linux/drivers/gpu/drm/nouveau/nouveau_mem.c
Ben Skeggs c420b2dc8d drm/nouveau/fifo: turn all fifo modules into engine modules
Been tested on each major revision that's relevant here, but I'm sure there
are still bugs waiting to be ironed out.

This is a *very* invasive change.

There's a couple of pieces left that I don't like much (eg. other engines
using fifo_priv for the channel count), but that's an artefact of there
being a master channel list still.  This is changing, slowly.

Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2012-05-24 16:56:11 +10:00

1253 lines
30 KiB
C

/*
* Copyright (C) The Weather Channel, Inc. 2002. All Rights Reserved.
* Copyright 2005 Stephane Marchesin
*
* The Weather Channel (TM) funded Tungsten Graphics to develop the
* initial release of the Radeon 8500 driver under the XFree86 license.
* This notice must be preserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Ben Skeggs <bskeggs@redhat.com>
* Roy Spliet <r.spliet@student.tudelft.nl>
*/
#include "drmP.h"
#include "drm.h"
#include "drm_sarea.h"
#include "nouveau_drv.h"
#include "nouveau_pm.h"
#include "nouveau_mm.h"
#include "nouveau_vm.h"
#include "nouveau_fifo.h"
#include "nouveau_fence.h"
/*
* NV10-NV40 tiling helpers
*/
static void
nv10_mem_update_tile_region(struct drm_device *dev,
struct nouveau_tile_reg *tile, uint32_t addr,
uint32_t size, uint32_t pitch, uint32_t flags)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
int i = tile - dev_priv->tile.reg, j;
unsigned long save;
nouveau_fence_unref(&tile->fence);
if (tile->pitch)
pfb->free_tile_region(dev, i);
if (pitch)
pfb->init_tile_region(dev, i, addr, size, pitch, flags);
spin_lock_irqsave(&dev_priv->context_switch_lock, save);
nv_wr32(dev, NV03_PFIFO_CACHES, 0);
nv04_fifo_cache_pull(dev, false);
nouveau_wait_for_idle(dev);
pfb->set_tile_region(dev, i);
for (j = 0; j < NVOBJ_ENGINE_NR; j++) {
if (dev_priv->eng[j] && dev_priv->eng[j]->set_tile_region)
dev_priv->eng[j]->set_tile_region(dev, i);
}
nv04_fifo_cache_pull(dev, true);
nv_wr32(dev, NV03_PFIFO_CACHES, 1);
spin_unlock_irqrestore(&dev_priv->context_switch_lock, save);
}
static struct nouveau_tile_reg *
nv10_mem_get_tile_region(struct drm_device *dev, int i)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_tile_reg *tile = &dev_priv->tile.reg[i];
spin_lock(&dev_priv->tile.lock);
if (!tile->used &&
(!tile->fence || nouveau_fence_done(tile->fence)))
tile->used = true;
else
tile = NULL;
spin_unlock(&dev_priv->tile.lock);
return tile;
}
void
nv10_mem_put_tile_region(struct drm_device *dev, struct nouveau_tile_reg *tile,
struct nouveau_fence *fence)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
if (tile) {
spin_lock(&dev_priv->tile.lock);
if (fence) {
/* Mark it as pending. */
tile->fence = fence;
nouveau_fence_ref(fence);
}
tile->used = false;
spin_unlock(&dev_priv->tile.lock);
}
}
struct nouveau_tile_reg *
nv10_mem_set_tiling(struct drm_device *dev, uint32_t addr, uint32_t size,
uint32_t pitch, uint32_t flags)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
struct nouveau_tile_reg *tile, *found = NULL;
int i;
for (i = 0; i < pfb->num_tiles; i++) {
tile = nv10_mem_get_tile_region(dev, i);
if (pitch && !found) {
found = tile;
continue;
} else if (tile && tile->pitch) {
/* Kill an unused tile region. */
nv10_mem_update_tile_region(dev, tile, 0, 0, 0, 0);
}
nv10_mem_put_tile_region(dev, tile, NULL);
}
if (found)
nv10_mem_update_tile_region(dev, found, addr, size,
pitch, flags);
return found;
}
/*
* Cleanup everything
*/
void
nouveau_mem_vram_fini(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
ttm_bo_device_release(&dev_priv->ttm.bdev);
nouveau_ttm_global_release(dev_priv);
if (dev_priv->fb_mtrr >= 0) {
drm_mtrr_del(dev_priv->fb_mtrr,
pci_resource_start(dev->pdev, 1),
pci_resource_len(dev->pdev, 1), DRM_MTRR_WC);
dev_priv->fb_mtrr = -1;
}
}
void
nouveau_mem_gart_fini(struct drm_device *dev)
{
nouveau_sgdma_takedown(dev);
if (drm_core_has_AGP(dev) && dev->agp) {
struct drm_agp_mem *entry, *tempe;
/* Remove AGP resources, but leave dev->agp
intact until drv_cleanup is called. */
list_for_each_entry_safe(entry, tempe, &dev->agp->memory, head) {
if (entry->bound)
drm_unbind_agp(entry->memory);
drm_free_agp(entry->memory, entry->pages);
kfree(entry);
}
INIT_LIST_HEAD(&dev->agp->memory);
if (dev->agp->acquired)
drm_agp_release(dev);
dev->agp->acquired = 0;
dev->agp->enabled = 0;
}
}
bool
nouveau_mem_flags_valid(struct drm_device *dev, u32 tile_flags)
{
if (!(tile_flags & NOUVEAU_GEM_TILE_LAYOUT_MASK))
return true;
return false;
}
#if __OS_HAS_AGP
static unsigned long
get_agp_mode(struct drm_device *dev, unsigned long mode)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
/*
* FW seems to be broken on nv18, it makes the card lock up
* randomly.
