linux/drivers/platform/x86/toshiba_acpi.c
Matthew Garrett ae42f23447 toshiba-acpi: Add an extra couple of keys
Thomas Bächler reports that his machine generates two keycodes for zooming
in and out. Add these to the default keymap.

Signed-off-by: Matthew Garrett <mjg@redhat.com>
Cc: Thomas Bächler <thomas@archlinux.org>
2010-08-03 09:48:53 -04:00

1022 lines
25 KiB
C

/*
* toshiba_acpi.c - Toshiba Laptop ACPI Extras
*
*
* Copyright (C) 2002-2004 John Belmonte
* Copyright (C) 2008 Philip Langdale
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* The devolpment page for this driver is located at
* http://memebeam.org/toys/ToshibaAcpiDriver.
*
* Credits:
* Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse
* engineering the Windows drivers
* Yasushi Nagato - changes for linux kernel 2.4 -> 2.5
* Rob Miller - TV out and hotkeys help
*
*
* TODO
*
*/
#define TOSHIBA_ACPI_VERSION "0.19"
#define PROC_INTERFACE_VERSION 1
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/backlight.h>
#include <linux/platform_device.h>
#include <linux/rfkill.h>
#include <linux/input.h>
#include <linux/slab.h>
#include <asm/uaccess.h>
#include <acpi/acpi_drivers.h>
MODULE_AUTHOR("John Belmonte");
MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver");
MODULE_LICENSE("GPL");
#define MY_LOGPREFIX "toshiba_acpi: "
#define MY_ERR KERN_ERR MY_LOGPREFIX
#define MY_NOTICE KERN_NOTICE MY_LOGPREFIX
#define MY_INFO KERN_INFO MY_LOGPREFIX
/* Toshiba ACPI method paths */
#define METHOD_LCD_BRIGHTNESS "\\_SB_.PCI0.VGA_.LCD_._BCM"
#define TOSH_INTERFACE_1 "\\_SB_.VALD"
#define TOSH_INTERFACE_2 "\\_SB_.VALZ"
#define METHOD_VIDEO_OUT "\\_SB_.VALX.DSSX"
#define GHCI_METHOD ".GHCI"
/* Toshiba HCI interface definitions
*
* HCI is Toshiba's "Hardware Control Interface" which is supposed to
* be uniform across all their models. Ideally we would just call
* dedicated ACPI methods instead of using this primitive interface.
* However the ACPI methods seem to be incomplete in some areas (for
* example they allow setting, but not reading, the LCD brightness value),
* so this is still useful.
*/
#define HCI_WORDS 6
/* operations */
#define HCI_SET 0xff00
#define HCI_GET 0xfe00
/* return codes */
#define HCI_SUCCESS 0x0000
#define HCI_FAILURE 0x1000
#define HCI_NOT_SUPPORTED 0x8000
#define HCI_EMPTY 0x8c00
/* registers */
#define HCI_FAN 0x0004
#define HCI_SYSTEM_EVENT 0x0016
#define HCI_VIDEO_OUT 0x001c
#define HCI_HOTKEY_EVENT 0x001e
#define HCI_LCD_BRIGHTNESS 0x002a
#define HCI_WIRELESS 0x0056
/* field definitions */
#define HCI_LCD_BRIGHTNESS_BITS 3
#define HCI_LCD_BRIGHTNESS_SHIFT (16-HCI_LCD_BRIGHTNESS_BITS)
#define HCI_LCD_BRIGHTNESS_LEVELS (1 << HCI_LCD_BRIGHTNESS_BITS)
#define HCI_VIDEO_OUT_LCD 0x1
#define HCI_VIDEO_OUT_CRT 0x2
#define HCI_VIDEO_OUT_TV 0x4
#define HCI_WIRELESS_KILL_SWITCH 0x01
#define HCI_WIRELESS_BT_PRESENT 0x0f
#define HCI_WIRELESS_BT_ATTACH 0x40
#define HCI_WIRELESS_BT_POWER 0x80
static const struct acpi_device_id toshiba_device_ids[] = {
