d3208b5eba
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2206 lines
57 KiB
C
2206 lines
57 KiB
C
/****************************************************************************
|
|
* Driver for Solarflare Solarstorm network controllers and boards
|
|
* Copyright 2005-2006 Fen Systems Ltd.
|
|
* Copyright 2005-2008 Solarflare Communications Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/in.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/ethtool.h>
|
|
#include "net_driver.h"
|
|
#include "gmii.h"
|
|
#include "ethtool.h"
|
|
#include "tx.h"
|
|
#include "rx.h"
|
|
#include "efx.h"
|
|
#include "mdio_10g.h"
|
|
#include "falcon.h"
|
|
#include "workarounds.h"
|
|
#include "mac.h"
|
|
|
|
#define EFX_MAX_MTU (9 * 1024)
|
|
|
|
/* RX slow fill workqueue. If memory allocation fails in the fast path,
|
|
* a work item is pushed onto this work queue to retry the allocation later,
|
|
* to avoid the NIC being starved of RX buffers. Since this is a per cpu
|
|
* workqueue, there is nothing to be gained in making it per NIC
|
|
*/
|
|
static struct workqueue_struct *refill_workqueue;
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Configurable values
|
|
*
|
|
*************************************************************************/
|
|
|
|
/*
|
|
* Enable large receive offload (LRO) aka soft segment reassembly (SSR)
|
|
*
|
|
* This sets the default for new devices. It can be controlled later
|
|
* using ethtool.
|
|
*/
|
|
static int lro = 1;
|
|
module_param(lro, int, 0644);
|
|
MODULE_PARM_DESC(lro, "Large receive offload acceleration");
|
|
|
|
/*
|
|
* Use separate channels for TX and RX events
|
|
*
|
|
* Set this to 1 to use separate channels for TX and RX. It allows us to
|
|
* apply a higher level of interrupt moderation to TX events.
|
|
*
|
|
* This is forced to 0 for MSI interrupt mode as the interrupt vector
|
|
* is not written
|
|
*/
|
|
static unsigned int separate_tx_and_rx_channels = 1;
|
|
|
|
/* This is the weight assigned to each of the (per-channel) virtual
|
|
* NAPI devices.
|
|
*/
|
|
static int napi_weight = 64;
|
|
|
|
/* This is the time (in jiffies) between invocations of the hardware
|
|
* monitor, which checks for known hardware bugs and resets the
|
|
* hardware and driver as necessary.
|
|
*/
|
|
unsigned int efx_monitor_interval = 1 * HZ;
|
|
|
|
/* This controls whether or not the hardware monitor will trigger a
|
|
* reset when it detects an error condition.
|
|
*/
|
|
static unsigned int monitor_reset = 1;
|
|
|
|
/* This controls whether or not the driver will initialise devices
|
|
* with invalid MAC addresses stored in the EEPROM or flash. If true,
|
|
* such devices will be initialised with a random locally-generated
|
|
* MAC address. This allows for loading the sfc_mtd driver to
|
|
* reprogram the flash, even if the flash contents (including the MAC
|
|
* address) have previously been erased.
|
|
*/
|
|
static unsigned int allow_bad_hwaddr;
|
|
|
|
/* Initial interrupt moderation settings. They can be modified after
|
|
* module load with ethtool.
|
|
*
|
|
* The default for RX should strike a balance between increasing the
|
|
* round-trip latency and reducing overhead.
|
|
*/
|
|
static unsigned int rx_irq_mod_usec = 60;
|
|
|
|
/* Initial interrupt moderation settings. They can be modified after
|
|
* module load with ethtool.
|
|
*
|
|
* This default is chosen to ensure that a 10G link does not go idle
|
|
* while a TX queue is stopped after it has become full. A queue is
|
|
* restarted when it drops below half full. The time this takes (assuming
|
|
* worst case 3 descriptors per packet and 1024 descriptors) is
|
|
* 512 / 3 * 1.2 = 205 usec.
|
|
*/
|
|
static unsigned int tx_irq_mod_usec = 150;
|
|
|
|
/* This is the first interrupt mode to try out of:
|
|
* 0 => MSI-X
|
|
* 1 => MSI
|
|
* 2 => legacy
|
|
*/
|
|
static unsigned int interrupt_mode;
|
|
|
|
/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
|
|
* i.e. the number of CPUs among which we may distribute simultaneous
|
|
* interrupt handling.
|
|
*
|
|
* Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
|
|
* The default (0) means to assign an interrupt to each package (level II cache)
|
|
*/
|
|
static unsigned int rss_cpus;
|
|
module_param(rss_cpus, uint, 0444);
|
|
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Utility functions and prototypes
|
|
*
|
|
*************************************************************************/
|
|
static void efx_remove_channel(struct efx_channel *channel);
|
|
static void efx_remove_port(struct efx_nic *efx);
|
|
static void efx_fini_napi(struct efx_nic *efx);
|
|
static void efx_fini_channels(struct efx_nic *efx);
|
|
|
|
#define EFX_ASSERT_RESET_SERIALISED(efx) \
|
|
do { \
|
|
if ((efx->state == STATE_RUNNING) || \
|
|
(efx->state == STATE_RESETTING)) \
|
|
ASSERT_RTNL(); \
|
|
} while (0)
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Event queue processing
|
|
*
|
|
*************************************************************************/
|
|
|
|
/* Process channel's event queue
|
|
*
|
|
* This function is responsible for processing the event queue of a
|
|
* single channel. The caller must guarantee that this function will
|
|
* never be concurrently called more than once on the same channel,
|
|
* though different channels may be being processed concurrently.
|
|
*/
|
|
static inline int efx_process_channel(struct efx_channel *channel, int rx_quota)
|
|
{
|
|
int rxdmaqs;
|
|
struct efx_rx_queue *rx_queue;
|
|
|
|
if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE ||
|
|
!channel->enabled))
|
|
return rx_quota;
|
|
|
|
rxdmaqs = falcon_process_eventq(channel, &rx_quota);
|
|
|
|
/* Deliver last RX packet. */
|
|
if (channel->rx_pkt) {
|
|
__efx_rx_packet(channel, channel->rx_pkt,
|
|
channel->rx_pkt_csummed);
|
|
channel->rx_pkt = NULL;
|
|
}
|
|
|
|
efx_flush_lro(channel);
|
|
efx_rx_strategy(channel);
|
|
|
|
/* Refill descriptor rings as necessary */
|
|
rx_queue = &channel->efx->rx_queue[0];
|
|
while (rxdmaqs) {
|
|
if (rxdmaqs & 0x01)
|
|
efx_fast_push_rx_descriptors(rx_queue);
|
|
rx_queue++;
|
|
rxdmaqs >>= 1;
|
|
}
|
|
|
|
return rx_quota;
|
|
}
|
|
|
|
/* Mark channel as finished processing
|
|
*
|
|
* Note that since we will not receive further interrupts for this
|
|
* channel before we finish processing and call the eventq_read_ack()
|
|
* method, there is no need to use the interrupt hold-off timers.
|
|
*/
|
|
static inline void efx_channel_processed(struct efx_channel *channel)
|
|
{
|
|
/* The interrupt handler for this channel may set work_pending
|
|
* as soon as we acknowledge the events we've seen. Make sure
|
|
* it's cleared before then. */
|
|
channel->work_pending = 0;
|
|
smp_wmb();
|
|
|
|
falcon_eventq_read_ack(channel);
|
|
}
|
|
|
|
/* NAPI poll handler
|
|
*
|
|
* NAPI guarantees serialisation of polls of the same device, which
|
|
* provides the guarantee required by efx_process_channel().
|
|
*/
|
|
static int efx_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct efx_channel *channel =
|
|
container_of(napi, struct efx_channel, napi_str);
|
|
struct net_device *napi_dev = channel->napi_dev;
|
|
int unused;
|
|
int rx_packets;
|
|
|
|
EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
|
|
channel->channel, raw_smp_processor_id());
|
|
|
|
unused = efx_process_channel(channel, budget);
|
|
rx_packets = (budget - unused);
|
|
|
|
if (rx_packets < budget) {
|
|
/* There is no race here; although napi_disable() will
|
|
* only wait for netif_rx_complete(), this isn't a problem
|
|
* since efx_channel_processed() will have no effect if
|
|
* interrupts have already been disabled.
|
|
*/
|
|
netif_rx_complete(napi_dev, napi);
|
|
efx_channel_processed(channel);
|
|
}
|
|
|
|
return rx_packets;
|
|
}
|
|
|
|
/* Process the eventq of the specified channel immediately on this CPU
|
|
*
|
|
* Disable hardware generated interrupts, wait for any existing
|
|
* processing to finish, then directly poll (and ack ) the eventq.
|
|
* Finally reenable NAPI and interrupts.
