linux/kernel/sched/cputime.c
Frederic Weisbecker a7e1a9e3af vtime: Consolidate system/idle context detection
Move the code that finds out to which context we account the
cputime into generic layer.

Archs that consider the whole time spent in the idle task as idle
time (ia64, powerpc) can rely on the generic vtime_account()
and implement vtime_account_system() and vtime_account_idle(),
letting the generic code to decide when to call which API.

Archs that have their own meaning of idle time, such as s390
that only considers the time spent in CPU low power mode as idle
time, can just override vtime_account().

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
2012-09-25 15:42:37 +02:00

530 lines
14 KiB
C

#include <linux/export.h>
#include <linux/sched.h>
#include <linux/tsacct_kern.h>
#include <linux/kernel_stat.h>
#include <linux/static_key.h>
#include "sched.h"
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
* There are no locks covering percpu hardirq/softirq time.
* They are only modified in vtime_account, on corresponding CPU
* with interrupts disabled. So, writes are safe.
* They are read and saved off onto struct rq in update_rq_clock().
* This may result in other CPU reading this CPU's irq time and can
* race with irq/vtime_account on this CPU. We would either get old
* or new value with a side effect of accounting a slice of irq time to wrong
* task when irq is in progress while we read rq->clock. That is a worthy
* compromise in place of having locks on each irq in account_system_time.
*/
DEFINE_PER_CPU(u64, cpu_hardirq_time);
DEFINE_PER_CPU(u64, cpu_softirq_time);
static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;
void enable_sched_clock_irqtime(void)
{
sched_clock_irqtime = 1;
}
void disable_sched_clock_irqtime(void)
{
sched_clock_irqtime = 0;
}
#ifndef CONFIG_64BIT
DEFINE_PER_CPU(seqcount_t, irq_time_seq);
#endif /* CONFIG_64BIT */
/*
* Called before incrementing preempt_count on {soft,}irq_enter
* and before decrementing preempt_count on {soft,}irq_exit.
*/
void vtime_account(struct task_struct *curr)
{
unsigned long flags;
s64 delta;
int cpu;
if (!sched_clock_irqtime)
return;
local_irq_save(flags);
cpu = smp_processor_id();
delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
__this_cpu_add(irq_start_time, delta);
irq_time_write_begin();
/*
* We do not account for softirq time from ksoftirqd here.
* We want to continue accounting softirq time to ksoftirqd thread
* in that case, so as not to confuse scheduler with a special task
* that do not consume any time, but still wants to run.
*/
if (hardirq_count())
__this_cpu_add(cpu_hardirq_time, delta);
else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
__this_cpu_add(cpu_softirq_time, delta);
irq_time_write_end();
local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(vtime_account);
static int irqtime_account_hi_update(void)
{
u64 *cpustat = kcpustat_this_cpu->cpustat;
unsigned long flags;
u64 latest_ns;
int ret = 0;
local_irq_save(flags);
latest_ns = this_cpu_read(cpu_hardirq_time);
if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
ret = 1;
local_irq_restore(flags);
return ret;
}
static int irqtime_account_si_update(void)
{
u64 *cpustat = kcpustat_this_cpu->cpustat;
unsigned long flags;
u64 latest_ns;
int ret = 0;
local_irq_save(flags);
latest_ns = this_cpu_read(cpu_softirq_time);
if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
ret = 1;
local_irq_restore(flags);
return ret;
}
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
#define sched_clock_irqtime (0)
#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
static inline void task_group_account_field(struct task_struct *p, int index,
u64 tmp)
{
#ifdef CONFIG_CGROUP_CPUACCT
struct kernel_cpustat *kcpustat;
struct cpuacct *ca;
#endif
/*
* Since all updates are sure to touch the root cgroup, we
* get ourselves ahead and touch it first. If the root cgroup
* is the only cgroup, then nothing else should be necessary.
*
*/
__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
#ifdef CONFIG_CGROUP_CPUACCT
if (unlikely(!cpuacct_subsys.active))
return;
rcu_read_lock();
ca = task_ca(p);
while (ca && (ca != &root_cpuacct)) {
kcpustat = this_cpu_ptr(ca->cpustat);
kcpustat->cpustat[index] += tmp;
ca = parent_ca(ca);
}
rcu_read_unlock();
#endif
}
/*
* Account user cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in user space since the last update
* @cputime_scaled: cputime scaled by cpu frequency
*/
void account_user_time(struct task_struct *p, cputime_t cputime,