*/
if (dev_priv->chipset == 0x18)
mode &= ~PCI_AGP_COMMAND_FW;
/*
* AGP mode set in the command line.
*/
if (nouveau_agpmode > 0) {
bool agpv3 = mode & 0x8;
int rate = agpv3 ? nouveau_agpmode / 4 : nouveau_agpmode;
mode = (mode & ~0x7) | (rate & 0x7);
}
return mode;
}
#endif
int
nouveau_mem_reset_agp(struct drm_device *dev)
{
#if __OS_HAS_AGP
uint32_t saved_pci_nv_1, pmc_enable;
int ret;
/* First of all, disable fast writes, otherwise if it's
* already enabled in the AGP bridge and we disable the card's
* AGP controller we might be locking ourselves out of it. */
if ((nv_rd32(dev, NV04_PBUS_PCI_NV_19) |
dev->agp->mode) & PCI_AGP_COMMAND_FW) {
struct drm_agp_info info;
struct drm_agp_mode mode;
ret = drm_agp_info(dev, &info);
if (ret)
return ret;
mode.mode = get_agp_mode(dev, info.mode) & ~PCI_AGP_COMMAND_FW;
ret = drm_agp_enable(dev, mode);
if (ret)
return ret;
}
saved_pci_nv_1 = nv_rd32(dev, NV04_PBUS_PCI_NV_1);
/* clear busmaster bit */
nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1 & ~0x4);
/* disable AGP */
nv_wr32(dev, NV04_PBUS_PCI_NV_19, 0);
/* power cycle pgraph, if enabled */
pmc_enable = nv_rd32(dev, NV03_PMC_ENABLE);
if (pmc_enable & NV_PMC_ENABLE_PGRAPH) {
nv_wr32(dev, NV03_PMC_ENABLE,
pmc_enable & ~NV_PMC_ENABLE_PGRAPH);
nv_wr32(dev, NV03_PMC_ENABLE, nv_rd32(dev, NV03_PMC_ENABLE) |
NV_PMC_ENABLE_PGRAPH);
}
/* and restore (gives effect of resetting AGP) */
nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1);
#endif
return 0;
}
int
nouveau_mem_init_agp(struct drm_device *dev)
{
#if __OS_HAS_AGP
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct drm_agp_info info;
struct drm_agp_mode mode;
int ret;
if (!dev->agp->acquired) {
ret = drm_agp_acquire(dev);
if (ret) {
NV_ERROR(dev, "Unable to acquire AGP: %d\n", ret);
return ret;
}
}
nouveau_mem_reset_agp(dev);
ret = drm_agp_info(dev, &info);
if (ret) {
NV_ERROR(dev, "Unable to get AGP info: %d\n", ret);
return ret;
}
/* see agp.h for the AGPSTAT_* modes available */
mode.mode = get_agp_mode(dev, info.mode);
ret = drm_agp_enable(dev, mode);
if (ret) {
NV_ERROR(dev, "Unable to enable AGP: %d\n", ret);
return ret;
}
dev_priv->gart_info.type = NOUVEAU_GART_AGP;
dev_priv->gart_info.aper_base = info.aperture_base;
dev_priv->gart_info.aper_size = info.aperture_size;
#endif
return 0;
}
static const struct vram_types {
int value;
const char *name;
} vram_type_map[] = {
{ NV_MEM_TYPE_STOLEN , "stolen system memory" },
{ NV_MEM_TYPE_SGRAM , "SGRAM" },
{ NV_MEM_TYPE_SDRAM , "SDRAM" },
{ NV_MEM_TYPE_DDR1 , "DDR1" },
{ NV_MEM_TYPE_DDR2 , "DDR2" },
{ NV_MEM_TYPE_DDR3 , "DDR3" },
{ NV_MEM_TYPE_GDDR2 , "GDDR2" },
{ NV_MEM_TYPE_GDDR3 , "GDDR3" },
{ NV_MEM_TYPE_GDDR4 , "GDDR4" },
{ NV_MEM_TYPE_GDDR5 , "GDDR5" },
{ NV_MEM_TYPE_UNKNOWN, "unknown type" }
};
int
nouveau_mem_vram_init(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct ttm_bo_device *bdev = &dev_priv->ttm.bdev;
const struct vram_types *vram_type;
int ret, dma_bits;
dma_bits = 32;
if (dev_priv->card_type >= NV_50) {
if (pci_dma_supported(dev->pdev, DMA_BIT_MASK(40)))
dma_bits = 40;
} else
if (0 && pci_is_pcie(dev->pdev) &&
dev_priv->chipset > 0x40 &&
dev_priv->chipset != 0x45) {
if (pci_dma_supported(dev->pdev, DMA_BIT_MASK(39)))
dma_bits = 39;
}
ret = pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits));
if (ret)
return ret;
