a0616cdebc
Disintegrate asm/system.h for S390. Signed-off-by: David Howells <dhowells@redhat.com> cc: linux-s390@vger.kernel.org
654 lines
16 KiB
C
654 lines
16 KiB
C
/*
|
|
* arch/s390/mm/fault.c
|
|
*
|
|
* S390 version
|
|
* Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
|
|
* Author(s): Hartmut Penner (hp@de.ibm.com)
|
|
* Ulrich Weigand (uweigand@de.ibm.com)
|
|
*
|
|
* Derived from "arch/i386/mm/fault.c"
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
*/
|
|
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/init.h>
|
|
#include <linux/console.h>
|
|
#include <linux/module.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/facility.h>
|
|
#include "../kernel/entry.h"
|
|
|
|
#ifndef CONFIG_64BIT
|
|
#define __FAIL_ADDR_MASK 0x7ffff000
|
|
#define __SUBCODE_MASK 0x0200
|
|
#define __PF_RES_FIELD 0ULL
|
|
#else /* CONFIG_64BIT */
|
|
#define __FAIL_ADDR_MASK -4096L
|
|
#define __SUBCODE_MASK 0x0600
|
|
#define __PF_RES_FIELD 0x8000000000000000ULL
|
|
#endif /* CONFIG_64BIT */
|
|
|
|
#define VM_FAULT_BADCONTEXT 0x010000
|
|
#define VM_FAULT_BADMAP 0x020000
|
|
#define VM_FAULT_BADACCESS 0x040000
|
|
|
|
static unsigned long store_indication;
|
|
|
|
void fault_init(void)
|
|
{
|
|
if (test_facility(2) && test_facility(75))
|
|
store_indication = 0xc00;
|
|
}
|
|
|
|
static inline int notify_page_fault(struct pt_regs *regs)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* kprobe_running() needs smp_processor_id() */
|
|
if (kprobes_built_in() && !user_mode(regs)) {
|
|
preempt_disable();
|
|
if (kprobe_running() && kprobe_fault_handler(regs, 14))
|
|
ret = 1;
|
|
preempt_enable();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* Unlock any spinlocks which will prevent us from getting the
|
|
* message out.
|
|
*/
|
|
void bust_spinlocks(int yes)
|
|
{
|
|
if (yes) {
|
|
oops_in_progress = 1;
|
|
} else {
|
|
int loglevel_save = console_loglevel;
|
|
console_unblank();
|
|
oops_in_progress = 0;
|
|
/*
|
|
* OK, the message is on the console. Now we call printk()
|
|
* without oops_in_progress set so that printk will give klogd
|
|
* a poke. Hold onto your hats...
|
|
*/
|
|
console_loglevel = 15;
|
|
printk(" ");
|
|
console_loglevel = loglevel_save;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the address space associated with the fault.
|
|
* Returns 0 for kernel space and 1 for user space.
|
|
*/
|
|
static inline int user_space_fault(unsigned long trans_exc_code)
|
|
{
|
|
/*
|
|
* The lowest two bits of the translation exception
|
|
* identification indicate which paging table was used.
|
|
*/
|
|
trans_exc_code &= 3;
|
|
if (trans_exc_code == 2)
|
|
/* Access via secondary space, set_fs setting decides */
|
|
return current->thread.mm_segment.ar4;
|
|
if (user_mode == HOME_SPACE_MODE)
|
|
/* User space if the access has been done via home space. */
|
|
return trans_exc_code == 3;
|
|
/*
|
|
* If the user space is not the home space the kernel runs in home
|
|
* space. Access via secondary space has already been covered,
|
|
* access via primary space or access register is from user space
|
|
* and access via home space is from the kernel.
|
|
*/
|
|
return trans_exc_code != 3;
|
|
}
|
|
|
|
static inline void report_user_fault(struct pt_regs *regs, long signr)
|
|
{
|
|
if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
|
|
return;
|
|
if (!unhandled_signal(current, signr))
|
|
return;
|
|
if (!printk_ratelimit())
|
|
return;
|
|
printk(KERN_ALERT "User process fault: interruption code 0x%X ",
|
|
regs->int_code);
|
|
print_vma_addr(KERN_CONT "in ", regs->psw.addr & PSW_ADDR_INSN);
|
|
printk(KERN_CONT "\n");
|
|
printk(KERN_ALERT "failing address: %lX\n",
|
|
regs->int_parm_long & __FAIL_ADDR_MASK);
|
|
show_regs(regs);
|
|
}
|
|
|
|
/*
|
|
* Send SIGSEGV to task. This is an external routine
|
|
* to keep the stack usage of do_page_fault small.