cputime_t cputime_scaled)
{
int index;
/* Add user time to process. */
p->utime += cputime;
p->utimescaled += cputime_scaled;
account_group_user_time(p, cputime);
index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
/* Add user time to cpustat. */
task_group_account_field(p, index, (__force u64) cputime);
/* Account for user time used */
acct_update_integrals(p);
}
/*
* Account guest cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in virtual machine since the last update
* @cputime_scaled: cputime scaled by cpu frequency
*/
static void account_guest_time(struct task_struct *p, cputime_t cputime,
cputime_t cputime_scaled)
{
u64 *cpustat = kcpustat_this_cpu->cpustat;
/* Add guest time to process. */
p->utime += cputime;
p->utimescaled += cputime_scaled;
account_group_user_time(p, cputime);
p->gtime += cputime;
/* Add guest time to cpustat. */
if (TASK_NICE(p) > 0) {
cpustat[CPUTIME_NICE] += (__force u64) cputime;
cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
} else {
cpustat[CPUTIME_USER] += (__force u64) cputime;
cpustat[CPUTIME_GUEST] += (__force u64) cputime;
}
}
/*
* Account system cpu time to a process and desired cpustat field
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in kernel space since the last update
* @cputime_scaled: cputime scaled by cpu frequency
* @target_cputime64: pointer to cpustat field that has to be updated
*/
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
cputime_t cputime_scaled, int index)
{
/* Add system time to process. */
p->stime += cputime;
p->stimescaled += cputime_scaled;
account_group_system_time(p, cputime);
/* Add system time to cpustat. */
task_group_account_field(p, index, (__force u64) cputime);
/* Account for system time used */
acct_update_integrals(p);
}
/*
* Account system cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @hardirq_offset: the offset to subtract from hardirq_count()
* @cputime: the cpu time spent in kernel space since the last update
* @cputime_scaled: cputime scaled by cpu frequency
*/
void account_system_time(struct task_struct *p, int hardirq_offset,
cputime_t cputime, cputime_t cputime_scaled)
{
int index;
if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
account_guest_time(p, cputime, cputime_scaled);
return;
}
if (hardirq_count() - hardirq_offset)
index = CPUTIME_IRQ;
else if (in_serving_softirq())
index = CPUTIME_SOFTIRQ;
else
index = CPUTIME_SYSTEM;
__account_system_time(p, cputime, cputime_scaled, index);
}
/*
* Account for involuntary wait time.
* @cputime: the cpu time spent in involuntary wait
*/
void account_steal_time(cputime_t cputime)
{
u64 *cpustat = kcpustat_this_cpu->cpustat;
cpustat[CPUTIME_STEAL] += (__force u64) cputime;
}
/*
* Account for idle time.
* @cputime: the cpu time spent in idle wait
*/
void account_idle_time(cputime_t cputime)
{
u64 *cpustat = kcpustat_this_cpu->cpustat;
struct rq *rq = this_rq();
if (atomic_read(&rq->nr_iowait) > 0)
cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
else
cpustat[CPUTIME_IDLE] += (__force u64) cputime;
}
static __always_inline bool steal_account_process_tick(void)
{
#ifdef CONFIG_PARAVIRT
if (static_key_false(&paravirt_steal_enabled)) {
u64 steal, st = 0;
steal = paravirt_steal_clock(smp_processor_id());
steal -= this_rq()->prev_steal_time;
st = steal_ticks(steal);
this_rq()->prev_steal_time += st * TICK_NSEC;
account_steal_time(st);
return st;
}
#endif
return false;
}
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
* Account a tick to a process and cpustat
* @p: the process that the cpu time gets accounted to
* @user_tick: is the tick from userspace
* @rq: the pointer to rq
*
* Tick demultiplexing follows the order
* - pending hardirq update
* - pending softirq update
* - user_time
* - idle_time
* - system time
* - check for guest_time
* - else account as system_time
*
* Check for hardirq is done both for system and user time as there is
* no timer going off while we are on hardirq and hence we may never get an
* opportunity to update it solely in system time.
* p->stime and friends are only updated on system time and not on irq
* softirq as those do not count in task exec_runtime any more.
*/
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
struct rq *rq)
{
cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
u64 *cpustat = kcpustat_this_cpu->cpustat;
if (steal_account_process_tick())
return;
if (irqtime_account_hi_update()) {
cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