ret = pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits));
if (ret) {
/* Reset to default value. */
pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32));
}
ret = nouveau_ttm_global_init(dev_priv);
if (ret)
return ret;
ret = ttm_bo_device_init(&dev_priv->ttm.bdev,
dev_priv->ttm.bo_global_ref.ref.object,
&nouveau_bo_driver, DRM_FILE_PAGE_OFFSET,
dma_bits <= 32 ? true : false);
if (ret) {
NV_ERROR(dev, "Error initialising bo driver: %d\n", ret);
return ret;
}
vram_type = vram_type_map;
while (vram_type->value != NV_MEM_TYPE_UNKNOWN) {
if (nouveau_vram_type) {
if (!strcasecmp(nouveau_vram_type, vram_type->name))
break;
dev_priv->vram_type = vram_type->value;
} else {
if (vram_type->value == dev_priv->vram_type)
break;
}
vram_type++;
}
NV_INFO(dev, "Detected %dMiB VRAM (%s)\n",
(int)(dev_priv->vram_size >> 20), vram_type->name);
if (dev_priv->vram_sys_base) {
NV_INFO(dev, "Stolen system memory at: 0x%010llx\n",
dev_priv->vram_sys_base);
}
dev_priv->fb_available_size = dev_priv->vram_size;
dev_priv->fb_mappable_pages = dev_priv->fb_available_size;
if (dev_priv->fb_mappable_pages > pci_resource_len(dev->pdev, 1))
dev_priv->fb_mappable_pages = pci_resource_len(dev->pdev, 1);
dev_priv->fb_mappable_pages >>= PAGE_SHIFT;
dev_priv->fb_available_size -= dev_priv->ramin_rsvd_vram;
dev_priv->fb_aper_free = dev_priv->fb_available_size;
/* mappable vram */
ret = ttm_bo_init_mm(bdev, TTM_PL_VRAM,
dev_priv->fb_available_size >> PAGE_SHIFT);
if (ret) {
NV_ERROR(dev, "Failed VRAM mm init: %d\n", ret);
return ret;
}
if (dev_priv->card_type < NV_50) {
ret = nouveau_bo_new(dev, 256*1024, 0, TTM_PL_FLAG_VRAM,
0, 0, NULL, &dev_priv->vga_ram);
if (ret == 0)
ret = nouveau_bo_pin(dev_priv->vga_ram,
TTM_PL_FLAG_VRAM);
if (ret) {
NV_WARN(dev, "failed to reserve VGA memory\n");
nouveau_bo_ref(NULL, &dev_priv->vga_ram);
}
}
dev_priv->fb_mtrr = drm_mtrr_add(pci_resource_start(dev->pdev, 1),
pci_resource_len(dev->pdev, 1),
DRM_MTRR_WC);
return 0;
}
int
nouveau_mem_gart_init(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct ttm_bo_device *bdev = &dev_priv->ttm.bdev;
int ret;
dev_priv->gart_info.type = NOUVEAU_GART_NONE;
#if !defined(__powerpc__) && !defined(__ia64__)
if (drm_pci_device_is_agp(dev) && dev->agp && nouveau_agpmode) {
ret = nouveau_mem_init_agp(dev);
if (ret)
NV_ERROR(dev, "Error initialising AGP: %d\n", ret);
}
#endif
if (dev_priv->gart_info.type == NOUVEAU_GART_NONE) {
ret = nouveau_sgdma_init(dev);
if (ret) {
NV_ERROR(dev, "Error initialising PCI(E): %d\n", ret);
return ret;
}
}
NV_INFO(dev, "%d MiB GART (aperture)\n",
(int)(dev_priv->gart_info.aper_size >> 20));
dev_priv->gart_info.aper_free = dev_priv->gart_info.aper_size;
ret = ttm_bo_init_mm(bdev, TTM_PL_TT,
dev_priv->gart_info.aper_size >> PAGE_SHIFT);
if (ret) {
NV_ERROR(dev, "Failed TT mm init: %d\n", ret);
return ret;
}
return 0;
}
static int
nv40_mem_timing_calc(struct drm_device *dev, u32 freq,
struct nouveau_pm_tbl_entry *e, u8 len,
struct nouveau_pm_memtiming *boot,
struct nouveau_pm_memtiming *t)
{
t->reg[0] = (e->tRP << 24 | e->tRAS << 16 | e->tRFC << 8 | e->tRC);
/* XXX: I don't trust the -1's and +1's... they must come
* from somewhere! */
t->reg[1] = (e->tWR + 2 + (t->tCWL - 1)) << 24 |
1 << 16 |
(e->tWTR + 2 + (t->tCWL - 1)) << 8 |
(e->tCL + 2 - (t->tCWL - 1));
t->reg[2] = 0x20200000 |
((t->tCWL - 1) << 24 |
e->tRRD << 16 |