{"TOS6200", 0},
{"TOS6208", 0},
{"TOS1900", 0},
{"", 0},
};
MODULE_DEVICE_TABLE(acpi, toshiba_device_ids);
struct key_entry {
char type;
u16 code;
u16 keycode;
};
enum {KE_KEY, KE_END};
static struct key_entry toshiba_acpi_keymap[] = {
{KE_KEY, 0x101, KEY_MUTE},
{KE_KEY, 0x102, KEY_ZOOMOUT},
{KE_KEY, 0x103, KEY_ZOOMIN},
{KE_KEY, 0x13b, KEY_COFFEE},
{KE_KEY, 0x13c, KEY_BATTERY},
{KE_KEY, 0x13d, KEY_SLEEP},
{KE_KEY, 0x13e, KEY_SUSPEND},
{KE_KEY, 0x13f, KEY_SWITCHVIDEOMODE},
{KE_KEY, 0x140, KEY_BRIGHTNESSDOWN},
{KE_KEY, 0x141, KEY_BRIGHTNESSUP},
{KE_KEY, 0x142, KEY_WLAN},
{KE_KEY, 0x143, KEY_PROG1},
{KE_KEY, 0xb05, KEY_PROG2},
{KE_KEY, 0xb06, KEY_WWW},
{KE_KEY, 0xb07, KEY_MAIL},
{KE_KEY, 0xb30, KEY_STOP},
{KE_KEY, 0xb31, KEY_PREVIOUSSONG},
{KE_KEY, 0xb32, KEY_NEXTSONG},
{KE_KEY, 0xb33, KEY_PLAYPAUSE},
{KE_KEY, 0xb5a, KEY_MEDIA},
{KE_END, 0, 0},
};
/* utility
*/
static __inline__ void _set_bit(u32 * word, u32 mask, int value)
{
*word = (*word & ~mask) | (mask * value);
}
/* acpi interface wrappers
*/
static int is_valid_acpi_path(const char *methodName)
{
acpi_handle handle;
acpi_status status;
status = acpi_get_handle(NULL, (char *)methodName, &handle);
return !ACPI_FAILURE(status);
}
static int write_acpi_int(const char *methodName, int val)
{
struct acpi_object_list params;
union acpi_object in_objs[1];
acpi_status status;
params.count = ARRAY_SIZE(in_objs);
params.pointer = in_objs;
in_objs[0].type = ACPI_TYPE_INTEGER;
in_objs[0].integer.value = val;
status = acpi_evaluate_object(NULL, (char *)methodName, &params, NULL);
return (status == AE_OK);
}
#if 0
static int read_acpi_int(const char *methodName, int *pVal)
{
struct acpi_buffer results;
union acpi_object out_objs[1];
acpi_status status;
results.length = sizeof(out_objs);
results.pointer = out_objs;
status = acpi_evaluate_object(0, (char *)methodName, 0, &results);
*pVal = out_objs[0].integer.value;
return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER);
}
#endif
static const char *method_hci /*= 0*/ ;
/* Perform a raw HCI call. Here we don't care about input or output buffer
* format.
*/
static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS])
{
struct acpi_object_list params;
union acpi_object in_objs[HCI_WORDS];
struct acpi_buffer results;
union acpi_object out_objs[HCI_WORDS + 1];
acpi_status status;
int i;
params.count = HCI_WORDS;
params.pointer = in_objs;
for (i = 0; i < HCI_WORDS; ++i) {
in_objs[i].type = ACPI_TYPE_INTEGER;
in_objs[i].integer.value = in[i];
}
results.length = sizeof(out_objs);
results.pointer = out_objs;
status = acpi_evaluate_object(NULL, (char *)method_hci, &params,
&results);
if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) {
for (i = 0; i < out_objs->package.count; ++i) {
out[i] = out_objs->package.elements[i].integer.value;
}
}
return status;
}
/* common hci tasks (get or set one or two value)
*
* In addition to the ACPI status, the HCI system returns a result which
* may be useful (such as "not supported").