|
|
*/
|
|
static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
|
|
{
|
|
struct siginfo si;
|
|
|
|
report_user_fault(regs, SIGSEGV);
|
|
si.si_signo = SIGSEGV;
|
|
si.si_code = si_code;
|
|
si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
|
|
force_sig_info(SIGSEGV, &si, current);
|
|
}
|
|
|
|
static noinline void do_no_context(struct pt_regs *regs)
|
|
{
|
|
const struct exception_table_entry *fixup;
|
|
unsigned long address;
|
|
|
|
/* Are we prepared to handle this kernel fault? */
|
|
fixup = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
|
|
if (fixup) {
|
|
regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Oops. The kernel tried to access some bad page. We'll have to
|
|
* terminate things with extreme prejudice.
|
|
*/
|
|
address = regs->int_parm_long & __FAIL_ADDR_MASK;
|
|
if (!user_space_fault(regs->int_parm_long))
|
|
printk(KERN_ALERT "Unable to handle kernel pointer dereference"
|
|
" at virtual kernel address %p\n", (void *)address);
|
|
else
|
|
printk(KERN_ALERT "Unable to handle kernel paging request"
|
|
" at virtual user address %p\n", (void *)address);
|
|
|
|
die(regs, "Oops");
|
|
do_exit(SIGKILL);
|
|
}
|
|
|
|
static noinline void do_low_address(struct pt_regs *regs)
|
|
{
|
|
/* Low-address protection hit in kernel mode means
|
|
NULL pointer write access in kernel mode. */
|
|
if (regs->psw.mask & PSW_MASK_PSTATE) {
|
|
/* Low-address protection hit in user mode 'cannot happen'. */
|
|
die (regs, "Low-address protection");
|
|
do_exit(SIGKILL);
|
|
}
|
|
|
|
do_no_context(regs);
|
|
}
|
|
|
|
static noinline void do_sigbus(struct pt_regs *regs)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
struct siginfo si;
|
|
|
|
/*
|
|
* Send a sigbus, regardless of whether we were in kernel
|
|
* or user mode.
|
|
*/
|
|
si.si_signo = SIGBUS;
|
|
si.si_errno = 0;
|
|
si.si_code = BUS_ADRERR;
|
|
si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
|
|
force_sig_info(SIGBUS, &si, tsk);
|
|
}
|
|
|
|
static noinline void do_fault_error(struct pt_regs *regs, int fault)
|
|
{
|
|
int si_code;
|
|
|
|
switch (fault) {
|
|
case VM_FAULT_BADACCESS:
|
|
case VM_FAULT_BADMAP:
|
|
/* Bad memory access. Check if it is kernel or user space. */
|
|
if (regs->psw.mask & PSW_MASK_PSTATE) {
|
|
/* User mode accesses just cause a SIGSEGV */
|
|
si_code = (fault == VM_FAULT_BADMAP) ?
|
|
SEGV_MAPERR : SEGV_ACCERR;
|
|
do_sigsegv(regs, si_code);
|
|
return;
|
|
}
|
|
case VM_FAULT_BADCONTEXT:
|
|
do_no_context(regs);
|
|
break;
|
|
default: /* fault & VM_FAULT_ERROR */
|
|
if (fault & VM_FAULT_OOM) {
|
|
if (!(regs->psw.mask & PSW_MASK_PSTATE))
|
|
do_no_context(regs);
|
|
else
|
|
pagefault_out_of_memory();
|
|
} else if (fault & VM_FAULT_SIGBUS) {
|
|
/* Kernel mode? Handle exceptions or die */
|
|
if (!(regs->psw.mask & PSW_MASK_PSTATE))
|
|
do_no_context(regs);
|
|
else
|
|
do_sigbus(regs);
|
|
} else
|
|
BUG();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This routine handles page faults. It determines the address,
|
|
* and the problem, and then passes it off to one of the appropriate
|
|
* routines.
|
|
*
|
|
* interruption code (int_code):
|
|
* 04 Protection -> Write-Protection (suprression)
|
|
* 10 Segment translation -> Not present (nullification)
|
|
* 11 Page translation -> Not present (nullification)
|
|
* 3b Region third trans. -> Not present (nullification)
|
|
*/
|
|
static inline int do_exception(struct pt_regs *regs, int access)
|
|
{
|
|
struct task_struct *tsk;
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct *vma;
|
|
unsigned long trans_exc_code;
|
|
unsigned long address;
|
|
unsigned int flags;
|
|
int fault;
|
|
|
|
if (notify_page_fault(regs))
|
|
return 0;
|
|
|
|
tsk = current;
|
|
mm = tsk->mm;
|
|
trans_exc_code = regs->int_parm_long;
|
|
|
|
/*
|
|
* Verify that the fault happened in user space, that
|
|
* we are not in an interrupt and that there is a
|
|
* user context.
