(void *p)
|
|
{
|
|
pgd_t *pgd = p;
|
|
unsigned long flags;
|
|
|
|
/* Clear usermode parts of PGD */
|
|
memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
|
|
|
|
spin_lock_irqsave(&pgd_lock, flags);
|
|
|
|
/* If the pgd points to a shared pagetable level (either the
|
|
ptes in non-PAE, or shared PMD in PAE), then just copy the
|
|
references from swapper_pg_dir. */
|
|
if (PAGETABLE_LEVELS == 2 ||
|
|
(PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD)) {
|
|
clone_pgd_range(pgd + USER_PTRS_PER_PGD,
|
|
swapper_pg_dir + USER_PTRS_PER_PGD,
|
|
KERNEL_PGD_PTRS);
|
|
paravirt_alloc_pd_clone(__pa(pgd) >> PAGE_SHIFT,
|
|
__pa(swapper_pg_dir) >> PAGE_SHIFT,
|
|
USER_PTRS_PER_PGD,
|
|
KERNEL_PGD_PTRS);
|
|
}
|
|
|
|
/* list required to sync kernel mapping updates */
|
|
if (!SHARED_KERNEL_PMD)
|
|
pgd_list_add(pgd);
|
|
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
}
|
|
|
|
static void pgd_dtor(void *pgd)
|
|
{
|
|
unsigned long flags; /* can be called from interrupt context */
|
|
|
|
if (SHARED_KERNEL_PMD)
|
|
return;
|
|
|
|
spin_lock_irqsave(&pgd_lock, flags);
|
|
pgd_list_del(pgd);
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
/*
|
|
* Mop up any pmd pages which may still be attached to the pgd.
|
|
* Normally they will be freed by munmap/exit_mmap, but any pmd we
|
|
* preallocate which never got a corresponding vma will need to be
|
|
* freed manually.
|
|
*/
|
|
static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
|
|
{
|
|
int i;
|
|
|
|
for(i = 0; i < UNSHARED_PTRS_PER_PGD; i++) {
|
|
pgd_t pgd = pgdp[i];
|
|
|
|
if (pgd_val(pgd) != 0) {
|
|
pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
|
|
|
|
pgdp[i] = native_make_pgd(0);
|
|
|
|
paravirt_release_pd(pgd_val(pgd) >> PAGE_SHIFT);
|
|
pmd_free(mm, pmd);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In PAE mode, we need to do a cr3 reload (=tlb flush) when
|
|
* updating the top-level pagetable entries to guarantee the
|
|
* processor notices the update. Since this is expensive, and
|
|
* all 4 top-level entries are used almost immediately in a
|
|
* new process's life, we just pre-populate them here.
|
|
*
|
|
* Also, if we're in a paravirt environment where the kernel pmd is
|
|
* not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
|
|
* and initialize the kernel pmds here.
|
|
*/
|
|
static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long addr;
|
|
int i;
|
|
|
|
pud = pud_offset(pgd, 0);
|
|
for (addr = i = 0; i < UNSHARED_PTRS_PER_PGD;
|
|
i++, pud++, addr += PUD_SIZE) {
|
|
pmd_t *pmd = pmd_alloc_one(mm, addr);
|
|
|
|
if (!pmd) {
|
|
pgd_mop_up_pmds(mm, pgd);
|
|
return 0;
|
|
}
|
|
|
|
if (i >= USER_PTRS_PER_PGD)
|
|
memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
|
|
sizeof(pmd_t) * PTRS_PER_PMD);
|
|
|
|
pud_populate(mm, pud, pmd);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
#else /* !CONFIG_X86_PAE */
|
|
/* No need to prepopulate any pagetable entries in non-PAE modes. */
|
|
static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
|
|
{
|
|
}
|
|
#endif /* CONFIG_X86_PAE */
|
|
|
|
pgd_t *pgd_alloc(struct mm_struct *mm)
|
|
{
|
|
pgd_t *pgd = quicklist_alloc(0, GFP_KERNEL, pgd_ctor);
|
|
|
|
mm->pgd = pgd; /* so that alloc_pd can use it */
|
|
|
|
if (pgd && !pgd_prepopulate_pmd(mm, pgd)) {
|
|
quicklist_free(0, pgd_dtor, pgd);
|
|
pgd = NULL;
|
|
}
|
|
|
|
return pgd;
|
|
}
|
|
|
|
void pgd_free(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
pgd_mop_up_pmds(mm, pgd);
|
|
quicklist_free(0, pgd_dtor, pgd);
|
|
}
|
|
|
|
void check_pgt_cache(void)
|
|
{
|
|
quicklist_trim(0, pgd_dtor, 25, 16);
|
|
}
|
|
|
|
void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
|
|
{
|
|
pgtable_page_dtor(pte);
|
|
paravirt_release_pt(page_to_pfn(pte));
|
|
tlb_remove_page(tlb, pte);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
|
|
{
|
|
paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT);
|
|
tlb_remove_page(tlb, virt_to_page(pmd));
|
|
}
|
|
|
|
#endif
|