e->tRCDWR << 8 |
e->tRCDRD);
NV_DEBUG(dev, "Entry %d: 220: %08x %08x %08x\n", t->id,
t->reg[0], t->reg[1], t->reg[2]);
return 0;
}
static int
nv50_mem_timing_calc(struct drm_device *dev, u32 freq,
struct nouveau_pm_tbl_entry *e, u8 len,
struct nouveau_pm_memtiming *boot,
struct nouveau_pm_memtiming *t)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct bit_entry P;
uint8_t unk18 = 1, unk20 = 0, unk21 = 0, tmp7_3;
if (bit_table(dev, 'P', &P))
return -EINVAL;
switch (min(len, (u8) 22)) {
case 22:
unk21 = e->tUNK_21;
case 21:
unk20 = e->tUNK_20;
case 20:
if (e->tCWL > 0)
t->tCWL = e->tCWL;
case 19:
unk18 = e->tUNK_18;
break;
}
t->reg[0] = (e->tRP << 24 | e->tRAS << 16 | e->tRFC << 8 | e->tRC);
t->reg[1] = (e->tWR + 2 + (t->tCWL - 1)) << 24 |
max(unk18, (u8) 1) << 16 |
(e->tWTR + 2 + (t->tCWL - 1)) << 8;
t->reg[2] = ((t->tCWL - 1) << 24 |
e->tRRD << 16 |
e->tRCDWR << 8 |
e->tRCDRD);
t->reg[4] = e->tUNK_13 << 8 | e->tUNK_13;
t->reg[5] = (e->tRFC << 24 | max(e->tRCDRD, e->tRCDWR) << 16 | e->tRP);
t->reg[8] = boot->reg[8] & 0xffffff00;
if (P.version == 1) {
t->reg[1] |= (e->tCL + 2 - (t->tCWL - 1));
t->reg[3] = (0x14 + e->tCL) << 24 |
0x16 << 16 |
(e->tCL - 1) << 8 |
(e->tCL - 1);
t->reg[4] |= boot->reg[4] & 0xffff0000;
t->reg[6] = (0x33 - t->tCWL) << 16 |
t->tCWL << 8 |
(0x2e + e->tCL - t->tCWL);
t->reg[7] = 0x4000202 | (e->tCL - 1) << 16;
/* XXX: P.version == 1 only has DDR2 and GDDR3? */
if (dev_priv->vram_type == NV_MEM_TYPE_DDR2) {
t->reg[5] |= (e->tCL + 3) << 8;
t->reg[6] |= (t->tCWL - 2) << 8;
t->reg[8] |= (e->tCL - 4);
} else {
t->reg[5] |= (e->tCL + 2) << 8;
t->reg[6] |= t->tCWL << 8;
t->reg[8] |= (e->tCL - 2);
}
} else {
t->reg[1] |= (5 + e->tCL - (t->tCWL));
/* XXX: 0xb? 0x30? */
t->reg[3] = (0x30 + e->tCL) << 24 |
(boot->reg[3] & 0x00ff0000)|
(0xb + e->tCL) << 8 |
(e->tCL - 1);
t->reg[4] |= (unk20 << 24 | unk21 << 16);
/* XXX: +6? */
t->reg[5] |= (t->tCWL + 6) << 8;
t->reg[6] = (0x5a + e->tCL) << 16 |
(6 - e->tCL + t->tCWL) << 8 |
(0x50 + e->tCL - t->tCWL);
tmp7_3 = (boot->reg[7] & 0xff000000) >> 24;
t->reg[7] = (tmp7_3 << 24) |
((tmp7_3 - 6 + e->tCL) << 16) |
0x202;
}
NV_DEBUG(dev, "Entry %d: 220: %08x %08x %08x %08x\n", t->id,
t->reg[0], t->reg[1], t->reg[2], t->reg[3]);
NV_DEBUG(dev, " 230: %08x %08x %08x %08x\n",
t->reg[4], t->reg[5], t->reg[6], t->reg[7]);
NV_DEBUG(dev, " 240: %08x\n", t->reg[8]);
return 0;
}
static int
nvc0_mem_timing_calc(struct drm_device *dev, u32 freq,
struct nouveau_pm_tbl_entry *e, u8 len,
struct nouveau_pm_memtiming *boot,
struct nouveau_pm_memtiming *t)
{
if (e->tCWL > 0)
t->tCWL = e->tCWL;
t->reg[0] = (e->tRP << 24 | (e->tRAS & 0x7f) << 17 |
e->tRFC << 8 | e->tRC);
t->reg[1] = (boot->reg[1] & 0xff000000) |
(e->tRCDWR & 0x0f) << 20 |
(e->tRCDRD & 0x0f) << 14 |
(t->tCWL << 7) |
(e->tCL & 0x0f);
t->reg[2] = (boot->reg[2] & 0xff0000ff) |
e->tWR << 16 | e->tWTR << 8;
t->reg[3] = (e->tUNK_20 & 0x1f) << 9 |
(e->tUNK_21 & 0xf) << 5 |
(e->tUNK_13 & 0x1f);
t->reg[4] = (boot->reg[4] & 0xfff00fff) |
(e->tRRD&0x1f) << 15;
NV_DEBUG(dev, "Entry %d: 290: %08x %08x %08x %08x\n", t->id,
t->reg[0], t->reg[1], t->reg[2], t->reg[3]);
NV_DEBUG(dev, " 2a0: %08x\n", t->reg[4]);
return 0;
}
/**
* MR generation methods
*/
static int
nouveau_mem_ddr2_mr(struct drm_device *dev, u32 freq,
struct nouveau_pm_tbl_entry *e, u8 len,
struct nouveau_pm_memtiming *boot,