|
|
*
|
|
* Since we are touching interrupts the caller should hold the suspend lock
|
|
*/
|
|
void efx_process_channel_now(struct efx_channel *channel)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
BUG_ON(!channel->used_flags);
|
|
BUG_ON(!channel->enabled);
|
|
|
|
/* Disable interrupts and wait for ISRs to complete */
|
|
falcon_disable_interrupts(efx);
|
|
if (efx->legacy_irq)
|
|
synchronize_irq(efx->legacy_irq);
|
|
if (channel->has_interrupt && channel->irq)
|
|
synchronize_irq(channel->irq);
|
|
|
|
/* Wait for any NAPI processing to complete */
|
|
napi_disable(&channel->napi_str);
|
|
|
|
/* Poll the channel */
|
|
efx_process_channel(channel, efx->type->evq_size);
|
|
|
|
/* Ack the eventq. This may cause an interrupt to be generated
|
|
* when they are reenabled */
|
|
efx_channel_processed(channel);
|
|
|
|
napi_enable(&channel->napi_str);
|
|
falcon_enable_interrupts(efx);
|
|
}
|
|
|
|
/* Create event queue
|
|
* Event queue memory allocations are done only once. If the channel
|
|
* is reset, the memory buffer will be reused; this guards against
|
|
* errors during channel reset and also simplifies interrupt handling.
|
|
*/
|
|
static int efx_probe_eventq(struct efx_channel *channel)
|
|
{
|
|
EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
|
|
|
|
return falcon_probe_eventq(channel);
|
|
}
|
|
|
|
/* Prepare channel's event queue */
|
|
static int efx_init_eventq(struct efx_channel *channel)
|
|
{
|
|
EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
|
|
|
|
channel->eventq_read_ptr = 0;
|
|
|
|
return falcon_init_eventq(channel);
|
|
}
|
|
|
|
static void efx_fini_eventq(struct efx_channel *channel)
|
|
{
|
|
EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
|
|
|
|
falcon_fini_eventq(channel);
|
|
}
|
|
|
|
static void efx_remove_eventq(struct efx_channel *channel)
|
|
{
|
|
EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
|
|
|
|
falcon_remove_eventq(channel);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Channel handling
|
|
*
|
|
*************************************************************************/
|
|
|
|
static int efx_probe_channel(struct efx_channel *channel)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
int rc;
|
|
|
|
EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
|
|
|
|
rc = efx_probe_eventq(channel);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
efx_for_each_channel_tx_queue(tx_queue, channel) {
|
|
rc = efx_probe_tx_queue(tx_queue);
|
|
if (rc)
|
|
goto fail2;
|
|
}
|
|
|
|
efx_for_each_channel_rx_queue(rx_queue, channel) {
|
|
rc = efx_probe_rx_queue(rx_queue);
|
|
if (rc)
|
|
goto fail3;
|
|
}
|
|
|
|
channel->n_rx_frm_trunc = 0;
|
|
|
|
return 0;
|
|
|
|
fail3:
|
|
efx_for_each_channel_rx_queue(rx_queue, channel)
|
|
efx_remove_rx_queue(rx_queue);
|
|
fail2:
|
|
efx_for_each_channel_tx_queue(tx_queue, channel)
|
|
efx_remove_tx_queue(tx_queue);
|
|
fail1:
|
|
return rc;
|
|
}
|
|
|
|
|
|
/* Channels are shutdown and reinitialised whilst the NIC is running
|
|
* to propagate configuration changes (mtu, checksum offload), or
|
|
* to clear hardware error conditions
|
|
*/
|
|
static int efx_init_channels(struct efx_nic *efx)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
struct efx_channel *channel;
|
|
int rc = 0;
|
|
|
|
/* Calculate the rx buffer allocation parameters required to
|
|
* support the current MTU, including padding for header
|
|
* alignment and overruns.
|
|
*/
|
|
efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
|
|
EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
|
|
efx->type->rx_buffer_padding);
|
|
efx->rx_buffer_order = get_order(efx->rx_buffer_len);
|
|
|
|
/* Initialise the channels */
|
|
efx_for_each_channel(channel, efx) {
|
|
EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
|
|
|
|
rc = efx_init_eventq(channel);
|
|
if (rc)
|
|
goto err;
|
|
|
|
efx_for_each_channel_tx_queue(tx_queue, channel) {
|
|
rc = efx_init_tx_queue(tx_queue);
|
|
if (rc)
|
|
goto err;
|
|
}
|
|
|
|
/* The rx buffer allocation strategy is MTU dependent */
|
|
efx_rx_strategy(channel);
|
|
|
|
efx_for_each_channel_rx_queue(rx_queue, channel) {
|
|
rc = efx_init_rx_queue(rx_queue);
|
|
if (rc)
|
|
goto err;
|
|
}
|
|
|
|
WARN_ON(channel->rx_pkt != NULL);
|
|
efx_rx_strategy(channel);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
EFX_ERR(efx, "failed to initialise channel %d\n",
|
|
channel ? channel->channel : -1);
|
|
efx_fini_channels(efx);
|
|
return rc;
|
|
}
|
|
|
|
/* This enables event queue processing and packet transmission.
|
|
*
|
|
* Note that this function is not allowed to fail, since that would
|
|
* introduce too much complexity into the suspend/resume path.
|
|
*/
|
|
static void efx_start_channel(struct efx_channel *channel)
|
|
{
|
|
struct efx_rx_queue *rx_queue;
|
|
|
|
EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
|
|
|
|
if (!(channel->efx->net_dev->flags & IFF_UP))
|
|
netif_napi_add(channel->napi_dev, &channel->napi_str,
|
|
efx_poll, napi_weight);
|
|
|
|
/* The interrupt handler for this channel may set work_pending
|
|
* as soon as we enable it. Make sure it's cleared before
|
|
* then. Similarly, make sure it sees the enabled flag set. */
|
|
channel->work_pending = 0;
|
|
channel->enabled = 1;
|
|
smp_wmb();
|
|
|
|
napi_enable(&channel->napi_str);
|
|
|
|
/* Load up RX descriptors */
|
|
efx_for_each_channel_rx_queue(rx_queue, channel)
|
|
efx_fast_push_rx_descriptors(rx_queue);
|
|
}
|
|
|
|
/* This disables event queue processing and packet transmission.
|
|
* This function does not guarantee that all queue processing
|
|
* (e.g. RX refill) is complete.
|
|
*/
|
|
static void efx_stop_channel(struct efx_channel *channel)
|
|
{
|
|
struct efx_rx_queue *rx_queue;
|
|
|
|
if (!channel->enabled)
|
|
return;
|
|
|
|
EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
|
|
|
|
channel->enabled = 0;
|
|
napi_disable(&channel->napi_str);
|
|
|
|
/* Ensure that any worker threads have exited or will be no-ops */
|
|
efx_for_each_channel_rx_queue(rx_queue, channel) {
|
|
spin_lock_bh(&rx_queue->add_lock);
|
|
spin_unlock_bh(&rx_queue->add_lock);
|
|
}
|
|
}
|
|
|
|
static void efx_fini_channels(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
BUG_ON(efx->port_enabled);
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
|
|
|
|
efx_for_each_channel_rx_queue(rx_queue, channel)
|
|
efx_fini_rx_queue(rx_queue);
|
|
efx_for_each_channel_tx_queue(tx_queue, channel)
|
|
efx_fini_tx_queue(tx_queue);
|
|
}
|
|
|
|
/* Do the event queues last so that we can handle flush events
|
|
* for all DMA queues. */
|
|
efx_for_each_channel(channel, efx) {
|
|
EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
|
|
|
|
efx_fini_eventq(channel);
|
|
}
|
|
}
|
|
|
|
static void efx_remove_channel(struct efx_channel *channel)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
|
|
EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
|
|
|
|
efx_for_each_channel_rx_queue(rx_queue, channel)
|
|
efx_remove_rx_queue(rx_queue);
|
|
efx_for_each_channel_tx_queue(tx_queue, channel)
|
|
efx_remove_tx_queue(tx_queue);
|
|
efx_remove_eventq(channel);
|
|
|
|
channel->used_flags = 0;
|
|
}
|
|
|
|
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
|
|
{
|
|
queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Port handling
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* This ensures that the kernel is kept informed (via
|
|
* netif_carrier_on/off) of the link status, and also maintains the
|
|
* link status's stop on the port's TX queue.