} else if (irqtime_account_si_update()) {
cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
} else if (this_cpu_ksoftirqd() == p) {
/*
* ksoftirqd time do not get accounted in cpu_softirq_time.
* So, we have to handle it separately here.
* Also, p->stime needs to be updated for ksoftirqd.
*/
__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
CPUTIME_SOFTIRQ);
} else if (user_tick) {
account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
} else if (p == rq->idle) {
account_idle_time(cputime_one_jiffy);
} else if (p->flags & PF_VCPU) { /* System time or guest time */
account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
} else {
__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
CPUTIME_SYSTEM);
}
}
static void irqtime_account_idle_ticks(int ticks)
{
int i;
struct rq *rq = this_rq();
for (i = 0; i < ticks; i++)
irqtime_account_process_tick(current, 0, rq);
}
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
struct rq *rq) {}
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
/*
* Account a single tick of cpu time.
* @p: the process that the cpu time gets accounted to
* @user_tick: indicates if the tick is a user or a system tick
*/
void account_process_tick(struct task_struct *p, int user_tick)
{
cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
struct rq *rq = this_rq();
if (sched_clock_irqtime) {
irqtime_account_process_tick(p, user_tick, rq);
return;
}
if (steal_account_process_tick())
return;
if (user_tick)
account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
one_jiffy_scaled);
else
account_idle_time(cputime_one_jiffy);
}
/*
* Account multiple ticks of steal time.
* @p: the process from which the cpu time has been stolen
* @ticks: number of stolen ticks
*/
void account_steal_ticks(unsigned long ticks)
{
account_steal_time(jiffies_to_cputime(ticks));
}
/*
* Account multiple ticks of idle time.
* @ticks: number of stolen ticks
*/
void account_idle_ticks(unsigned long ticks)
{
if (sched_clock_irqtime) {
irqtime_account_idle_ticks(ticks);
return;
}
account_idle_time(jiffies_to_cputime(ticks));
}
#endif
/*
* Use precise platform statistics if available:
*/
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
*ut = p->utime;
*st = p->stime;
}
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
struct task_cputime cputime;
thread_group_cputime(p, &cputime);
*ut = cputime.utime;
*st = cputime.stime;
}
/*
* Archs that account the whole time spent in the idle task
* (outside irq) as idle time can rely on this and just implement
* vtime_account_system() and vtime_account_idle(). Archs that
* have other meaning of the idle time (s390 only includes the
* time spent by the CPU when it's in low power mode) must override
* vtime_account().
*/
#ifndef __ARCH_HAS_VTIME_ACCOUNT
void vtime_account(struct task_struct *tsk)
{
unsigned long flags;
local_irq_save(flags);
if (in_interrupt() || !is_idle_task(tsk))
vtime_account_system(tsk);
else
vtime_account_idle(tsk);
local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(vtime_account);
#endif /* __ARCH_HAS_VTIME_ACCOUNT */
#else
#ifndef nsecs_to_cputime
# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
#endif
static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total)
{
u64 temp = (__force u64) rtime;
temp *= (__force u64) utime;
if (sizeof(cputime_t) == 4)
temp = div_u64(temp, (__force u32) total);
else
temp = div64_u64(temp, (__force u64) total);
return (__force cputime_t) temp;
}
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
cputime_t rtime, utime = p->utime, total = utime + p->stime;
/*
* Use CFS's precise accounting:
*/
rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
if (total)
utime = scale_utime(utime, rtime, total);
else
utime = rtime;
/*
* Compare with previous values, to keep monotonicity:
*/
p->prev_utime = max(p->prev_utime, utime);
p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
*ut = p->prev_utime;
*st = p->prev_stime;
}
/*
* Must be called with siglock held.
*/
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
struct signal_struct *sig = p->signal;
struct task_cputime cputime;
cputime_t rtime, utime, total;
thread_group_cputime(p, &cputime);
total = cputime.utime + cputime.stime;
rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
if (total)
utime = scale_utime(cputime.utime, rtime, total);
else
utime = rtime;
sig->prev_utime = max(sig->prev_utime, utime);
sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
*ut = sig->prev_utime;
*st = sig->prev_stime;
}
#endif