struct nouveau_pm_memtiming *t)
{
t->drive_strength = 0;
if (len < 15) {
t->odt = boot->odt;
} else {
t->odt = e->RAM_FT1 & 0x07;
}
if (e->tCL >= NV_MEM_CL_DDR2_MAX) {
NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL);
return -ERANGE;
}
if (e->tWR >= NV_MEM_WR_DDR2_MAX) {
NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR);
return -ERANGE;
}
if (t->odt > 3) {
NV_WARN(dev, "(%u) Invalid odt value, assuming disabled: %x",
t->id, t->odt);
t->odt = 0;
}
t->mr[0] = (boot->mr[0] & 0x100f) |
(e->tCL) << 4 |
(e->tWR - 1) << 9;
t->mr[1] = (boot->mr[1] & 0x101fbb) |
(t->odt & 0x1) << 2 |
(t->odt & 0x2) << 5;
NV_DEBUG(dev, "(%u) MR: %08x", t->id, t->mr[0]);
return 0;
}
uint8_t nv_mem_wr_lut_ddr3[NV_MEM_WR_DDR3_MAX] = {
0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 0, 0};
static int
nouveau_mem_ddr3_mr(struct drm_device *dev, u32 freq,
struct nouveau_pm_tbl_entry *e, u8 len,
struct nouveau_pm_memtiming *boot,
struct nouveau_pm_memtiming *t)
{
u8 cl = e->tCL - 4;
t->drive_strength = 0;
if (len < 15) {
t->odt = boot->odt;
} else {
t->odt = e->RAM_FT1 & 0x07;
}
if (e->tCL >= NV_MEM_CL_DDR3_MAX || e->tCL < 4) {
NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL);
return -ERANGE;
}
if (e->tWR >= NV_MEM_WR_DDR3_MAX || e->tWR < 4) {
NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR);
return -ERANGE;
}
if (e->tCWL < 5) {
NV_WARN(dev, "(%u) Invalid tCWL: %u", t->id, e->tCWL);
return -ERANGE;
}
t->mr[0] = (boot->mr[0] & 0x180b) |
/* CAS */
(cl & 0x7) << 4 |
(cl & 0x8) >> 1 |
(nv_mem_wr_lut_ddr3[e->tWR]) << 9;
t->mr[1] = (boot->mr[1] & 0x101dbb) |
(t->odt & 0x1) << 2 |
(t->odt & 0x2) << 5 |
(t->odt & 0x4) << 7;
t->mr[2] = (boot->mr[2] & 0x20ffb7) | (e->tCWL - 5) << 3;
NV_DEBUG(dev, "(%u) MR: %08x %08x", t->id, t->mr[0], t->mr[2]);
return 0;
}
uint8_t nv_mem_cl_lut_gddr3[NV_MEM_CL_GDDR3_MAX] = {
0, 0, 0, 0, 4, 5, 6, 7, 0, 1, 2, 3, 8, 9, 10, 11};
uint8_t nv_mem_wr_lut_gddr3[NV_MEM_WR_GDDR3_MAX] = {
0, 0, 0, 0, 0, 2, 3, 8, 9, 10, 11, 0, 0, 1, 1, 0, 3};
static int
nouveau_mem_gddr3_mr(struct drm_device *dev, u32 freq,
struct nouveau_pm_tbl_entry *e, u8 len,
struct nouveau_pm_memtiming *boot,
struct nouveau_pm_memtiming *t)
{
if (len < 15) {
t->drive_strength = boot->drive_strength;
t->odt = boot->odt;
} else {
t->drive_strength = (e->RAM_FT1 & 0x30) >> 4;
t->odt = e->RAM_FT1 & 0x07;
}
if (e->tCL >= NV_MEM_CL_GDDR3_MAX) {
NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL);
return -ERANGE;
}
if (e->tWR >= NV_MEM_WR_GDDR3_MAX) {
NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR);
return -ERANGE;
}
if (t->odt > 3) {
NV_WARN(dev, "(%u) Invalid odt value, assuming autocal: %x",
t->id, t->odt);
t->odt = 0;
}
t->mr[0] = (boot->mr[0] & 0xe0b) |
/* CAS */
((nv_mem_cl_lut_gddr3[e->tCL] & 0x7) << 4) |
((nv_mem_cl_lut_gddr3[e->tCL] & 0x8) >> 2);
t->mr[1] = (boot->mr[1] & 0x100f40) | t->drive_strength |
(t->odt << 2) |
(nv_mem_wr_lut_gddr3[e->tWR] & 0xf) << 4;
t->mr[2] = boot->mr[2];
NV_DEBUG(dev, "(%u) MR: %08x %08x %08x", t->id,
t->mr[0], t->mr[1], t->mr[2]);
return 0;
}
static int
nouveau_mem_gddr5_mr(struct drm_device *dev, u32 freq,
struct nouveau_pm_tbl_entry *e, u8 len,
struct nouveau_pm_memtiming *boot,
struct nouveau_pm_memtiming *t)
{
if (len < 15) {
t->drive_strength = boot->drive_strength;
t->odt = boot->odt;
} else {
t->drive_strength = (e->RAM_FT1 & 0x30) >> 4;