*/
static acpi_status hci_write1(u32 reg, u32 in1, u32 * result)
{
u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 };
u32 out[HCI_WORDS];
acpi_status status = hci_raw(in, out);
*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
return status;
}
static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result)
{
u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 };
u32 out[HCI_WORDS];
acpi_status status = hci_raw(in, out);
*out1 = out[2];
*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
return status;
}
static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result)
{
u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 };
u32 out[HCI_WORDS];
acpi_status status = hci_raw(in, out);
*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
return status;
}
static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result)
{
u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 };
u32 out[HCI_WORDS];
acpi_status status = hci_raw(in, out);
*out1 = out[2];
*out2 = out[3];
*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
return status;
}
struct toshiba_acpi_dev {
struct platform_device *p_dev;
struct rfkill *bt_rfk;
struct input_dev *hotkey_dev;
acpi_handle handle;
const char *bt_name;
struct mutex mutex;
};
static struct toshiba_acpi_dev toshiba_acpi = {
.bt_name = "Toshiba Bluetooth",
};
/* Bluetooth rfkill handlers */
static u32 hci_get_bt_present(bool *present)
{
u32 hci_result;
u32 value, value2;
value = 0;
value2 = 0;
hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
if (hci_result == HCI_SUCCESS)
*present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false;
return hci_result;
}
static u32 hci_get_radio_state(bool *radio_state)
{
u32 hci_result;
u32 value, value2;
value = 0;
value2 = 0x0001;
hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
*radio_state = value & HCI_WIRELESS_KILL_SWITCH;
return hci_result;
}
static int bt_rfkill_set_block(void *data, bool blocked)
{
struct toshiba_acpi_dev *dev = data;
u32 result1, result2;
u32 value;
int err;
bool radio_state;
value = (blocked == false);
mutex_lock(&dev->mutex);
if (hci_get_radio_state(&radio_state) != HCI_SUCCESS) {
err = -EBUSY;
goto out;
}
if (!radio_state) {
err = 0;
goto out;
}
hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1);
hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2);
if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS)
err = -EBUSY;
else
err = 0;
out:
mutex_unlock(&dev->mutex);
return err;
}
static void bt_rfkill_poll(struct rfkill *rfkill, void *data)
{
bool new_rfk_state;
bool value;
u32 hci_result;
struct toshiba_acpi_dev *dev = data;
mutex_lock(&dev->mutex);
hci_result = hci_get_radio_state(&value);
if (hci_result != HCI_SUCCESS) {
/* Can't do anything useful */
mutex_unlock(&dev->mutex);
return;
}
new_rfk_state = value;
mutex_unlock(&dev->mutex);
if (rfkill_set_hw_state(rfkill, !new_rfk_state))
bt_rfkill_set_block(data, true);
}
static const struct rfkill_ops toshiba_rfk_ops = {
.set_block = bt_rfkill_set_block,
.poll = bt_rfkill_poll,
};
static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ;
static struct backlight_device *toshiba_backlight_device;
static int force_fan;
static int last_key_event;
static int key_event_valid;
static int get_lcd(struct backlight_device *bd)
{
u32 hci_result;
u32 value;
hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result);
if (hci_result == HCI_SUCCESS) {
return (value >> HCI_LCD_BRIGHTNESS_SHIFT);
} else