|
|
*/
|
|
static void efx_link_status_changed(struct efx_nic *efx)
|
|
{
|
|
int carrier_ok;
|
|
|
|
/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
|
|
* that no events are triggered between unregister_netdev() and the
|
|
* driver unloading. A more general condition is that NETDEV_CHANGE
|
|
* can only be generated between NETDEV_UP and NETDEV_DOWN */
|
|
if (!netif_running(efx->net_dev))
|
|
return;
|
|
|
|
carrier_ok = netif_carrier_ok(efx->net_dev) ? 1 : 0;
|
|
if (efx->link_up != carrier_ok) {
|
|
efx->n_link_state_changes++;
|
|
|
|
if (efx->link_up)
|
|
netif_carrier_on(efx->net_dev);
|
|
else
|
|
netif_carrier_off(efx->net_dev);
|
|
}
|
|
|
|
/* Status message for kernel log */
|
|
if (efx->link_up) {
|
|
struct mii_if_info *gmii = &efx->mii;
|
|
unsigned adv, lpa;
|
|
/* NONE here means direct XAUI from the controller, with no
|
|
* MDIO-attached device we can query. */
|
|
if (efx->phy_type != PHY_TYPE_NONE) {
|
|
adv = gmii_advertised(gmii);
|
|
lpa = gmii_lpa(gmii);
|
|
} else {
|
|
lpa = GM_LPA_10000 | LPA_DUPLEX;
|
|
adv = lpa;
|
|
}
|
|
EFX_INFO(efx, "link up at %dMbps %s-duplex "
|
|
"(adv %04x lpa %04x) (MTU %d)%s\n",
|
|
(efx->link_options & GM_LPA_10000 ? 10000 :
|
|
(efx->link_options & GM_LPA_1000 ? 1000 :
|
|
(efx->link_options & GM_LPA_100 ? 100 :
|
|
10))),
|
|
(efx->link_options & GM_LPA_DUPLEX ?
|
|
"full" : "half"),
|
|
adv, lpa,
|
|
efx->net_dev->mtu,
|
|
(efx->promiscuous ? " [PROMISC]" : ""));
|
|
} else {
|
|
EFX_INFO(efx, "link down\n");
|
|
}
|
|
|
|
}
|
|
|
|
/* This call reinitialises the MAC to pick up new PHY settings. The
|
|
* caller must hold the mac_lock */
|
|
static void __efx_reconfigure_port(struct efx_nic *efx)
|
|
{
|
|
WARN_ON(!mutex_is_locked(&efx->mac_lock));
|
|
|
|
EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
|
|
raw_smp_processor_id());
|
|
|
|
falcon_reconfigure_xmac(efx);
|
|
|
|
/* Inform kernel of loss/gain of carrier */
|
|
efx_link_status_changed(efx);
|
|
}
|
|
|
|
/* Reinitialise the MAC to pick up new PHY settings, even if the port is
|
|
* disabled. */
|
|
void efx_reconfigure_port(struct efx_nic *efx)
|
|
{
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
mutex_lock(&efx->mac_lock);
|
|
__efx_reconfigure_port(efx);
|
|
mutex_unlock(&efx->mac_lock);
|
|
}
|
|
|
|
/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
|
|
* we don't efx_reconfigure_port() if the port is disabled. Care is taken
|
|
* in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
|
|
static void efx_reconfigure_work(struct work_struct *data)
|
|
{
|
|
struct efx_nic *efx = container_of(data, struct efx_nic,
|
|
reconfigure_work);
|
|
|
|
mutex_lock(&efx->mac_lock);
|
|
if (efx->port_enabled)
|
|
__efx_reconfigure_port(efx);
|
|
mutex_unlock(&efx->mac_lock);
|
|
}
|
|
|
|
static int efx_probe_port(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
EFX_LOG(efx, "create port\n");
|
|
|
|
/* Connect up MAC/PHY operations table and read MAC address */
|
|
rc = falcon_probe_port(efx);
|
|
if (rc)
|
|
goto err;
|
|
|
|
/* Sanity check MAC address */
|
|
if (is_valid_ether_addr(efx->mac_address)) {
|
|
memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
|
|
} else {
|
|
DECLARE_MAC_BUF(mac);
|
|
|
|
EFX_ERR(efx, "invalid MAC address %s\n",
|
|
print_mac(mac, efx->mac_address));
|
|
if (!allow_bad_hwaddr) {
|
|
rc = -EINVAL;
|
|
goto err;
|
|
}
|
|
random_ether_addr(efx->net_dev->dev_addr);
|
|
EFX_INFO(efx, "using locally-generated MAC %s\n",
|
|
print_mac(mac, efx->net_dev->dev_addr));
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
efx_remove_port(efx);
|
|
return rc;
|
|
}
|
|
|
|
static int efx_init_port(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
EFX_LOG(efx, "init port\n");
|
|
|
|
/* Initialise the MAC and PHY */
|
|
rc = falcon_init_xmac(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
efx->port_initialized = 1;
|
|
|
|
/* Reconfigure port to program MAC registers */
|
|
falcon_reconfigure_xmac(efx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Allow efx_reconfigure_port() to be scheduled, and close the window
|
|
* between efx_stop_port and efx_flush_all whereby a previously scheduled
|
|
* efx_reconfigure_port() may have been cancelled */
|
|
static void efx_start_port(struct efx_nic *efx)
|
|
{
|
|
EFX_LOG(efx, "start port\n");
|
|
BUG_ON(efx->port_enabled);
|
|
|
|
mutex_lock(&efx->mac_lock);
|
|
efx->port_enabled = 1;
|
|
__efx_reconfigure_port(efx);
|
|
mutex_unlock(&efx->mac_lock);
|
|
}
|
|
|
|
/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
|
|
* efx_set_multicast_list() from scheduling efx_reconfigure_work.
|
|
* efx_reconfigure_work can still be scheduled via NAPI processing
|
|
* until efx_flush_all() is called */
|
|
static void efx_stop_port(struct efx_nic *efx)
|
|
{
|
|
EFX_LOG(efx, "stop port\n");
|
|
|
|
mutex_lock(&efx->mac_lock);
|
|
efx->port_enabled = 0;
|
|
mutex_unlock(&efx->mac_lock);
|
|
|
|
/* Serialise against efx_set_multicast_list() */
|
|
if (efx_dev_registered(efx)) {
|
|
netif_tx_lock_bh(efx->net_dev);
|
|
netif_tx_unlock_bh(efx->net_dev);
|
|
}
|
|
}
|
|
|
|
static void efx_fini_port(struct efx_nic *efx)
|
|
{
|
|
EFX_LOG(efx, "shut down port\n");
|
|
|
|
if (!efx->port_initialized)
|
|
return;
|
|
|
|
falcon_fini_xmac(efx);
|
|
efx->port_initialized = 0;
|
|
|
|
efx->link_up = 0;
|
|
efx_link_status_changed(efx);
|
|
}
|
|
|
|
static void efx_remove_port(struct efx_nic *efx)
|
|
{
|
|
EFX_LOG(efx, "destroying port\n");
|
|
|
|
falcon_remove_port(efx);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* NIC handling
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* This configures the PCI device to enable I/O and DMA. */
|
|
static int efx_init_io(struct efx_nic *efx)
|
|
{
|
|
struct pci_dev *pci_dev = efx->pci_dev;
|
|
dma_addr_t dma_mask = efx->type->max_dma_mask;
|
|
int rc;
|
|
|
|
EFX_LOG(efx, "initialising I/O\n");
|
|
|
|
rc = pci_enable_device(pci_dev);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to enable PCI device\n");
|
|
goto fail1;
|
|
}
|
|
|
|
pci_set_master(pci_dev);
|
|
|
|
/* Set the PCI DMA mask. Try all possibilities from our
|
|
* genuine mask down to 32 bits, because some architectures
|
|
* (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
|
|
* masks event though they reject 46 bit masks.
|
|
*/
|
|
while (dma_mask > 0x7fffffffUL) {
|
|
if (pci_dma_supported(pci_dev, dma_mask) &&
|
|
((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
|
|
break;
|
|
dma_mask >>= 1;
|
|
}
|
|
if (rc) {
|
|
EFX_ERR(efx, "could not find a suitable DMA mask\n");
|
|
goto fail2;
|
|
}
|
|
EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
|
|
rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
|
|
if (rc) {
|
|
/* pci_set_consistent_dma_mask() is not *allowed* to
|
|
* fail with a mask that pci_set_dma_mask() accepted,
|
|
* but just in case...
