5ae2b822e4
Noticed the following warnings: CC drivers/power/ab8500_fg.o drivers/power/ab8500_fg.c: In function 'charge_full_store': drivers/power/ab8500_fg.c:2258:2: warning: format '%d' expects argument of type 'int', but argument 4 has type 'ssize_t' [-Wformat] drivers/power/ab8500_fg.c: In function ‘charge_now_store’: drivers/power/ab8500_fg.c:2280:2: warning: format '%d' expects argument of type 'int', but argument 4 has type 'ssize_t' [-Wformat] This patch fixes the issues. Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
2637 lines
67 KiB
C
2637 lines
67 KiB
C
/*
|
|
* Copyright (C) ST-Ericsson AB 2012
|
|
*
|
|
* Main and Back-up battery management driver.
|
|
*
|
|
* Note: Backup battery management is required in case of Li-Ion battery and not
|
|
* for capacitive battery. HREF boards have capacitive battery and hence backup
|
|
* battery management is not used and the supported code is available in this
|
|
* driver.
|
|
*
|
|
* License Terms: GNU General Public License v2
|
|
* Author:
|
|
* Johan Palsson <johan.palsson@stericsson.com>
|
|
* Karl Komierowski <karl.komierowski@stericsson.com>
|
|
* Arun R Murthy <arun.murthy@stericsson.com>
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/power_supply.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/mfd/abx500/ab8500.h>
|
|
#include <linux/mfd/abx500.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mfd/abx500/ab8500-bm.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/mfd/abx500/ab8500-gpadc.h>
|
|
#include <linux/mfd/abx500.h>
|
|
#include <linux/time.h>
|
|
#include <linux/completion.h>
|
|
|
|
#define MILLI_TO_MICRO 1000
|
|
#define FG_LSB_IN_MA 1627
|
|
#define QLSB_NANO_AMP_HOURS_X10 1129
|
|
#define INS_CURR_TIMEOUT (3 * HZ)
|
|
|
|
#define SEC_TO_SAMPLE(S) (S * 4)
|
|
|
|
#define NBR_AVG_SAMPLES 20
|
|
|
|
#define LOW_BAT_CHECK_INTERVAL (2 * HZ)
|
|
|
|
#define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
|
|
#define BATT_OK_MIN 2360 /* mV */
|
|
#define BATT_OK_INCREMENT 50 /* mV */
|
|
#define BATT_OK_MAX_NR_INCREMENTS 0xE
|
|
|
|
/* FG constants */
|
|
#define BATT_OVV 0x01
|
|
|
|
#define interpolate(x, x1, y1, x2, y2) \
|
|
((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
|
|
|
|
#define to_ab8500_fg_device_info(x) container_of((x), \
|
|
struct ab8500_fg, fg_psy);
|
|
|
|
/**
|
|
* struct ab8500_fg_interrupts - ab8500 fg interupts
|
|
* @name: name of the interrupt
|
|
* @isr function pointer to the isr
|
|
*/
|
|
struct ab8500_fg_interrupts {
|
|
char *name;
|
|
irqreturn_t (*isr)(int irq, void *data);
|
|
};
|
|
|
|
enum ab8500_fg_discharge_state {
|
|
AB8500_FG_DISCHARGE_INIT,
|
|
AB8500_FG_DISCHARGE_INITMEASURING,
|
|
AB8500_FG_DISCHARGE_INIT_RECOVERY,
|
|
AB8500_FG_DISCHARGE_RECOVERY,
|
|
AB8500_FG_DISCHARGE_READOUT_INIT,
|
|
AB8500_FG_DISCHARGE_READOUT,
|
|
AB8500_FG_DISCHARGE_WAKEUP,
|
|
};
|
|
|
|
static char *discharge_state[] = {
|
|
"DISCHARGE_INIT",
|
|
"DISCHARGE_INITMEASURING",
|
|
"DISCHARGE_INIT_RECOVERY",
|
|
"DISCHARGE_RECOVERY",
|
|
"DISCHARGE_READOUT_INIT",
|
|
"DISCHARGE_READOUT",
|
|
"DISCHARGE_WAKEUP",
|
|
};
|
|
|
|
enum ab8500_fg_charge_state {
|
|
AB8500_FG_CHARGE_INIT,
|
|
AB8500_FG_CHARGE_READOUT,
|
|
};
|
|
|
|
static char *charge_state[] = {
|
|
"CHARGE_INIT",
|
|
"CHARGE_READOUT",
|
|
};
|
|
|
|
enum ab8500_fg_calibration_state {
|
|
AB8500_FG_CALIB_INIT,
|
|
AB8500_FG_CALIB_WAIT,
|
|
AB8500_FG_CALIB_END,
|
|
};
|
|
|
|
struct ab8500_fg_avg_cap {
|
|
int avg;
|
|
int samples[NBR_AVG_SAMPLES];
|
|
__kernel_time_t time_stamps[NBR_AVG_SAMPLES];
|
|
int pos;
|
|
int nbr_samples;
|
|
int sum;
|
|
};
|
|
|
|
struct ab8500_fg_battery_capacity {
|
|
int max_mah_design;
|
|
int max_mah;
|
|
int mah;
|
|
int permille;
|
|
int level;
|
|
int prev_mah;
|
|
int prev_percent;
|
|
int prev_level;
|
|