|
|
*/
|
|
fault = VM_FAULT_BADCONTEXT;
|
|
if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
|
|
goto out;
|
|
|
|
address = trans_exc_code & __FAIL_ADDR_MASK;
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
|
|
flags = FAULT_FLAG_ALLOW_RETRY;
|
|
if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
|
|
flags |= FAULT_FLAG_WRITE;
|
|
down_read(&mm->mmap_sem);
|
|
|
|
#ifdef CONFIG_PGSTE
|
|
if (test_tsk_thread_flag(current, TIF_SIE) && S390_lowcore.gmap) {
|
|
address = __gmap_fault(address,
|
|
(struct gmap *) S390_lowcore.gmap);
|
|
if (address == -EFAULT) {
|
|
fault = VM_FAULT_BADMAP;
|
|
goto out_up;
|
|
}
|
|
if (address == -ENOMEM) {
|
|
fault = VM_FAULT_OOM;
|
|
goto out_up;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
retry:
|
|
fault = VM_FAULT_BADMAP;
|
|
vma = find_vma(mm, address);
|
|
if (!vma)
|
|
goto out_up;
|
|
|
|
if (unlikely(vma->vm_start > address)) {
|
|
if (!(vma->vm_flags & VM_GROWSDOWN))
|
|
goto out_up;
|
|
if (expand_stack(vma, address))
|
|
goto out_up;
|
|
}
|
|
|
|
/*
|
|
* Ok, we have a good vm_area for this memory access, so
|
|
* we can handle it..
|
|
*/
|
|
fault = VM_FAULT_BADACCESS;
|
|
if (unlikely(!(vma->vm_flags & access)))
|
|
goto out_up;
|
|
|
|
if (is_vm_hugetlb_page(vma))
|
|
address &= HPAGE_MASK;
|
|
/*
|
|
* If for any reason at all we couldn't handle the fault,
|
|
* make sure we exit gracefully rather than endlessly redo
|
|
* the fault.
|
|
*/
|
|
fault = handle_mm_fault(mm, vma, address, flags);
|
|
if (unlikely(fault & VM_FAULT_ERROR))
|
|
goto out_up;
|
|
|
|
/*
|
|
* Major/minor page fault accounting is only done on the
|
|
* initial attempt. If we go through a retry, it is extremely
|
|
* likely that the page will be found in page cache at that point.
|
|
*/
|
|
if (flags & FAULT_FLAG_ALLOW_RETRY) {
|
|
if (fault & VM_FAULT_MAJOR) {
|
|
tsk->maj_flt++;
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
|
|
regs, address);
|
|
} else {
|
|
tsk->min_flt++;
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
|
|
regs, address);
|
|
}
|
|
if (fault & VM_FAULT_RETRY) {
|
|
/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
|
|
* of starvation. */
|
|
flags &= ~FAULT_FLAG_ALLOW_RETRY;
|
|
down_read(&mm->mmap_sem);
|
|
goto retry;
|
|
}
|
|
}
|
|
/*
|
|
* The instruction that caused the program check will
|
|
* be repeated. Don't signal single step via SIGTRAP.
|
|
*/
|
|
clear_tsk_thread_flag(tsk, TIF_PER_TRAP);
|
|
fault = 0;
|
|
out_up:
|
|
up_read(&mm->mmap_sem);
|
|
out:
|
|
return fault;
|
|
}
|
|
|
|
void __kprobes do_protection_exception(struct pt_regs *regs)
|
|
{
|
|
unsigned long trans_exc_code;
|
|
int fault;
|
|
|
|
trans_exc_code = regs->int_parm_long;
|
|
/* Protection exception is suppressing, decrement psw address. */
|
|
regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
|
|
/*
|
|
* Check for low-address protection. This needs to be treated
|
|
* as a special case because the translation exception code
|
|
* field is not guaranteed to contain valid data in this case.