t->odt = e->RAM_FT1 & 0x03;
}
if (e->tCL >= NV_MEM_CL_GDDR5_MAX) {
NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL);
return -ERANGE;
}
if (e->tWR >= NV_MEM_WR_GDDR5_MAX) {
NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR);
return -ERANGE;
}
if (t->odt > 3) {
NV_WARN(dev, "(%u) Invalid odt value, assuming autocal: %x",
t->id, t->odt);
t->odt = 0;
}
t->mr[0] = (boot->mr[0] & 0x007) |
((e->tCL - 5) << 3) |
((e->tWR - 4) << 8);
t->mr[1] = (boot->mr[1] & 0x1007f0) |
t->drive_strength |
(t->odt << 2);
NV_DEBUG(dev, "(%u) MR: %08x %08x", t->id, t->mr[0], t->mr[1]);
return 0;
}
int
nouveau_mem_timing_calc(struct drm_device *dev, u32 freq,
struct nouveau_pm_memtiming *t)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_pm_engine *pm = &dev_priv->engine.pm;
struct nouveau_pm_memtiming *boot = &pm->boot.timing;
struct nouveau_pm_tbl_entry *e;
u8 ver, len, *ptr, *ramcfg;
int ret;
ptr = nouveau_perf_timing(dev, freq, &ver, &len);
if (!ptr || ptr[0] == 0x00) {
*t = *boot;
return 0;
}
e = (struct nouveau_pm_tbl_entry *)ptr;
t->tCWL = boot->tCWL;
switch (dev_priv->card_type) {
case NV_40:
ret = nv40_mem_timing_calc(dev, freq, e, len, boot, t);
break;
case NV_50:
ret = nv50_mem_timing_calc(dev, freq, e, len, boot, t);
break;
case NV_C0:
case NV_D0:
ret = nvc0_mem_timing_calc(dev, freq, e, len, boot, t);
break;
default:
ret = -ENODEV;
break;
}
switch (dev_priv->vram_type * !ret) {
case NV_MEM_TYPE_GDDR3:
ret = nouveau_mem_gddr3_mr(dev, freq, e, len, boot, t);
break;
case NV_MEM_TYPE_GDDR5:
ret = nouveau_mem_gddr5_mr(dev, freq, e, len, boot, t);
break;
case NV_MEM_TYPE_DDR2:
ret = nouveau_mem_ddr2_mr(dev, freq, e, len, boot, t);
break;
case NV_MEM_TYPE_DDR3:
ret = nouveau_mem_ddr3_mr(dev, freq, e, len, boot, t);
break;
default:
ret = -EINVAL;
break;
}
ramcfg = nouveau_perf_ramcfg(dev, freq, &ver, &len);
if (ramcfg) {
int dll_off;
if (ver == 0x00)
dll_off = !!(ramcfg[3] & 0x04);
else
dll_off = !!(ramcfg[2] & 0x40);
switch (dev_priv->vram_type) {
case NV_MEM_TYPE_GDDR3:
t->mr[1] &= ~0x00000040;
t->mr[1] |= 0x00000040 * dll_off;
break;
default:
t->mr[1] &= ~0x00000001;
t->mr[1] |= 0x00000001 * dll_off;
break;
}
}
return ret;
}
void
nouveau_mem_timing_read(struct drm_device *dev, struct nouveau_pm_memtiming *t)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
u32 timing_base, timing_regs, mr_base;
int i;
if (dev_priv->card_type >= 0xC0) {
timing_base = 0x10f290;
mr_base = 0x10f300;
} else {
timing_base = 0x100220;
mr_base = 0x1002c0;
}
t->id = -1;
switch (dev_priv->card_type) {
case NV_50:
timing_regs = 9;
break;
case NV_C0:
case NV_D0:
timing_regs = 5;
break;
case NV_30:
case NV_40:
timing_regs = 3;
break;
default:
timing_regs = 0;
return;
}
for(i = 0; i < timing_regs; i++)
t->reg[i] = nv_rd32(dev, timing_base + (0x04 * i));
t->tCWL = 0;
if (dev_priv->card_type < NV_C0) {
t->tCWL = ((nv_rd32(dev, 0x100228) & 0x0f000000) >> 24) + 1;
} else if (dev_priv->card_type <= NV_D0) {
t->tCWL = ((nv_rd32(dev, 0x10f294) & 0x00000f80) >> 7);
}
t->mr[0] = nv_rd32(dev, mr_base);
t->mr[1] = nv_rd32(dev, mr_base + 0x04);
t->mr[2] = nv_rd32(dev, mr_base + 0x20);
t->mr[3] = nv_rd32(dev, mr_base + 0x24);
t->odt = 0;
t->drive_strength = 0;
switch (dev_priv->vram_type) {
case NV_MEM_TYPE_DDR3:
t->odt |= (t->mr[1] & 0x200) >> 7;
case NV_MEM_TYPE_DDR2:
t->odt |= (t->mr[1] & 0x04) >> 2 |
(t->mr[1] & 0x40) >> 5;