int user_mah;
|
|
};
|
|
|
|
struct ab8500_fg_flags {
|
|
bool fg_enabled;
|
|
bool conv_done;
|
|
bool charging;
|
|
bool fully_charged;
|
|
bool force_full;
|
|
bool low_bat_delay;
|
|
bool low_bat;
|
|
bool bat_ovv;
|
|
bool batt_unknown;
|
|
bool calibrate;
|
|
bool user_cap;
|
|
bool batt_id_received;
|
|
};
|
|
|
|
struct inst_curr_result_list {
|
|
struct list_head list;
|
|
int *result;
|
|
};
|
|
|
|
/**
|
|
* struct ab8500_fg - ab8500 FG device information
|
|
* @dev: Pointer to the structure device
|
|
* @node: a list of AB8500 FGs, hence prepared for reentrance
|
|
* @irq holds the CCEOC interrupt number
|
|
* @vbat: Battery voltage in mV
|
|
* @vbat_nom: Nominal battery voltage in mV
|
|
* @inst_curr: Instantenous battery current in mA
|
|
* @avg_curr: Average battery current in mA
|
|
* @bat_temp battery temperature
|
|
* @fg_samples: Number of samples used in the FG accumulation
|
|
* @accu_charge: Accumulated charge from the last conversion
|
|
* @recovery_cnt: Counter for recovery mode
|
|
* @high_curr_cnt: Counter for high current mode
|
|
* @init_cnt: Counter for init mode
|
|
* @recovery_needed: Indicate if recovery is needed
|
|
* @high_curr_mode: Indicate if we're in high current mode
|
|
* @init_capacity: Indicate if initial capacity measuring should be done
|
|
* @turn_off_fg: True if fg was off before current measurement
|
|
* @calib_state State during offset calibration
|
|
* @discharge_state: Current discharge state
|
|
* @charge_state: Current charge state
|
|
* @ab8500_fg_complete Completion struct used for the instant current reading
|
|
* @flags: Structure for information about events triggered
|
|
* @bat_cap: Structure for battery capacity specific parameters
|
|
* @avg_cap: Average capacity filter
|
|
* @parent: Pointer to the struct ab8500
|
|
* @gpadc: Pointer to the struct gpadc
|
|
* @pdata: Pointer to the abx500_fg platform data
|
|
* @bat: Pointer to the abx500_bm platform data
|
|
* @fg_psy: Structure that holds the FG specific battery properties
|
|
* @fg_wq: Work queue for running the FG algorithm
|
|
* @fg_periodic_work: Work to run the FG algorithm periodically
|
|
* @fg_low_bat_work: Work to check low bat condition
|
|
* @fg_reinit_work Work used to reset and reinitialise the FG algorithm
|
|
* @fg_work: Work to run the FG algorithm instantly
|
|
* @fg_acc_cur_work: Work to read the FG accumulator
|
|
* @fg_check_hw_failure_work: Work for checking HW state
|
|
* @cc_lock: Mutex for locking the CC
|
|
* @fg_kobject: Structure of type kobject
|
|
*/
|
|
struct ab8500_fg {
|
|
struct device *dev;
|
|
struct list_head node;
|
|
int irq;
|
|
int vbat;
|
|
int vbat_nom;
|
|
int inst_curr;
|
|
int avg_curr;
|
|
int bat_temp;
|
|
int fg_samples;
|
|
int accu_charge;
|
|
int recovery_cnt;
|
|
int high_curr_cnt;
|
|
int init_cnt;
|
|
bool recovery_needed;
|
|
bool high_curr_mode;
|
|
bool init_capacity;
|
|
bool turn_off_fg;
|
|
enum ab8500_fg_calibration_state calib_state;
|
|
enum ab8500_fg_discharge_state discharge_state;
|
|
enum ab8500_fg_charge_state charge_state;
|
|
struct completion ab8500_fg_complete;
|
|
struct ab8500_fg_flags flags;
|
|
struct ab8500_fg_battery_capacity bat_cap;
|
|
struct ab8500_fg_avg_cap avg_cap;
|
|
struct ab8500 *parent;
|
|
struct ab8500_gpadc *gpadc;
|
|
struct abx500_fg_platform_data *pdata;
|
|
struct abx500_bm_data *bat;
|
|
struct power_supply fg_psy;
|
|
struct workqueue_struct *fg_wq;
|
|
struct delayed_work fg_periodic_work;
|
|
struct delayed_work fg_low_bat_work;
|
|
struct delayed_work fg_reinit_work;
|
|
struct work_struct fg_work;
|
|
struct work_struct fg_acc_cur_work;
|
|
struct delayed_work fg_check_hw_failure_work;
|
|
struct mutex cc_lock;
|
|
struct kobject fg_kobject;
|
|
};
|
|
static LIST_HEAD(ab8500_fg_list);
|
|
|
|
/**
|
|
* ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
|
|
* (i.e. the first fuel gauge in the instance list)
|
|
*/
|
|
struct ab8500_fg *ab8500_fg_get(void)
|
|
{
|
|
struct ab8500_fg *fg;
|
|
|
|
if (list_empty(&ab8500_fg_list))
|
|
return NULL;
|
|
|
|
fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
|
|
return fg;
|
|
}
|
|
|
|
/* Main battery properties */
|
|
static enum power_supply_property ab8500_fg_props[] = {
|
|
POWER_SUPPLY_PROP_VOLTAGE_NOW,
|
|
POWER_SUPPLY_PROP_CURRENT_NOW,
|
|
POWER_SUPPLY_PROP_CURRENT_AVG,
|
|
POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
|
|
POWER_SUPPLY_PROP_ENERGY_FULL,
|
|
POWER_SUPPLY_PROP_ENERGY_NOW,
|
|
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
|
|
POWER_SUPPLY_PROP_CHARGE_FULL,
|
|
POWER_SUPPLY_PROP_CHARGE_NOW,
|
|
POWER_SUPPLY_PROP_CAPACITY,
|
|
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
|
|
};
|
|
|
|
/*
|
|
* This array maps the raw hex value to lowbat voltage used by the AB8500
|
|
* Values taken from the UM0836
|
|
*/
|
|
static int ab8500_fg_lowbat_voltage_map[] = {
|
|
2300 ,
|
|
2325 ,
|
|
2350 ,
|
|
2375 ,
|
|
2400 ,
|
|
2425 ,
|
|
2450 ,
|
|
2475 ,
|
|
2500 ,
|
|
2525 ,
|
|
2550 ,
|
|
2575 ,
|
|
2600 ,
|
|
2625 ,
|
|
2650 ,
|
|
2675 ,
|
|
2700 ,
|
|
2725 ,
|
|
2750 ,
|
|
2775 ,
|
|
2800 ,
|
|
2825 ,
|
|
2850 ,
|
|
2875 ,
|
|
2900 ,
|
|
2925 ,
|
|
2950 ,
|
|
2975 ,
|
|
3000 ,
|
|
3025 ,
|
|
3050 ,
|
|
3075 ,
|
|
3100 ,
|
|
3125 ,
|
|
3150 ,
|
|
3175 ,
|
|
3200 ,
|
|
3225 ,
|
|
3250 ,
|
|
3275 ,
|
|
3300 ,
|
|
3325 ,
|
|
3350 ,
|
|
3375 ,
|
|
3400 ,
|
|
3425 ,
|
|
3450 ,
|
|
3475 ,
|
|
3500 ,
|
|
3525 ,
|
|
3550 ,
|
|
3575 ,
|
|
3600 ,
|
|
3625 ,
|
|
3650 ,
|
|
3675 ,
|
|
3700 ,
|
|
3725 ,
|
|
3750 ,
|
|
3775 ,
|
|
3800 ,
|
|
3825 ,
|
|
3850 ,
|
|
3850 ,
|
|
};
|
|
|
|
static u8 ab8500_volt_to_regval(int voltage)
|
|
{
|
|
int i;
|
|
|
|
if (voltage < ab8500_fg_lowbat_voltage_map[0])
|
|
return 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
|
|
if (voltage < ab8500_fg_lowbat_voltage_map[i])
|
|
return (u8) i - 1;
|
|
}
|
|
|
|
/* If not captured above, return index of last element */
|
|
return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_is_low_curr() - Low or high current mode
|
|
* @di: pointer to the ab8500_fg structure
|
|
* @curr: the current to base or our decision on
|
|
*
|
|
* Low current mode if the current consumption is below a certain threshold
|
|
*/
|
|
static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
|
|
{
|
|
/*
|
|
* We want to know if we're in low current mode
|
|
*/
|
|
if (curr > -di->bat->fg_params->high_curr_threshold)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_add_cap_sample() - Add capacity to average filter
|
|
* @di: pointer to the ab8500_fg structure
|
|
* @sample: the capacity in mAh to add to the filter
|
|
*
|
|
* A capacity is added to the filter and a new mean capacity is calculated and
|
|
* returned
|
|
*/
|
|
static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
|
|
{
|
|
struct timespec ts;
|
|
struct ab8500_fg_avg_cap *avg = &di->avg_cap;
|
|
|
|
getnstimeofday(&ts);
|
|
|
|
do {
|
|
avg->sum += sample - avg->samples[avg->pos];
|
|
avg->samples[avg->pos] = sample;
|
|
avg->time_stamps[avg->pos] = ts.tv_sec;
|
|
avg->pos++;
|
|
|
|
if (avg->pos == NBR_AVG_SAMPLES)
|
|
avg->pos = 0;
|
|
|
|
if (avg->nbr_samples < NBR_AVG_SAMPLES)
|
|
avg->nbr_samples++;
|
|
|
|
/*
|
|
* Check the time stamp for each sample. If too old,
|
|
* replace with latest sample
|
|
*/
|
|
} while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
|
|
|
|
avg->avg = avg->sum / avg->nbr_samples;
|
|
|
|
return avg->avg;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_clear_cap_samples() - Clear average filter
|
|
* @di: pointer to the ab8500_fg structure
|
|
*
|
|
* The capacity filter is is reset to zero.