|
|
*/
|
|
if (unlikely(!(trans_exc_code & 4))) {
|
|
do_low_address(regs);
|
|
return;
|
|
}
|
|
fault = do_exception(regs, VM_WRITE);
|
|
if (unlikely(fault))
|
|
do_fault_error(regs, fault);
|
|
}
|
|
|
|
void __kprobes do_dat_exception(struct pt_regs *regs)
|
|
{
|
|
int access, fault;
|
|
|
|
access = VM_READ | VM_EXEC | VM_WRITE;
|
|
fault = do_exception(regs, access);
|
|
if (unlikely(fault))
|
|
do_fault_error(regs, fault);
|
|
}
|
|
|
|
#ifdef CONFIG_64BIT
|
|
void __kprobes do_asce_exception(struct pt_regs *regs)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma;
|
|
unsigned long trans_exc_code;
|
|
|
|
trans_exc_code = regs->int_parm_long;
|
|
if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
|
|
goto no_context;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
vma = find_vma(mm, trans_exc_code & __FAIL_ADDR_MASK);
|
|
up_read(&mm->mmap_sem);
|
|
|
|
if (vma) {
|
|
update_mm(mm, current);
|
|
return;
|
|
}
|
|
|
|
/* User mode accesses just cause a SIGSEGV */
|
|
if (regs->psw.mask & PSW_MASK_PSTATE) {
|
|
do_sigsegv(regs, SEGV_MAPERR);
|
|
return;
|
|
}
|
|
|
|
no_context:
|
|
do_no_context(regs);
|
|
}
|
|
#endif
|
|
|
|
int __handle_fault(unsigned long uaddr, unsigned long pgm_int_code, int write)
|
|
{
|
|
struct pt_regs regs;
|
|
int access, fault;
|
|
|
|
regs.psw.mask = psw_kernel_bits | PSW_MASK_DAT | PSW_MASK_MCHECK;
|
|
if (!irqs_disabled())
|
|
regs.psw.mask |= PSW_MASK_IO | PSW_MASK_EXT;
|
|
regs.psw.addr = (unsigned long) __builtin_return_address(0);
|
|
regs.psw.addr |= PSW_ADDR_AMODE;
|
|
regs.int_code = pgm_int_code;
|
|
regs.int_parm_long = (uaddr & PAGE_MASK) | 2;
|
|
access = write ? VM_WRITE : VM_READ;
|
|
fault = do_exception(®s, access);
|
|
if (unlikely(fault)) {
|
|
if (fault & VM_FAULT_OOM)
|
|
return -EFAULT;
|
|
else if (fault & VM_FAULT_SIGBUS)
|
|
do_sigbus(®s);
|
|
}
|
|
return fault ? -EFAULT : 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PFAULT
|
|
/*
|
|
* 'pfault' pseudo page faults routines.
|
|
*/
|
|
static int pfault_disable;
|
|
|
|
static int __init nopfault(char *str)
|
|
{
|
|
pfault_disable = 1;
|
|
return 1;
|
|
}
|
|
|
|
__setup("nopfault", nopfault);
|
|
|
|
struct pfault_refbk {
|
|
u16 refdiagc;
|
|
u16 reffcode;
|
|
u16 refdwlen;
|
|
u16 refversn;
|
|
u64 refgaddr;
|
|
u64 refselmk;
|
|
u64 refcmpmk;
|
|
u64 reserved;
|
|
} __attribute__ ((packed, aligned(8)));
|
|
|
|
int pfault_init(void)
|
|
{
|
|
struct pfault_refbk refbk = {
|
|
.refdiagc = 0x258,
|
|
.reffcode = 0,
|
|
.refdwlen = 5,
|
|
.refversn = 2,
|
|
.refgaddr = __LC_CURRENT_PID,
|
|
.refselmk = 1ULL << 48,
|
|
.refcmpmk = 1ULL << 48,
|
|
.reserved = __PF_RES_FIELD };
|
|
int rc;
|
|
|
|
if (pfault_disable)
|
|
return -1;
|
|
asm volatile(
|
|
" diag %1,%0,0x258\n"
|
|
"0: j 2f\n"
|
|
"1: la %0,8\n"
|
|
"2:\n"
|
|
EX_TABLE(0b,1b)
|
|
: "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
|
|
return rc;
|
|
}
|
|
|
|
void pfault_fini(void)
|
|
{
|
|
struct pfault_refbk refbk = {
|
|
.refdiagc = 0x258,
|
|
.reffcode = 1,
|
|
.refdwlen = 5,
|
|
.refversn = 2,
|
|
};
|
|
|
|
if (pfault_disable)
|
|
return;
|
|
asm volatile(
|
|
" diag %0,0,0x258\n"
|
|
"0:\n"
|
|
EX_TABLE(0b,0b)
|
|
: : "a" (&refbk), "m" (refbk) : "cc");
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(pfault_lock);
|
|
static LIST_HEAD(pfault_list);
|
|
|
|
static void pfault_interrupt(struct ext_code ext_code,
|
|
unsigned int param32, unsigned long param64)
|
|
{
|
|
struct task_struct *tsk;
|
|
__u16 subcode;
|
|
pid_t pid;
|
|
|
|
/*
|
|
* Get the external interruption subcode & pfault
|
|
* initial/completion signal bit. VM stores this
|
|
* in the 'cpu address' field associated with the
|
|
* external interrupt.