return -EFAULT;
}
static int lcd_proc_show(struct seq_file *m, void *v)
{
int value = get_lcd(NULL);
if (value >= 0) {
seq_printf(m, "brightness: %d\n", value);
seq_printf(m, "brightness_levels: %d\n",
HCI_LCD_BRIGHTNESS_LEVELS);
} else {
printk(MY_ERR "Error reading LCD brightness\n");
}
return 0;
}
static int lcd_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, lcd_proc_show, NULL);
}
static int set_lcd(int value)
{
u32 hci_result;
value = value << HCI_LCD_BRIGHTNESS_SHIFT;
hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result);
if (hci_result != HCI_SUCCESS)
return -EFAULT;
return 0;
}
static int set_lcd_status(struct backlight_device *bd)
{
return set_lcd(bd->props.brightness);
}
static ssize_t lcd_proc_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
char cmd[42];
size_t len;
int value;
int ret;
len = min(count, sizeof(cmd) - 1);
if (copy_from_user(cmd, buf, len))
return -EFAULT;
cmd[len] = '\0';
if (sscanf(cmd, " brightness : %i", &value) == 1 &&
value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) {
ret = set_lcd(value);
if (ret == 0)
ret = count;
} else {
ret = -EINVAL;
}
return ret;
}
static const struct file_operations lcd_proc_fops = {
.owner = THIS_MODULE,
.open = lcd_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = lcd_proc_write,
};
static int video_proc_show(struct seq_file *m, void *v)
{
u32 hci_result;
u32 value;
hci_read1(HCI_VIDEO_OUT, &value, &hci_result);
if (hci_result == HCI_SUCCESS) {
int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0;
int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0;
int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0;
seq_printf(m, "lcd_out: %d\n", is_lcd);
seq_printf(m, "crt_out: %d\n", is_crt);
seq_printf(m, "tv_out: %d\n", is_tv);
} else {
printk(MY_ERR "Error reading video out status\n");
}
return 0;
}
static int video_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, video_proc_show, NULL);
}
static ssize_t video_proc_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
char *cmd, *buffer;
int value;
int remain = count;
int lcd_out = -1;
int crt_out = -1;
int tv_out = -1;
u32 hci_result;
u32 video_out;
cmd = kmalloc(count + 1, GFP_KERNEL);
if (!cmd)
return -ENOMEM;
if (copy_from_user(cmd, buf, count)) {
kfree(cmd);
return -EFAULT;
}
cmd[count] = '\0';
buffer = cmd;
/* scan expression. Multiple expressions may be delimited with ;
*
* NOTE: to keep scanning simple, invalid fields are ignored
*/
while (remain) {
if (sscanf(buffer, " lcd_out : %i", &value) == 1)
lcd_out = value & 1;
else if (sscanf(buffer, " crt_out : %i", &value) == 1)
crt_out = value & 1;
else if (sscanf(buffer, " tv_out : %i", &value) == 1)
tv_out = value & 1;
/* advance to one character past the next ; */
do {
++buffer;
--remain;
}
while (remain && *(buffer - 1) != ';');
}
kfree(cmd);
hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result);
if (hci_result == HCI_SUCCESS) {
unsigned int new_video_out = video_out;
if (lcd_out != -1)
_set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out);
if (crt_out != -1)
_set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out);
if (tv_out != -1)
_set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out);
/* To avoid unnecessary video disruption, only write the new
* video setting if something changed. */
if (new_video_out != video_out)
write_acpi_int(METHOD_VIDEO_OUT, new_video_out);
} else {
return -EFAULT;
}
return count;
}
static const struct file_operations video_proc_fops = {