|
|
*/
|
|
EFX_ERR(efx, "failed to set consistent DMA mask\n");
|
|
goto fail2;
|
|
}
|
|
|
|
efx->membase_phys = pci_resource_start(efx->pci_dev,
|
|
efx->type->mem_bar);
|
|
rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
|
|
if (rc) {
|
|
EFX_ERR(efx, "request for memory BAR failed\n");
|
|
rc = -EIO;
|
|
goto fail3;
|
|
}
|
|
efx->membase = ioremap_nocache(efx->membase_phys,
|
|
efx->type->mem_map_size);
|
|
if (!efx->membase) {
|
|
EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
|
|
efx->type->mem_bar,
|
|
(unsigned long long)efx->membase_phys,
|
|
efx->type->mem_map_size);
|
|
rc = -ENOMEM;
|
|
goto fail4;
|
|
}
|
|
EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
|
|
efx->type->mem_bar, (unsigned long long)efx->membase_phys,
|
|
efx->type->mem_map_size, efx->membase);
|
|
|
|
return 0;
|
|
|
|
fail4:
|
|
release_mem_region(efx->membase_phys, efx->type->mem_map_size);
|
|
fail3:
|
|
efx->membase_phys = 0;
|
|
fail2:
|
|
pci_disable_device(efx->pci_dev);
|
|
fail1:
|
|
return rc;
|
|
}
|
|
|
|
static void efx_fini_io(struct efx_nic *efx)
|
|
{
|
|
EFX_LOG(efx, "shutting down I/O\n");
|
|
|
|
if (efx->membase) {
|
|
iounmap(efx->membase);
|
|
efx->membase = NULL;
|
|
}
|
|
|
|
if (efx->membase_phys) {
|
|
pci_release_region(efx->pci_dev, efx->type->mem_bar);
|
|
efx->membase_phys = 0;
|
|
}
|
|
|
|
pci_disable_device(efx->pci_dev);
|
|
}
|
|
|
|
/* Probe the number and type of interrupts we are able to obtain. */
|
|
static void efx_probe_interrupts(struct efx_nic *efx)
|
|
{
|
|
int max_channel = efx->type->phys_addr_channels - 1;
|
|
struct msix_entry xentries[EFX_MAX_CHANNELS];
|
|
int rc, i;
|
|
|
|
if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
|
|
BUG_ON(!pci_find_capability(efx->pci_dev, PCI_CAP_ID_MSIX));
|
|
|
|
efx->rss_queues = rss_cpus ? rss_cpus : num_online_cpus();
|
|
efx->rss_queues = min(efx->rss_queues, max_channel + 1);
|
|
efx->rss_queues = min(efx->rss_queues, EFX_MAX_CHANNELS);
|
|
|
|
/* Request maximum number of MSI interrupts, and fill out
|
|
* the channel interrupt information the allowed allocation */
|
|
for (i = 0; i < efx->rss_queues; i++)
|
|
xentries[i].entry = i;
|
|
rc = pci_enable_msix(efx->pci_dev, xentries, efx->rss_queues);
|
|
if (rc > 0) {
|
|
EFX_BUG_ON_PARANOID(rc >= efx->rss_queues);
|
|
efx->rss_queues = rc;
|
|
rc = pci_enable_msix(efx->pci_dev, xentries,
|
|
efx->rss_queues);
|
|
}
|
|
|
|
if (rc == 0) {
|
|
for (i = 0; i < efx->rss_queues; i++) {
|
|
efx->channel[i].has_interrupt = 1;
|
|
efx->channel[i].irq = xentries[i].vector;
|
|
}
|
|
} else {
|
|
/* Fall back to single channel MSI */
|
|
efx->interrupt_mode = EFX_INT_MODE_MSI;
|
|
EFX_ERR(efx, "could not enable MSI-X\n");
|
|
}
|
|
}
|
|
|
|
/* Try single interrupt MSI */
|
|
if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
|
|
efx->rss_queues = 1;
|
|
rc = pci_enable_msi(efx->pci_dev);
|
|
if (rc == 0) {
|
|
efx->channel[0].irq = efx->pci_dev->irq;
|
|
efx->channel[0].has_interrupt = 1;
|
|
} else {
|
|
EFX_ERR(efx, "could not enable MSI\n");
|
|
efx->interrupt_mode = EFX_INT_MODE_LEGACY;
|
|
}
|
|
}
|
|
|
|
/* Assume legacy interrupts */
|
|
if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
|
|
efx->rss_queues = 1;
|
|
/* Every channel is interruptible */
|
|
for (i = 0; i < EFX_MAX_CHANNELS; i++)
|
|
efx->channel[i].has_interrupt = 1;
|
|
efx->legacy_irq = efx->pci_dev->irq;
|
|
}
|
|
}
|
|
|
|
static void efx_remove_interrupts(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
/* Remove MSI/MSI-X interrupts */
|
|
efx_for_each_channel_with_interrupt(channel, efx)
|
|
channel->irq = 0;
|
|
pci_disable_msi(efx->pci_dev);
|
|
pci_disable_msix(efx->pci_dev);
|
|
|
|
/* Remove legacy interrupt */
|
|
efx->legacy_irq = 0;
|
|
}
|
|
|
|
/* Select number of used resources
|
|
* Should be called after probe_interrupts()
|
|
*/
|
|
static void efx_select_used(struct efx_nic *efx)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
int i;
|
|
|
|
/* TX queues. One per port per channel with TX capability
|
|
* (more than one per port won't work on Linux, due to out
|
|
* of order issues... but will be fine on Solaris)
|
|
*/
|
|
tx_queue = &efx->tx_queue[0];
|
|
|
|
/* Perform this for each channel with TX capabilities.
|
|
* At the moment, we only support a single TX queue
|
|
*/
|
|
tx_queue->used = 1;
|
|
if ((!EFX_INT_MODE_USE_MSI(efx)) && separate_tx_and_rx_channels)
|
|
tx_queue->channel = &efx->channel[1];
|
|
else
|
|
tx_queue->channel = &efx->channel[0];
|
|
tx_queue->channel->used_flags |= EFX_USED_BY_TX;
|
|
tx_queue++;
|
|
|
|
/* RX queues. Each has a dedicated channel. */
|
|
for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
|
|
rx_queue = &efx->rx_queue[i];
|
|
|
|
if (i < efx->rss_queues) {
|
|
rx_queue->used = 1;
|
|
/* If we allow multiple RX queues per channel
|
|
* we need to decide that here
|
|
*/
|
|
rx_queue->channel = &efx->channel[rx_queue->queue];
|
|
rx_queue->channel->used_flags |= EFX_USED_BY_RX;
|
|
rx_queue++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int efx_probe_nic(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
EFX_LOG(efx, "creating NIC\n");
|
|
|
|
/* Carry out hardware-type specific initialisation */
|
|
rc = falcon_probe_nic(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Determine the number of channels and RX queues by trying to hook
|
|
* in MSI-X interrupts. */
|
|
efx_probe_interrupts(efx);
|
|
|
|
/* Determine number of RX queues and TX queues */
|
|
efx_select_used(efx);
|
|
|
|
/* Initialise the interrupt moderation settings */
|
|
efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void efx_remove_nic(struct efx_nic *efx)
|
|
{
|
|
EFX_LOG(efx, "destroying NIC\n");
|
|
|
|
efx_remove_interrupts(efx);
|
|
falcon_remove_nic(efx);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* NIC startup/shutdown
|
|
*
|
|
*************************************************************************/
|
|
|
|
static int efx_probe_all(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
int rc;
|
|
|
|
/* Create NIC */
|
|
rc = efx_probe_nic(efx);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to create NIC\n");
|
|
goto fail1;
|
|
}
|
|
|
|
/* Create port */
|
|
rc = efx_probe_port(efx);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to create port\n");
|
|
goto fail2;
|
|
}
|
|
|
|
/* Create channels */
|
|
efx_for_each_channel(channel, efx) {
|
|
rc = efx_probe_channel(channel);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to create channel %d\n",
|
|
channel->channel);
|
|
goto fail3;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail3:
|
|
efx_for_each_channel(channel, efx)
|
|
efx_remove_channel(channel);
|
|
efx_remove_port(efx);
|
|
fail2:
|
|
efx_remove_nic(efx);
|
|
fail1:
|
|
return rc;
|
|
}
|
|
|
|
/* Called after previous invocation(s) of efx_stop_all, restarts the
|
|
* port, kernel transmit queue, NAPI processing and hardware interrupts,
|
|
* and ensures that the port is scheduled to be reconfigured.
|
|
* This function is safe to call multiple times when the NIC is in any
|
|
* state. */
|
|
static void efx_start_all(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
/* Check that it is appropriate to restart the interface. All
|
|
* of these flags are safe to read under just the rtnl lock */
|
|
if (efx->port_enabled)
|
|
return;
|
|
if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
|
|
return;
|
|
if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
|
|
return;
|
|
|
|
/* Mark the port as enabled so port reconfigurations can start, then
|
|
* restart the transmit interface early so the watchdog timer stops */
|
|
efx_start_port(efx);
|
|
efx_wake_queue(efx);
|
|
|
|
efx_for_each_channel(channel, efx)
|
|
efx_start_channel(channel);
|
|
|
|
falcon_enable_interrupts(efx);
|
|
|
|
/* Start hardware monitor if we're in RUNNING */
|
|
if (efx->state == STATE_RUNNING)
|
|
queue_delayed_work(efx->workqueue, &efx->monitor_work,
|
|
efx_monitor_interval);
|
|
}
|
|
|
|
/* Flush all delayed work. Should only be called when no more delayed work
|
|
* will be scheduled. This doesn't flush pending online resets (efx_reset),
|
|
* since we're holding the rtnl_lock at this point. */
|
|
static void efx_flush_all(struct efx_nic *efx)
|
|
{
|
|
struct efx_rx_queue *rx_queue;
|
|
|
|
/* Make sure the hardware monitor is stopped */
|
|
cancel_delayed_work_sync(&efx->monitor_work);
|
|
|
|
/* Ensure that all RX slow refills are complete. */
|
|
efx_for_each_rx_queue(rx_queue, efx)
|
|
cancel_delayed_work_sync(&rx_queue->work);
|
|
|
|
/* Stop scheduled port reconfigurations */
|
|
cancel_work_sync(&efx->reconfigure_work);
|
|
|
|
}
|
|
|
|
/* Quiesce hardware and software without bringing the link down.