|
|
*/
|
|
subcode = ext_code.subcode;
|
|
if ((subcode & 0xff00) != __SUBCODE_MASK)
|
|
return;
|
|
kstat_cpu(smp_processor_id()).irqs[EXTINT_PFL]++;
|
|
if (subcode & 0x0080) {
|
|
/* Get the token (= pid of the affected task). */
|
|
pid = sizeof(void *) == 4 ? param32 : param64;
|
|
rcu_read_lock();
|
|
tsk = find_task_by_pid_ns(pid, &init_pid_ns);
|
|
if (tsk)
|
|
get_task_struct(tsk);
|
|
rcu_read_unlock();
|
|
if (!tsk)
|
|
return;
|
|
} else {
|
|
tsk = current;
|
|
}
|
|
spin_lock(&pfault_lock);
|
|
if (subcode & 0x0080) {
|
|
/* signal bit is set -> a page has been swapped in by VM */
|
|
if (tsk->thread.pfault_wait == 1) {
|
|
/* Initial interrupt was faster than the completion
|
|
* interrupt. pfault_wait is valid. Set pfault_wait
|
|
* back to zero and wake up the process. This can
|
|
* safely be done because the task is still sleeping
|
|
* and can't produce new pfaults. */
|
|
tsk->thread.pfault_wait = 0;
|
|
list_del(&tsk->thread.list);
|
|
wake_up_process(tsk);
|
|
} else {
|
|
/* Completion interrupt was faster than initial
|
|
* interrupt. Set pfault_wait to -1 so the initial
|
|
* interrupt doesn't put the task to sleep.
|
|
* If the task is not running, ignore the completion
|
|
* interrupt since it must be a leftover of a PFAULT
|
|
* CANCEL operation which didn't remove all pending
|
|
* completion interrupts. */
|
|
if (tsk->state == TASK_RUNNING)
|
|
tsk->thread.pfault_wait = -1;
|
|
}
|
|
put_task_struct(tsk);
|
|
} else {
|
|
/* signal bit not set -> a real page is missing. */
|
|
if (tsk->thread.pfault_wait == -1) {
|
|
/* Completion interrupt was faster than the initial
|
|
* interrupt (pfault_wait == -1). Set pfault_wait
|
|
* back to zero and exit. */
|
|
tsk->thread.pfault_wait = 0;
|
|
} else {
|
|
/* Initial interrupt arrived before completion
|
|
* interrupt. Let the task sleep. */
|
|
tsk->thread.pfault_wait = 1;
|
|
list_add(&tsk->thread.list, &pfault_list);
|
|
set_task_state(tsk, TASK_UNINTERRUPTIBLE);
|
|
set_tsk_need_resched(tsk);
|
|
}
|
|
}
|
|
spin_unlock(&pfault_lock);
|
|
}
|
|
|
|
static int __cpuinit pfault_cpu_notify(struct notifier_block *self,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
struct thread_struct *thread, *next;
|
|
struct task_struct *tsk;
|
|
|
|
switch (action) {
|
|
case CPU_DEAD:
|
|
case CPU_DEAD_FROZEN:
|
|
spin_lock_irq(&pfault_lock);
|
|
list_for_each_entry_safe(thread, next, &pfault_list, list) {
|
|
thread->pfault_wait = 0;
|
|
list_del(&thread->list);
|
|
tsk = container_of(thread, struct task_struct, thread);
|
|
wake_up_process(tsk);
|
|
}
|
|
spin_unlock_irq(&pfault_lock);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static int __init pfault_irq_init(void)
|
|
{
|
|
int rc;
|
|
|
|
rc = register_external_interrupt(0x2603, pfault_interrupt);
|
|
if (rc)
|
|
goto out_extint;
|
|
rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
|
|
if (rc)
|
|
goto out_pfault;
|
|
service_subclass_irq_register();
|
|
hotcpu_notifier(pfault_cpu_notify, 0);
|
|
return 0;
|
|
|
|
out_pfault:
|
|
unregister_external_interrupt(0x2603, pfault_interrupt);
|
|
out_extint:
|
|
pfault_disable = 1;
|
|
return rc;
|
|
}
|
|
early_initcall(pfault_irq_init);
|
|
|
|
#endif /* CONFIG_PFAULT */
|