.owner = THIS_MODULE,
.open = video_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = video_proc_write,
};
static int fan_proc_show(struct seq_file *m, void *v)
{
u32 hci_result;
u32 value;
hci_read1(HCI_FAN, &value, &hci_result);
if (hci_result == HCI_SUCCESS) {
seq_printf(m, "running: %d\n", (value > 0));
seq_printf(m, "force_on: %d\n", force_fan);
} else {
printk(MY_ERR "Error reading fan status\n");
}
return 0;
}
static int fan_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, fan_proc_show, NULL);
}
static ssize_t fan_proc_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
char cmd[42];
size_t len;
int value;
u32 hci_result;
len = min(count, sizeof(cmd) - 1);
if (copy_from_user(cmd, buf, len))
return -EFAULT;
cmd[len] = '\0';
if (sscanf(cmd, " force_on : %i", &value) == 1 &&
value >= 0 && value <= 1) {
hci_write1(HCI_FAN, value, &hci_result);
if (hci_result != HCI_SUCCESS)
return -EFAULT;
else
force_fan = value;
} else {
return -EINVAL;
}
return count;
}
static const struct file_operations fan_proc_fops = {
.owner = THIS_MODULE,
.open = fan_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = fan_proc_write,
};
static int keys_proc_show(struct seq_file *m, void *v)
{
u32 hci_result;
u32 value;
if (!key_event_valid) {
hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
if (hci_result == HCI_SUCCESS) {
key_event_valid = 1;
last_key_event = value;
} else if (hci_result == HCI_EMPTY) {
/* better luck next time */
} else if (hci_result == HCI_NOT_SUPPORTED) {
/* This is a workaround for an unresolved issue on
* some machines where system events sporadically
* become disabled. */
hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
printk(MY_NOTICE "Re-enabled hotkeys\n");
} else {
printk(MY_ERR "Error reading hotkey status\n");
goto end;
}
}
seq_printf(m, "hotkey_ready: %d\n", key_event_valid);
seq_printf(m, "hotkey: 0x%04x\n", last_key_event);
end:
return 0;
}
static int keys_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, keys_proc_show, NULL);
}
static ssize_t keys_proc_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
char cmd[42];
size_t len;
int value;
len = min(count, sizeof(cmd) - 1);
if (copy_from_user(cmd, buf, len))
return -EFAULT;
cmd[len] = '\0';
if (sscanf(cmd, " hotkey_ready : %i", &value) == 1 && value == 0) {
key_event_valid = 0;
} else {
return -EINVAL;
}
return count;
}
static const struct file_operations keys_proc_fops = {
.owner = THIS_MODULE,
.open = keys_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = keys_proc_write,
};
static int version_proc_show(struct seq_file *m, void *v)
{
seq_printf(m, "driver: %s\n", TOSHIBA_ACPI_VERSION);
seq_printf(m, "proc_interface: %d\n", PROC_INTERFACE_VERSION);
return 0;
}
static int version_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, version_proc_show, PDE(inode)->data);
}
static const struct file_operations version_proc_fops = {
.owner = THIS_MODULE,
.open = version_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/* proc and module init
*/
#define PROC_TOSHIBA "toshiba"
static acpi_status __init add_device(void)
{
proc_create("lcd", S_IRUGO | S_IWUSR, toshiba_proc_dir, &lcd_proc_fops);
proc_create("video", S_IRUGO | S_IWUSR, toshiba_proc_dir, &video_proc_fops);
proc_create("fan", S_IRUGO | S_IWUSR, toshiba_proc_dir, &fan_proc_fops);
proc_create("keys", S_IRUGO | S_IWUSR, toshiba_proc_dir, &keys_proc_fops);
proc_create("version", S_IRUGO, toshiba_proc_dir, &version_proc_fops);