|
|
* Safe to call multiple times, when the nic and interface is in any
|
|
* state. The caller is guaranteed to subsequently be in a position
|
|
* to modify any hardware and software state they see fit without
|
|
* taking locks. */
|
|
static void efx_stop_all(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
/* port_enabled can be read safely under the rtnl lock */
|
|
if (!efx->port_enabled)
|
|
return;
|
|
|
|
/* Disable interrupts and wait for ISR to complete */
|
|
falcon_disable_interrupts(efx);
|
|
if (efx->legacy_irq)
|
|
synchronize_irq(efx->legacy_irq);
|
|
efx_for_each_channel_with_interrupt(channel, efx) {
|
|
if (channel->irq)
|
|
synchronize_irq(channel->irq);
|
|
}
|
|
|
|
/* Stop all NAPI processing and synchronous rx refills */
|
|
efx_for_each_channel(channel, efx)
|
|
efx_stop_channel(channel);
|
|
|
|
/* Stop all asynchronous port reconfigurations. Since all
|
|
* event processing has already been stopped, there is no
|
|
* window to loose phy events */
|
|
efx_stop_port(efx);
|
|
|
|
/* Flush reconfigure_work, refill_workqueue, monitor_work */
|
|
efx_flush_all(efx);
|
|
|
|
/* Isolate the MAC from the TX and RX engines, so that queue
|
|
* flushes will complete in a timely fashion. */
|
|
falcon_deconfigure_mac_wrapper(efx);
|
|
falcon_drain_tx_fifo(efx);
|
|
|
|
/* Stop the kernel transmit interface late, so the watchdog
|
|
* timer isn't ticking over the flush */
|
|
efx_stop_queue(efx);
|
|
if (efx_dev_registered(efx)) {
|
|
netif_tx_lock_bh(efx->net_dev);
|
|
netif_tx_unlock_bh(efx->net_dev);
|
|
}
|
|
}
|
|
|
|
static void efx_remove_all(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
efx_for_each_channel(channel, efx)
|
|
efx_remove_channel(channel);
|
|
efx_remove_port(efx);
|
|
efx_remove_nic(efx);
|
|
}
|
|
|
|
/* A convinience function to safely flush all the queues */
|
|
int efx_flush_queues(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
efx_stop_all(efx);
|
|
|
|
efx_fini_channels(efx);
|
|
rc = efx_init_channels(efx);
|
|
if (rc) {
|
|
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
|
|
return rc;
|
|
}
|
|
|
|
efx_start_all(efx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Interrupt moderation
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* Set interrupt moderation parameters */
|
|
void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
efx_for_each_tx_queue(tx_queue, efx)
|
|
tx_queue->channel->irq_moderation = tx_usecs;
|
|
|
|
efx_for_each_rx_queue(rx_queue, efx)
|
|
rx_queue->channel->irq_moderation = rx_usecs;
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Hardware monitor
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* Run periodically off the general workqueue. Serialised against
|
|
* efx_reconfigure_port via the mac_lock */
|
|
static void efx_monitor(struct work_struct *data)
|
|
{
|
|
struct efx_nic *efx = container_of(data, struct efx_nic,
|
|
monitor_work.work);
|
|
int rc = 0;
|
|
|
|
EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
|
|
raw_smp_processor_id());
|
|
|
|
|
|
/* If the mac_lock is already held then it is likely a port
|
|
* reconfiguration is already in place, which will likely do
|
|
* most of the work of check_hw() anyway. */
|
|
if (!mutex_trylock(&efx->mac_lock)) {
|
|
queue_delayed_work(efx->workqueue, &efx->monitor_work,
|
|
efx_monitor_interval);
|
|
return;
|
|
}
|
|
|
|
if (efx->port_enabled)
|
|
rc = falcon_check_xmac(efx);
|
|
mutex_unlock(&efx->mac_lock);
|
|
|
|
if (rc) {
|
|
if (monitor_reset) {
|
|
EFX_ERR(efx, "hardware monitor detected a fault: "
|
|
"triggering reset\n");
|
|
efx_schedule_reset(efx, RESET_TYPE_MONITOR);
|
|
} else {
|
|
EFX_ERR(efx, "hardware monitor detected a fault, "
|
|
"skipping reset\n");
|
|
}
|
|
}
|
|
|
|
queue_delayed_work(efx->workqueue, &efx->monitor_work,
|
|
efx_monitor_interval);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* ioctls
|
|
*
|
|
*************************************************************************/
|
|
|
|
/* Net device ioctl
|
|
* Context: process, rtnl_lock() held.
|
|
*/
|
|
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
|
|
{
|
|
struct efx_nic *efx = net_dev->priv;
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* NAPI interface
|
|
*
|
|
**************************************************************************/
|
|
|
|
static int efx_init_napi(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
int rc;
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
channel->napi_dev = efx->net_dev;
|
|
rc = efx_lro_init(&channel->lro_mgr, efx);
|
|
if (rc)
|
|
goto err;
|
|
}
|
|
return 0;
|
|
err:
|
|
efx_fini_napi(efx);
|
|
return rc;
|
|
}
|
|
|
|
static void efx_fini_napi(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
efx_lro_fini(&channel->lro_mgr);
|
|
channel->napi_dev = NULL;
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Kernel netpoll interface
|
|
*
|
|
*************************************************************************/
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
|
|
/* Although in the common case interrupts will be disabled, this is not
|
|
* guaranteed. However, all our work happens inside the NAPI callback,
|
|
* so no locking is required.
|
|
*/
|
|
static void efx_netpoll(struct net_device *net_dev)
|
|
{
|
|
struct efx_nic *efx = net_dev->priv;
|
|
struct efx_channel *channel;
|
|
|
|
efx_for_each_channel_with_interrupt(channel, efx)
|
|
efx_schedule_channel(channel);
|
|
}
|
|
|
|
#endif
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Kernel net device interface
|
|
*
|
|
*************************************************************************/
|
|
|
|
/* Context: process, rtnl_lock() held. */
|
|
static int efx_net_open(struct net_device *net_dev)
|
|
{
|
|
struct efx_nic *efx = net_dev->priv;
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
|
|
raw_smp_processor_id());
|
|
|
|
efx_start_all(efx);
|
|
return 0;
|
|
}
|
|
|
|
/* Context: process, rtnl_lock() held.
|
|
* Note that the kernel will ignore our return code; this method
|
|
* should really be a void.
|
|
*/
|
|
static int efx_net_stop(struct net_device *net_dev)
|
|
{
|
|
struct efx_nic *efx = net_dev->priv;
|
|
int rc;
|
|
|
|
EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
|
|
raw_smp_processor_id());
|
|
|
|
/* Stop the device and flush all the channels */
|
|
efx_stop_all(efx);
|
|
efx_fini_channels(efx);
|
|
rc = efx_init_channels(efx);
|
|
if (rc)
|
|
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
|
|
static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
|
|
{
|
|
struct efx_nic *efx = net_dev->priv;
|
|
struct efx_mac_stats *mac_stats = &efx->mac_stats;
|
|
struct net_device_stats *stats = &net_dev->stats;
|
|
|
|
/* Update stats if possible, but do not wait if another thread
|
|
* is updating them (or resetting the NIC); slightly stale
|
|
* stats are acceptable.