break;
case NV_MEM_TYPE_GDDR3:
case NV_MEM_TYPE_GDDR5:
t->drive_strength = t->mr[1] & 0x03;
t->odt = (t->mr[1] & 0x0c) >> 2;
break;
default:
break;
}
}
int
nouveau_mem_exec(struct nouveau_mem_exec_func *exec,
struct nouveau_pm_level *perflvl)
{
struct drm_nouveau_private *dev_priv = exec->dev->dev_private;
struct nouveau_pm_memtiming *info = &perflvl->timing;
u32 tMRD = 1000, tCKSRE = 0, tCKSRX = 0, tXS = 0, tDLLK = 0;
u32 mr[3] = { info->mr[0], info->mr[1], info->mr[2] };
u32 mr1_dlloff;
switch (dev_priv->vram_type) {
case NV_MEM_TYPE_DDR2:
tDLLK = 2000;
mr1_dlloff = 0x00000001;
break;
case NV_MEM_TYPE_DDR3:
tDLLK = 12000;
tCKSRE = 2000;
tXS = 1000;
mr1_dlloff = 0x00000001;
break;
case NV_MEM_TYPE_GDDR3:
tDLLK = 40000;
mr1_dlloff = 0x00000040;
break;
default:
NV_ERROR(exec->dev, "cannot reclock unsupported memtype\n");
return -ENODEV;
}
/* fetch current MRs */
switch (dev_priv->vram_type) {
case NV_MEM_TYPE_GDDR3:
case NV_MEM_TYPE_DDR3:
mr[2] = exec->mrg(exec, 2);
default:
mr[1] = exec->mrg(exec, 1);
mr[0] = exec->mrg(exec, 0);
break;
}
/* DLL 'on' -> DLL 'off' mode, disable before entering self-refresh */
if (!(mr[1] & mr1_dlloff) && (info->mr[1] & mr1_dlloff)) {
exec->precharge(exec);
exec->mrs (exec, 1, mr[1] | mr1_dlloff);
exec->wait(exec, tMRD);
}
/* enter self-refresh mode */
exec->precharge(exec);
exec->refresh(exec);
exec->refresh(exec);
exec->refresh_auto(exec, false);
exec->refresh_self(exec, true);
exec->wait(exec, tCKSRE);
/* modify input clock frequency */
exec->clock_set(exec);
/* exit self-refresh mode */
exec->wait(exec, tCKSRX);
exec->precharge(exec);
exec->refresh_self(exec, false);
exec->refresh_auto(exec, true);
exec->wait(exec, tXS);
exec->wait(exec, tXS);
/* update MRs */
if (mr[2] != info->mr[2]) {
exec->mrs (exec, 2, info->mr[2]);
exec->wait(exec, tMRD);
}
if (mr[1] != info->mr[1]) {
/* need to keep DLL off until later, at least on GDDR3 */
exec->mrs (exec, 1, info->mr[1] | (mr[1] & mr1_dlloff));
exec->wait(exec, tMRD);
}
if (mr[0] != info->mr[0]) {
exec->mrs (exec, 0, info->mr[0]);
exec->wait(exec, tMRD);
}
/* update PFB timing registers */
exec->timing_set(exec);
/* DLL (enable + ) reset */
if (!(info->mr[1] & mr1_dlloff)) {
if (mr[1] & mr1_dlloff) {
exec->mrs (exec, 1, info->mr[1]);
exec->wait(exec, tMRD);
}
exec->mrs (exec, 0, info->mr[0] | 0x00000100);
exec->wait(exec, tMRD);
exec->mrs (exec, 0, info->mr[0] | 0x00000000);
exec->wait(exec, tMRD);
exec->wait(exec, tDLLK);
if (dev_priv->vram_type == NV_MEM_TYPE_GDDR3)
exec->precharge(exec);
}
return 0;
}
int
nouveau_mem_vbios_type(struct drm_device *dev)
{
struct bit_entry M;
u8 ramcfg = (nv_rd32(dev, 0x101000) & 0x0000003c) >> 2;
if (!bit_table(dev, 'M', &M) || M.version != 2 || M.length < 5) {
u8 *table = ROMPTR(dev, M.data[3]);
if (table && table[0] == 0x10 && ramcfg < table[3]) {
u8 *entry = table + table[1] + (ramcfg * table[2]);
switch (entry[0] & 0x0f) {
case 0: return NV_MEM_TYPE_DDR2;
case 1: return NV_MEM_TYPE_DDR3;
case 2: return NV_MEM_TYPE_GDDR3;
case 3: return NV_MEM_TYPE_GDDR5;
default:
break;
}
}
}
return NV_MEM_TYPE_UNKNOWN;
}
static int
nouveau_vram_manager_init(struct ttm_mem_type_manager *man, unsigned long psize)
{
/* nothing to do */
return 0;
}
static int
nouveau_vram_manager_fini(struct ttm_mem_type_manager *man)
{
/* nothing to do */
return 0;
}
static inline void