return AE_OK;
}
static acpi_status remove_device(void)
{
remove_proc_entry("lcd", toshiba_proc_dir);
remove_proc_entry("video", toshiba_proc_dir);
remove_proc_entry("fan", toshiba_proc_dir);
remove_proc_entry("keys", toshiba_proc_dir);
remove_proc_entry("version", toshiba_proc_dir);
return AE_OK;
}
static struct backlight_ops toshiba_backlight_data = {
.get_brightness = get_lcd,
.update_status = set_lcd_status,
};
static struct key_entry *toshiba_acpi_get_entry_by_scancode(unsigned int code)
{
struct key_entry *key;
for (key = toshiba_acpi_keymap; key->type != KE_END; key++)
if (code == key->code)
return key;
return NULL;
}
static struct key_entry *toshiba_acpi_get_entry_by_keycode(unsigned int code)
{
struct key_entry *key;
for (key = toshiba_acpi_keymap; key->type != KE_END; key++)
if (code == key->keycode && key->type == KE_KEY)
return key;
return NULL;
}
static int toshiba_acpi_getkeycode(struct input_dev *dev,
unsigned int scancode, unsigned int *keycode)
{
struct key_entry *key = toshiba_acpi_get_entry_by_scancode(scancode);
if (key && key->type == KE_KEY) {
*keycode = key->keycode;
return 0;
}
return -EINVAL;
}
static int toshiba_acpi_setkeycode(struct input_dev *dev,
unsigned int scancode, unsigned int keycode)
{
struct key_entry *key;
unsigned int old_keycode;
key = toshiba_acpi_get_entry_by_scancode(scancode);
if (key && key->type == KE_KEY) {
old_keycode = key->keycode;
key->keycode = keycode;
set_bit(keycode, dev->keybit);
if (!toshiba_acpi_get_entry_by_keycode(old_keycode))
clear_bit(old_keycode, dev->keybit);
return 0;
}
return -EINVAL;
}
static void toshiba_acpi_notify(acpi_handle handle, u32 event, void *context)
{
u32 hci_result, value;
struct key_entry *key;
if (event != 0x80)
return;
do {
hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
if (hci_result == HCI_SUCCESS) {
if (value == 0x100)
continue;
/* act on key press; ignore key release */
if (value & 0x80)
continue;
key = toshiba_acpi_get_entry_by_scancode
(value);
if (!key) {
printk(MY_INFO "Unknown key %x\n",
value);
continue;
}
input_report_key(toshiba_acpi.hotkey_dev,
key->keycode, 1);
input_sync(toshiba_acpi.hotkey_dev);
input_report_key(toshiba_acpi.hotkey_dev,
key->keycode, 0);
input_sync(toshiba_acpi.hotkey_dev);
} else if (hci_result == HCI_NOT_SUPPORTED) {
/* This is a workaround for an unresolved issue on
* some machines where system events sporadically
* become disabled. */
hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
printk(MY_NOTICE "Re-enabled hotkeys\n");
}
} while (hci_result != HCI_EMPTY);
}
static int toshiba_acpi_setup_keyboard(char *device)
{
acpi_status status;
acpi_handle handle;
int result;
const struct key_entry *key;
status = acpi_get_handle(NULL, device, &handle);
if (ACPI_FAILURE(status)) {
printk(MY_INFO "Unable to get notification device\n");
return -ENODEV;
}
toshiba_acpi.handle = handle;
status = acpi_evaluate_object(handle, "ENAB", NULL, NULL);
if (ACPI_FAILURE(status)) {
printk(MY_INFO "Unable to enable hotkeys\n");
return -ENODEV;
}
status = acpi_install_notify_handler(handle, ACPI_DEVICE_NOTIFY,
toshiba_acpi_notify, NULL);
if (ACPI_FAILURE(status)) {
printk(MY_INFO "Unable to install hotkey notification\n");
return -ENODEV;
}
toshiba_acpi.hotkey_dev = input_allocate_device();
if (!toshiba_acpi.hotkey_dev) {
printk(MY_INFO "Unable to register input device\n");
return -ENOMEM;
}
toshiba_acpi.hotkey_dev->name = "Toshiba input device";
toshiba_acpi.hotkey_dev->phys = device;