|
|
*/
|
|
if (!spin_trylock(&efx->stats_lock))
|
|
return stats;
|
|
if (efx->state == STATE_RUNNING) {
|
|
falcon_update_stats_xmac(efx);
|
|
falcon_update_nic_stats(efx);
|
|
}
|
|
spin_unlock(&efx->stats_lock);
|
|
|
|
stats->rx_packets = mac_stats->rx_packets;
|
|
stats->tx_packets = mac_stats->tx_packets;
|
|
stats->rx_bytes = mac_stats->rx_bytes;
|
|
stats->tx_bytes = mac_stats->tx_bytes;
|
|
stats->multicast = mac_stats->rx_multicast;
|
|
stats->collisions = mac_stats->tx_collision;
|
|
stats->rx_length_errors = (mac_stats->rx_gtjumbo +
|
|
mac_stats->rx_length_error);
|
|
stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
|
|
stats->rx_crc_errors = mac_stats->rx_bad;
|
|
stats->rx_frame_errors = mac_stats->rx_align_error;
|
|
stats->rx_fifo_errors = mac_stats->rx_overflow;
|
|
stats->rx_missed_errors = mac_stats->rx_missed;
|
|
stats->tx_window_errors = mac_stats->tx_late_collision;
|
|
|
|
stats->rx_errors = (stats->rx_length_errors +
|
|
stats->rx_over_errors +
|
|
stats->rx_crc_errors +
|
|
stats->rx_frame_errors +
|
|
stats->rx_fifo_errors +
|
|
stats->rx_missed_errors +
|
|
mac_stats->rx_symbol_error);
|
|
stats->tx_errors = (stats->tx_window_errors +
|
|
mac_stats->tx_bad);
|
|
|
|
return stats;
|
|
}
|
|
|
|
/* Context: netif_tx_lock held, BHs disabled. */
|
|
static void efx_watchdog(struct net_device *net_dev)
|
|
{
|
|
struct efx_nic *efx = net_dev->priv;
|
|
|
|
EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
|
|
atomic_read(&efx->netif_stop_count), efx->port_enabled,
|
|
monitor_reset ? "resetting channels" : "skipping reset");
|
|
|
|
if (monitor_reset)
|
|
efx_schedule_reset(efx, RESET_TYPE_MONITOR);
|
|
}
|
|
|
|
|
|
/* Context: process, rtnl_lock() held. */
|
|
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
|
|
{
|
|
struct efx_nic *efx = net_dev->priv;
|
|
int rc = 0;
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
if (new_mtu > EFX_MAX_MTU)
|
|
return -EINVAL;
|
|
|
|
efx_stop_all(efx);
|
|
|
|
EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
|
|
|
|
efx_fini_channels(efx);
|
|
net_dev->mtu = new_mtu;
|
|
rc = efx_init_channels(efx);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
efx_start_all(efx);
|
|
return rc;
|
|
|
|
fail:
|
|
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
|
|
return rc;
|
|
}
|
|
|
|
static int efx_set_mac_address(struct net_device *net_dev, void *data)
|
|
{
|
|
struct efx_nic *efx = net_dev->priv;
|
|
struct sockaddr *addr = data;
|
|
char *new_addr = addr->sa_data;
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
if (!is_valid_ether_addr(new_addr)) {
|
|
DECLARE_MAC_BUF(mac);
|
|
EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
|
|
print_mac(mac, new_addr));
|
|
return -EINVAL;
|
|
}
|
|
|
|
memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
|
|
|
|
/* Reconfigure the MAC */
|
|
efx_reconfigure_port(efx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Context: netif_tx_lock held, BHs disabled. */
|
|
static void efx_set_multicast_list(struct net_device *net_dev)
|
|
{
|
|
struct efx_nic *efx = net_dev->priv;
|
|
struct dev_mc_list *mc_list = net_dev->mc_list;
|
|
union efx_multicast_hash *mc_hash = &efx->multicast_hash;
|
|
int promiscuous;
|
|
u32 crc;
|
|
int bit;
|
|
int i;
|
|
|
|
/* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
|
|
promiscuous = (net_dev->flags & IFF_PROMISC) ? 1 : 0;
|
|
if (efx->promiscuous != promiscuous) {
|
|
efx->promiscuous = promiscuous;
|
|
/* Close the window between efx_stop_port() and efx_flush_all()
|
|
* by only queuing work when the port is enabled. */
|
|
if (efx->port_enabled)
|
|
queue_work(efx->workqueue, &efx->reconfigure_work);
|
|
}
|
|
|
|
/* Build multicast hash table */
|
|
if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
|
|
memset(mc_hash, 0xff, sizeof(*mc_hash));
|
|
} else {
|
|
memset(mc_hash, 0x00, sizeof(*mc_hash));
|
|
for (i = 0; i < net_dev->mc_count; i++) {
|
|
crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
|
|
bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
|
|
set_bit_le(bit, mc_hash->byte);
|
|
mc_list = mc_list->next;
|
|
}
|
|
}
|
|
|
|
/* Create and activate new global multicast hash table */
|
|
falcon_set_multicast_hash(efx);
|
|
}
|
|
|
|
static int efx_netdev_event(struct notifier_block *this,
|
|
unsigned long event, void *ptr)
|
|
{
|
|
struct net_device *net_dev = ptr;
|
|
|
|
if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
|
|
struct efx_nic *efx = net_dev->priv;
|
|
|
|
strcpy(efx->name, net_dev->name);
|
|
}
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block efx_netdev_notifier = {
|
|
.notifier_call = efx_netdev_event,
|
|
};
|
|
|
|
static int efx_register_netdev(struct efx_nic *efx)
|
|
{
|
|
struct net_device *net_dev = efx->net_dev;
|
|
int rc;
|
|
|
|
net_dev->watchdog_timeo = 5 * HZ;
|
|
net_dev->irq = efx->pci_dev->irq;
|
|
net_dev->open = efx_net_open;
|
|
net_dev->stop = efx_net_stop;
|
|
net_dev->get_stats = efx_net_stats;
|
|
net_dev->tx_timeout = &efx_watchdog;
|
|
net_dev->hard_start_xmit = efx_hard_start_xmit;
|
|
net_dev->do_ioctl = efx_ioctl;
|
|
net_dev->change_mtu = efx_change_mtu;
|
|
net_dev->set_mac_address = efx_set_mac_address;
|
|
net_dev->set_multicast_list = efx_set_multicast_list;
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
net_dev->poll_controller = efx_netpoll;
|
|
#endif
|
|
SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
|
|
SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
|
|
|
|
/* Always start with carrier off; PHY events will detect the link */
|
|
netif_carrier_off(efx->net_dev);
|
|
|
|
/* Clear MAC statistics */
|
|
falcon_update_stats_xmac(efx);
|
|
memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
|
|
|
|
rc = register_netdev(net_dev);
|
|
if (rc) {
|
|
EFX_ERR(efx, "could not register net dev\n");
|
|
return rc;
|
|
}
|
|
strcpy(efx->name, net_dev->name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void efx_unregister_netdev(struct efx_nic *efx)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
|
|
if (!efx->net_dev)
|
|
return;
|
|
|
|
BUG_ON(efx->net_dev->priv != efx);
|
|
|
|
/* Free up any skbs still remaining. This has to happen before
|
|
* we try to unregister the netdev as running their destructors
|
|
* may be needed to get the device ref. count to 0. */
|
|
efx_for_each_tx_queue(tx_queue, efx)
|
|
efx_release_tx_buffers(tx_queue);
|
|
|
|
if (efx_dev_registered(efx)) {
|
|
strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
|
|
unregister_netdev(efx->net_dev);
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Device reset and suspend
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* The final hardware and software finalisation before reset. */
|
|
static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
|
|
{
|
|
int rc;
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
rc = falcon_xmac_get_settings(efx, ecmd);
|
|
if (rc) {
|
|
EFX_ERR(efx, "could not back up PHY settings\n");
|
|
goto fail;
|
|
}
|
|
|
|
efx_fini_channels(efx);
|
|
return 0;
|
|
|
|
fail:
|
|
return rc;
|
|
}
|
|
|
|
/* The first part of software initialisation after a hardware reset
|
|
* This function does not handle serialisation with the kernel, it
|
|
* assumes the caller has done this */
|
|
static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd)
|
|
{
|
|
int rc;
|
|
|
|
rc = efx_init_channels(efx);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
/* Restore MAC and PHY settings. */
|
|
rc = falcon_xmac_set_settings(efx, ecmd);
|
|
if (rc) {
|
|
EFX_ERR(efx, "could not restore PHY settings\n");
|
|
goto fail2;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail2:
|
|
efx_fini_channels(efx);
|
|
fail1:
|
|
return rc;
|
|
}
|
|
|
|
/* Reset the NIC as transparently as possible. Do not reset the PHY
|
|
* Note that the reset may fail, in which case the card will be left
|
|
* in a most-probably-unusable state.
|
|
*
|
|
* This function will sleep. You cannot reset from within an atomic
|
|
* state; use efx_schedule_reset() instead.
|
|
*
|
|
* Grabs the rtnl_lock.