nouveau_mem_node_cleanup(struct nouveau_mem *node)
{
if (node->vma[0].node) {
nouveau_vm_unmap(&node->vma[0]);
nouveau_vm_put(&node->vma[0]);
}
if (node->vma[1].node) {
nouveau_vm_unmap(&node->vma[1]);
nouveau_vm_put(&node->vma[1]);
}
}
static void
nouveau_vram_manager_del(struct ttm_mem_type_manager *man,
struct ttm_mem_reg *mem)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev);
struct nouveau_vram_engine *vram = &dev_priv->engine.vram;
struct drm_device *dev = dev_priv->dev;
nouveau_mem_node_cleanup(mem->mm_node);
vram->put(dev, (struct nouveau_mem **)&mem->mm_node);
}
static int
nouveau_vram_manager_new(struct ttm_mem_type_manager *man,
struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_mem_reg *mem)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev);
struct nouveau_vram_engine *vram = &dev_priv->engine.vram;
struct drm_device *dev = dev_priv->dev;
struct nouveau_bo *nvbo = nouveau_bo(bo);
struct nouveau_mem *node;
u32 size_nc = 0;
int ret;
if (nvbo->tile_flags & NOUVEAU_GEM_TILE_NONCONTIG)
size_nc = 1 << nvbo->page_shift;
ret = vram->get(dev, mem->num_pages << PAGE_SHIFT,
mem->page_alignment << PAGE_SHIFT, size_nc,
(nvbo->tile_flags >> 8) & 0x3ff, &node);
if (ret) {
mem->mm_node = NULL;
return (ret == -ENOSPC) ? 0 : ret;
}
node->page_shift = nvbo->page_shift;
mem->mm_node = node;
mem->start = node->offset >> PAGE_SHIFT;
return 0;
}
void
nouveau_vram_manager_debug(struct ttm_mem_type_manager *man, const char *prefix)
{
struct nouveau_mm *mm = man->priv;
struct nouveau_mm_node *r;
u32 total = 0, free = 0;
mutex_lock(&mm->mutex);
list_for_each_entry(r, &mm->nodes, nl_entry) {
printk(KERN_DEBUG "%s %d: 0x%010llx 0x%010llx\n",
prefix, r->type, ((u64)r->offset << 12),
(((u64)r->offset + r->length) << 12));
total += r->length;
if (!r->type)
free += r->length;
}
mutex_unlock(&mm->mutex);
printk(KERN_DEBUG "%s total: 0x%010llx free: 0x%010llx\n",
prefix, (u64)total << 12, (u64)free << 12);
printk(KERN_DEBUG "%s block: 0x%08x\n",
prefix, mm->block_size << 12);
}
const struct ttm_mem_type_manager_func nouveau_vram_manager = {
nouveau_vram_manager_init,
nouveau_vram_manager_fini,
nouveau_vram_manager_new,
nouveau_vram_manager_del,
nouveau_vram_manager_debug
};
static int
nouveau_gart_manager_init(struct ttm_mem_type_manager *man, unsigned long psize)
{
return 0;
}
static int
nouveau_gart_manager_fini(struct ttm_mem_type_manager *man)
{
return 0;
}
static void
nouveau_gart_manager_del(struct ttm_mem_type_manager *man,
struct ttm_mem_reg *mem)
{
nouveau_mem_node_cleanup(mem->mm_node);
kfree(mem->mm_node);
mem->mm_node = NULL;
}
static int
nouveau_gart_manager_new(struct ttm_mem_type_manager *man,
struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_mem_reg *mem)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(bo->bdev);
struct nouveau_mem *node;
if (unlikely((mem->num_pages << PAGE_SHIFT) >=
dev_priv->gart_info.aper_size))
return -ENOMEM;
node = kzalloc(sizeof(*node), GFP_KERNEL);
if (!node)
return -ENOMEM;
node->page_shift = 12;
mem->mm_node = node;
mem->start = 0;
return 0;
}
void
nouveau_gart_manager_debug(struct ttm_mem_type_manager *man, const char *prefix)
{
}
const struct ttm_mem_type_manager_func nouveau_gart_manager = {
nouveau_gart_manager_init,
nouveau_gart_manager_fini,
nouveau_gart_manager_new,
nouveau_gart_manager_del,
nouveau_gart_manager_debug
};