toshiba_acpi.hotkey_dev->id.bustype = BUS_HOST;
toshiba_acpi.hotkey_dev->getkeycode = toshiba_acpi_getkeycode;
toshiba_acpi.hotkey_dev->setkeycode = toshiba_acpi_setkeycode;
for (key = toshiba_acpi_keymap; key->type != KE_END; key++) {
set_bit(EV_KEY, toshiba_acpi.hotkey_dev->evbit);
set_bit(key->keycode, toshiba_acpi.hotkey_dev->keybit);
}
result = input_register_device(toshiba_acpi.hotkey_dev);
if (result) {
printk(MY_INFO "Unable to register input device\n");
return result;
}
return 0;
}
static void toshiba_acpi_exit(void)
{
if (toshiba_acpi.hotkey_dev)
input_unregister_device(toshiba_acpi.hotkey_dev);
if (toshiba_acpi.bt_rfk) {
rfkill_unregister(toshiba_acpi.bt_rfk);
rfkill_destroy(toshiba_acpi.bt_rfk);
}
if (toshiba_backlight_device)
backlight_device_unregister(toshiba_backlight_device);
remove_device();
if (toshiba_proc_dir)
remove_proc_entry(PROC_TOSHIBA, acpi_root_dir);
acpi_remove_notify_handler(toshiba_acpi.handle, ACPI_DEVICE_NOTIFY,
toshiba_acpi_notify);
platform_device_unregister(toshiba_acpi.p_dev);
return;
}
static int __init toshiba_acpi_init(void)
{
acpi_status status = AE_OK;
u32 hci_result;
bool bt_present;
int ret = 0;
struct backlight_properties props;
if (acpi_disabled)
return -ENODEV;
/* simple device detection: look for HCI method */
if (is_valid_acpi_path(TOSH_INTERFACE_1 GHCI_METHOD)) {
method_hci = TOSH_INTERFACE_1 GHCI_METHOD;
if (toshiba_acpi_setup_keyboard(TOSH_INTERFACE_1))
printk(MY_INFO "Unable to activate hotkeys\n");
} else if (is_valid_acpi_path(TOSH_INTERFACE_2 GHCI_METHOD)) {
method_hci = TOSH_INTERFACE_2 GHCI_METHOD;
if (toshiba_acpi_setup_keyboard(TOSH_INTERFACE_2))
printk(MY_INFO "Unable to activate hotkeys\n");
} else
return -ENODEV;
printk(MY_INFO "Toshiba Laptop ACPI Extras version %s\n",
TOSHIBA_ACPI_VERSION);
printk(MY_INFO " HCI method: %s\n", method_hci);
mutex_init(&toshiba_acpi.mutex);
toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi",
-1, NULL, 0);
if (IS_ERR(toshiba_acpi.p_dev)) {
ret = PTR_ERR(toshiba_acpi.p_dev);
printk(MY_ERR "unable to register platform device\n");
toshiba_acpi.p_dev = NULL;
toshiba_acpi_exit();
return ret;
}
force_fan = 0;
key_event_valid = 0;
/* enable event fifo */
hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir);
if (!toshiba_proc_dir) {
toshiba_acpi_exit();
return -ENODEV;
} else {
status = add_device();
if (ACPI_FAILURE(status)) {
toshiba_acpi_exit();
return -ENODEV;
}
}
props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1;
toshiba_backlight_device = backlight_device_register("toshiba",
&toshiba_acpi.p_dev->dev,
NULL,
&toshiba_backlight_data,
&props);
if (IS_ERR(toshiba_backlight_device)) {
ret = PTR_ERR(toshiba_backlight_device);
printk(KERN_ERR "Could not register toshiba backlight device\n");
toshiba_backlight_device = NULL;
toshiba_acpi_exit();
return ret;
}
/* Register rfkill switch for Bluetooth */
if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) {
toshiba_acpi.bt_rfk = rfkill_alloc(toshiba_acpi.bt_name,
&toshiba_acpi.p_dev->dev,
RFKILL_TYPE_BLUETOOTH,
&toshiba_rfk_ops,
&toshiba_acpi);
if (!toshiba_acpi.bt_rfk) {
printk(MY_ERR "unable to allocate rfkill device\n");
toshiba_acpi_exit();
return -ENOMEM;
}
ret = rfkill_register(toshiba_acpi.bt_rfk);
if (ret) {
printk(MY_ERR "unable to register rfkill device\n");
rfkill_destroy(toshiba_acpi.bt_rfk);
toshiba_acpi_exit();
return ret;
}
}
return 0;
}
module_init(toshiba_acpi_init);
module_exit(toshiba_acpi_exit);