|
|
*/
|
|
static int efx_reset(struct efx_nic *efx)
|
|
{
|
|
struct ethtool_cmd ecmd;
|
|
enum reset_type method = efx->reset_pending;
|
|
int rc;
|
|
|
|
/* Serialise with kernel interfaces */
|
|
rtnl_lock();
|
|
|
|
/* If we're not RUNNING then don't reset. Leave the reset_pending
|
|
* flag set so that efx_pci_probe_main will be retried */
|
|
if (efx->state != STATE_RUNNING) {
|
|
EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
|
|
goto unlock_rtnl;
|
|
}
|
|
|
|
efx->state = STATE_RESETTING;
|
|
EFX_INFO(efx, "resetting (%d)\n", method);
|
|
|
|
/* The net_dev->get_stats handler is quite slow, and will fail
|
|
* if a fetch is pending over reset. Serialise against it. */
|
|
spin_lock(&efx->stats_lock);
|
|
spin_unlock(&efx->stats_lock);
|
|
|
|
efx_stop_all(efx);
|
|
mutex_lock(&efx->mac_lock);
|
|
|
|
rc = efx_reset_down(efx, &ecmd);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
rc = falcon_reset_hw(efx, method);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to reset hardware\n");
|
|
goto fail2;
|
|
}
|
|
|
|
/* Allow resets to be rescheduled. */
|
|
efx->reset_pending = RESET_TYPE_NONE;
|
|
|
|
/* Reinitialise bus-mastering, which may have been turned off before
|
|
* the reset was scheduled. This is still appropriate, even in the
|
|
* RESET_TYPE_DISABLE since this driver generally assumes the hardware
|
|
* can respond to requests. */
|
|
pci_set_master(efx->pci_dev);
|
|
|
|
/* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
|
|
* case so the driver can talk to external SRAM */
|
|
rc = falcon_init_nic(efx);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to initialise NIC\n");
|
|
goto fail3;
|
|
}
|
|
|
|
/* Leave device stopped if necessary */
|
|
if (method == RESET_TYPE_DISABLE) {
|
|
/* Reinitialise the device anyway so the driver unload sequence
|
|
* can talk to the external SRAM */
|
|
falcon_init_nic(efx);
|
|
rc = -EIO;
|
|
goto fail4;
|
|
}
|
|
|
|
rc = efx_reset_up(efx, &ecmd);
|
|
if (rc)
|
|
goto fail5;
|
|
|
|
mutex_unlock(&efx->mac_lock);
|
|
EFX_LOG(efx, "reset complete\n");
|
|
|
|
efx->state = STATE_RUNNING;
|
|
efx_start_all(efx);
|
|
|
|
unlock_rtnl:
|
|
rtnl_unlock();
|
|
return 0;
|
|
|
|
fail5:
|
|
fail4:
|
|
fail3:
|
|
fail2:
|
|
fail1:
|
|
EFX_ERR(efx, "has been disabled\n");
|
|
efx->state = STATE_DISABLED;
|
|
|
|
mutex_unlock(&efx->mac_lock);
|
|
rtnl_unlock();
|
|
efx_unregister_netdev(efx);
|
|
efx_fini_port(efx);
|
|
return rc;
|
|
}
|
|
|
|
/* The worker thread exists so that code that cannot sleep can
|
|
* schedule a reset for later.
|
|
*/
|
|
static void efx_reset_work(struct work_struct *data)
|
|
{
|
|
struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
|
|
|
|
efx_reset(nic);
|
|
}
|
|
|
|
void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
|
|
{
|
|
enum reset_type method;
|
|
|
|
if (efx->reset_pending != RESET_TYPE_NONE) {
|
|
EFX_INFO(efx, "quenching already scheduled reset\n");
|
|
return;
|
|
}
|
|
|
|
switch (type) {
|
|
case RESET_TYPE_INVISIBLE:
|
|
case RESET_TYPE_ALL:
|
|
case RESET_TYPE_WORLD:
|
|
case RESET_TYPE_DISABLE:
|
|
method = type;
|
|
break;
|
|
case RESET_TYPE_RX_RECOVERY:
|
|
case RESET_TYPE_RX_DESC_FETCH:
|
|
case RESET_TYPE_TX_DESC_FETCH:
|
|
case RESET_TYPE_TX_SKIP:
|
|
method = RESET_TYPE_INVISIBLE;
|
|
break;
|
|
default:
|
|
method = RESET_TYPE_ALL;
|
|
break;
|
|
}
|
|
|
|
if (method != type)
|
|
EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
|
|
else
|
|
EFX_LOG(efx, "scheduling reset (%d)\n", method);
|
|
|
|
efx->reset_pending = method;
|
|
|
|
queue_work(efx->workqueue, &efx->reset_work);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* List of NICs we support
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* PCI device ID table */
|
|
static struct pci_device_id efx_pci_table[] __devinitdata = {
|
|
{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
|
|
.driver_data = (unsigned long) &falcon_a_nic_type},
|
|
{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
|
|
.driver_data = (unsigned long) &falcon_b_nic_type},
|
|
{0} /* end of list */
|
|
};
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Dummy PHY/MAC/Board operations
|
|
*
|
|
* Can be used where the MAC does not implement this operation
|
|
* Needed so all function pointers are valid and do not have to be tested
|
|
* before use
|
|
*
|
|
**************************************************************************/
|
|
int efx_port_dummy_op_int(struct efx_nic *efx)
|
|
{
|
|
return 0;
|
|
}
|
|
void efx_port_dummy_op_void(struct efx_nic *efx) {}
|
|
void efx_port_dummy_op_blink(struct efx_nic *efx, int blink) {}
|
|
|
|
static struct efx_phy_operations efx_dummy_phy_operations = {
|
|
.init = efx_port_dummy_op_int,
|
|
.reconfigure = efx_port_dummy_op_void,
|
|
.check_hw = efx_port_dummy_op_int,
|
|
.fini = efx_port_dummy_op_void,
|
|
.clear_interrupt = efx_port_dummy_op_void,
|
|
.reset_xaui = efx_port_dummy_op_void,
|
|
};
|
|
|
|
/* Dummy board operations */
|
|
static int efx_nic_dummy_op_int(struct efx_nic *nic)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static struct efx_board efx_dummy_board_info = {
|
|
.init = efx_nic_dummy_op_int,
|
|
.init_leds = efx_port_dummy_op_int,
|
|
.set_fault_led = efx_port_dummy_op_blink,
|
|
};
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Data housekeeping
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* This zeroes out and then fills in the invariants in a struct
|
|
* efx_nic (including all sub-structures).
|
|
*/
|
|
static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
|
|
struct pci_dev *pci_dev, struct net_device *net_dev)
|
|
{
|
|
struct efx_channel *channel;
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
int i, rc;
|
|
|
|
/* Initialise common structures */
|
|
memset(efx, 0, sizeof(*efx));
|
|
spin_lock_init(&efx->biu_lock);
|
|
spin_lock_init(&efx->phy_lock);
|
|
INIT_WORK(&efx->reset_work, efx_reset_work);
|
|
INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
|
|
efx->pci_dev = pci_dev;
|
|
efx->state = STATE_INIT;
|
|
efx->reset_pending = RESET_TYPE_NONE;
|
|
strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
|
|
efx->board_info = efx_dummy_board_info;
|
|
|
|
efx->net_dev = net_dev;
|
|
efx->rx_checksum_enabled = 1;
|
|
spin_lock_init(&efx->netif_stop_lock);
|
|
spin_lock_init(&efx->stats_lock);
|
|
mutex_init(&efx->mac_lock);
|
|
efx->phy_op = &efx_dummy_phy_operations;
|
|
efx->mii.dev = net_dev;
|
|
INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
|
|
atomic_set(&efx->netif_stop_count, 1);
|
|
|
|
for (i = 0; i < EFX_MAX_CHANNELS; i++) {
|
|
channel = &efx->channel[i];
|
|
channel->efx = efx;
|
|
channel->channel = i;
|
|
channel->evqnum = i;
|
|
channel->work_pending = 0;
|
|
}
|
|
for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
|
|
tx_queue = &efx->tx_queue[i];
|
|
tx_queue->efx = efx;
|
|
tx_queue->queue = i;
|
|
tx_queue->buffer = NULL;
|
|
tx_queue->channel = &efx->channel[0]; /* for safety */
|
|
tx_queue->tso_headers_free = NULL;
|
|
}
|
|
for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
|
|
rx_queue = &efx->rx_queue[i];
|
|
rx_queue->efx = efx;
|
|
rx_queue->queue = i;
|
|
rx_queue->channel = &efx->channel[0]; /* for safety */
|
|
rx_queue->buffer = NULL;
|
|
spin_lock_init(&rx_queue->add_lock);
|
|
INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
|
|
}
|
|
|
|
efx->type = type;
|
|
|
|
/* Sanity-check NIC type */
|
|
EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
|
|
(efx->type->txd_ring_mask + 1));
|
|
EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
|
|
(efx->type->rxd_ring_mask + 1));
|
|
EFX_BUG_ON_PARANOID(efx->type->evq_size &
|
|
(efx->type->evq_size - 1));
|
|
/* As close as we can get to guaranteeing that we don't overflow */
|
|
EFX_BUG_ON_PARANOID(efx->type->evq_size <
|
|
(efx->type->txd_ring_mask + 1 +
|
|
efx->type->rxd_ring_mask + 1));
|
|
EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
|
|
|
|
/* Higher numbered interrupt modes are less capable! */
|
|
efx->interrupt_mode = max(efx->type->max_interrupt_mode,
|
|
interrupt_mode);
|
|
|
|
efx->workqueue = create_singlethread_workqueue("sfc_work");
|
|
if (!efx->workqueue) {
|
|
rc = -ENOMEM;
|
|
goto fail1;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail1:
|
|
return rc;
|
|
}
|
|
|
|
static void efx_fini_struct(struct efx_nic *efx)
|
|
{
|
|
if (efx->workqueue) {
|
|
destroy_workqueue(efx->workqueue);
|
|
efx->workqueue = NULL;
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* PCI interface
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* Main body of final NIC shutdown code
|
|
* This is called only at module unload (or hotplug removal).
|
|
*/
|
|
static void efx_pci_remove_main(struct efx_nic *efx)
|
|
{
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
/* Skip everything if we never obtained a valid membase */
|
|
if (!efx->membase)
|
|
return;
|
|
|
|
efx_fini_channels(efx);
|
|
efx_fini_port(efx);
|
|
|
|
/* Shutdown the board, then the NIC and board state */
|
|
falcon_fini_interrupt(efx);
|
|
|
|
efx_fini_napi(efx);
|
|
efx_remove_all(efx);
|
|
}
|
|
|
|
/* Final NIC shutdown
|
|
* This is called only at module unload (or hotplug removal).
|
|
*/
|
|
static void efx_pci_remove(struct pci_dev *pci_dev)
|
|
{
|
|
struct efx_nic *efx;
|
|
|
|
efx = pci_get_drvdata(pci_dev);
|
|
if (!efx)
|
|
return;
|
|
|
|
/* Mark the NIC as fini, then stop the interface */
|
|
rtnl_lock();
|
|
efx->state = STATE_FINI;
|
|
dev_close(efx->net_dev);
|
|
|
|
/* Allow any queued efx_resets() to complete */
|
|
rtnl_unlock();
|
|
|
|
if (efx->membase == NULL)
|
|
goto out;
|
|
|
|
efx_unregister_netdev(efx);
|
|
|
|
/* Wait for any scheduled resets to complete. No more will be
|
|
* scheduled from this point because efx_stop_all() has been
|
|
* called, we are no longer registered with driverlink, and
|
|
* the net_device's have been removed. */
|
|
flush_workqueue(efx->workqueue);
|
|
|
|
efx_pci_remove_main(efx);
|
|
|
|
out:
|
|
efx_fini_io(efx);
|
|
EFX_LOG(efx, "shutdown successful\n");
|
|
|
|
pci_set_drvdata(pci_dev, NULL);
|
|
efx_fini_struct(efx);
|
|
free_netdev(efx->net_dev);
|
|
};
|
|
|
|
/* Main body of NIC initialisation
|
|
* This is called at module load (or hotplug insertion, theoretically).
|
|
*/
|
|
static int efx_pci_probe_main(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
/* Do start-of-day initialisation */
|
|
rc = efx_probe_all(efx);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
rc = efx_init_napi(efx);
|
|
if (rc)
|
|
goto fail2;
|
|
|
|
/* Initialise the board */
|
|
rc = efx->board_info.init(efx);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to initialise board\n");
|
|
goto fail3;
|
|
}
|
|
|
|
rc = falcon_init_nic(efx);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to initialise NIC\n");
|
|
goto fail4;
|
|
}
|
|
|
|
rc = efx_init_port(efx);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to initialise port\n");
|
|
goto fail5;
|
|
}
|
|
|
|
rc = efx_init_channels(efx);
|
|
if (rc)
|
|
goto fail6;
|
|
|
|
rc = falcon_init_interrupt(efx);
|
|
if (rc)
|
|
goto fail7;
|
|
|
|
return 0;
|
|
|
|
fail7:
|
|
efx_fini_channels(efx);
|
|
fail6:
|
|
efx_fini_port(efx);
|
|
fail5:
|
|
fail4:
|
|
fail3:
|
|
efx_fini_napi(efx);
|
|
fail2:
|
|
efx_remove_all(efx);
|
|
fail1:
|
|
return rc;
|
|
}
|
|
|
|
/* NIC initialisation
|
|
*
|
|
* This is called at module load (or hotplug insertion,
|
|
* theoretically). It sets up PCI mappings, tests and resets the NIC,
|
|
* sets up and registers the network devices with the kernel and hooks
|
|
* the interrupt service routine. It does not prepare the device for
|
|
* transmission; this is left to the first time one of the network
|
|
* interfaces is brought up (i.e. efx_net_open).
|
|
*/
|
|
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
|
|
const struct pci_device_id *entry)
|
|
{
|
|
struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
|
|
struct net_device *net_dev;
|
|
struct efx_nic *efx;
|
|
int i, rc;
|
|
|
|
/* Allocate and initialise a struct net_device and struct efx_nic */
|
|
net_dev = alloc_etherdev(sizeof(*efx));
|
|
if (!net_dev)
|
|
return -ENOMEM;
|
|
net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
|
|
NETIF_F_HIGHDMA | NETIF_F_TSO);
|
|
if (lro)
|
|
net_dev->features |= NETIF_F_LRO;
|
|
efx = net_dev->priv;
|
|
pci_set_drvdata(pci_dev, efx);
|
|
rc = efx_init_struct(efx, type, pci_dev, net_dev);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
EFX_INFO(efx, "Solarflare Communications NIC detected\n");
|
|
|
|
/* Set up basic I/O (BAR mappings etc) */
|
|
rc = efx_init_io(efx);
|
|
if (rc)
|
|
goto fail2;
|
|
|
|
/* No serialisation is required with the reset path because
|
|
* we're in STATE_INIT. */
|
|
for (i = 0; i < 5; i++) {
|
|
rc = efx_pci_probe_main(efx);
|
|
if (rc == 0)
|
|
break;
|
|
|
|
/* Serialise against efx_reset(). No more resets will be
|
|
* scheduled since efx_stop_all() has been called, and we
|
|
* have not and never have been registered with either
|
|
* the rtnetlink or driverlink layers. */
|
|
cancel_work_sync(&efx->reset_work);
|
|
|
|
/* Retry if a recoverably reset event has been scheduled */
|
|
if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
|
|
(efx->reset_pending != RESET_TYPE_ALL))
|
|
goto fail3;
|
|
|
|
efx->reset_pending = RESET_TYPE_NONE;
|
|
}
|
|
|
|
if (rc) {
|
|
EFX_ERR(efx, "Could not reset NIC\n");
|
|
goto fail4;
|
|
}
|
|
|
|
/* Switch to the running state before we expose the device to
|
|
* the OS. This is to ensure that the initial gathering of
|
|
* MAC stats succeeds. */
|
|
rtnl_lock();
|
|
efx->state = STATE_RUNNING;
|
|
rtnl_unlock();
|
|
|
|
rc = efx_register_netdev(efx);
|
|
if (rc)
|
|
goto fail5;
|
|
|
|
EFX_LOG(efx, "initialisation successful\n");
|
|
|
|
return 0;
|
|
|
|
fail5:
|
|
efx_pci_remove_main(efx);
|
|
fail4:
|
|
fail3:
|
|
efx_fini_io(efx);
|
|
fail2:
|
|
efx_fini_struct(efx);
|
|
fail1:
|
|
EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
|
|
free_netdev(net_dev);
|
|
return rc;
|
|
}
|
|
|
|
static struct pci_driver efx_pci_driver = {
|
|
.name = EFX_DRIVER_NAME,
|
|
.id_table = efx_pci_table,
|
|
.probe = efx_pci_probe,
|
|
.remove = efx_pci_remove,
|
|
};
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Kernel module interface
|
|
*
|
|
*************************************************************************/
|
|
|
|
module_param(interrupt_mode, uint, 0444);
|
|
MODULE_PARM_DESC(interrupt_mode,
|
|
"Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
|
|
|
|
static int __init efx_init_module(void)
|
|
{
|
|
int rc;
|
|
|
|
printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
|
|
|
|
rc = register_netdevice_notifier(&efx_netdev_notifier);
|
|
if (rc)
|
|
goto err_notifier;
|
|
|
|
refill_workqueue = create_workqueue("sfc_refill");
|
|
if (!refill_workqueue) {
|
|
rc = -ENOMEM;
|
|
goto err_refill;
|
|
}
|
|
|
|
rc = pci_register_driver(&efx_pci_driver);
|
|
if (rc < 0)
|
|
goto err_pci;
|
|
|
|
return 0;
|
|
|
|
err_pci:
|
|
destroy_workqueue(refill_workqueue);
|
|
err_refill:
|
|
unregister_netdevice_notifier(&efx_netdev_notifier);
|
|
err_notifier:
|
|
return rc;
|
|
}
|
|
|
|
static void __exit efx_exit_module(void)
|
|
{
|
|
printk(KERN_INFO "Solarflare NET driver unloading\n");
|
|
|
|
pci_unregister_driver(&efx_pci_driver);
|
|
destroy_workqueue(refill_workqueue);
|
|
unregister_netdevice_notifier(&efx_netdev_notifier);
|
|
|
|
}
|
|
|
|
module_init(efx_init_module);
|
|
module_exit(efx_exit_module);
|
|
|
|
MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
|
|
"Solarflare Communications");
|
|
MODULE_DESCRIPTION("Solarflare Communications network driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DEVICE_TABLE(pci, efx_pci_table);
|