|
|
*/
|
|
static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
|
|
{
|
|
int i;
|
|
struct ab8500_fg_avg_cap *avg = &di->avg_cap;
|
|
|
|
avg->pos = 0;
|
|
avg->nbr_samples = 0;
|
|
avg->sum = 0;
|
|
avg->avg = 0;
|
|
|
|
for (i = 0; i < NBR_AVG_SAMPLES; i++) {
|
|
avg->samples[i] = 0;
|
|
avg->time_stamps[i] = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_fill_cap_sample() - Fill average filter
|
|
* @di: pointer to the ab8500_fg structure
|
|
* @sample: the capacity in mAh to fill the filter with
|
|
*
|
|
* The capacity filter is filled with a capacity in mAh
|
|
*/
|
|
static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
|
|
{
|
|
int i;
|
|
struct timespec ts;
|
|
struct ab8500_fg_avg_cap *avg = &di->avg_cap;
|
|
|
|
getnstimeofday(&ts);
|
|
|
|
for (i = 0; i < NBR_AVG_SAMPLES; i++) {
|
|
avg->samples[i] = sample;
|
|
avg->time_stamps[i] = ts.tv_sec;
|
|
}
|
|
|
|
avg->pos = 0;
|
|
avg->nbr_samples = NBR_AVG_SAMPLES;
|
|
avg->sum = sample * NBR_AVG_SAMPLES;
|
|
avg->avg = sample;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_coulomb_counter() - enable coulomb counter
|
|
* @di: pointer to the ab8500_fg structure
|
|
* @enable: enable/disable
|
|
*
|
|
* Enable/Disable coulomb counter.
|
|
* On failure returns negative value.
|
|
*/
|
|
static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
|
|
{
|
|
int ret = 0;
|
|
mutex_lock(&di->cc_lock);
|
|
if (enable) {
|
|
/* To be able to reprogram the number of samples, we have to
|
|
* first stop the CC and then enable it again */
|
|
ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
|
|
AB8500_RTC_CC_CONF_REG, 0x00);
|
|
if (ret)
|
|
goto cc_err;
|
|
|
|
/* Program the samples */
|
|
ret = abx500_set_register_interruptible(di->dev,
|
|
AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
|
|
di->fg_samples);
|
|
if (ret)
|
|
goto cc_err;
|
|
|
|
/* Start the CC */
|
|
ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
|
|
AB8500_RTC_CC_CONF_REG,
|
|
(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
|
|
if (ret)
|
|
goto cc_err;
|
|
|
|
di->flags.fg_enabled = true;
|
|
} else {
|
|
/* Clear any pending read requests */
|
|
ret = abx500_set_register_interruptible(di->dev,
|
|
AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
|
|
if (ret)
|
|
goto cc_err;
|
|
|
|
ret = abx500_set_register_interruptible(di->dev,
|
|
AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
|
|
if (ret)
|
|
goto cc_err;
|
|
|
|
/* Stop the CC */
|
|
ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
|
|
AB8500_RTC_CC_CONF_REG, 0);
|
|
if (ret)
|
|
goto cc_err;
|
|
|
|
di->flags.fg_enabled = false;
|
|
|
|
}
|
|
dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
|
|
enable, di->fg_samples);
|
|
|
|
mutex_unlock(&di->cc_lock);
|
|
|
|
return ret;
|
|
cc_err:
|
|
dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
|
|
mutex_unlock(&di->cc_lock);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_inst_curr_start() - start battery instantaneous current
|
|
* @di: pointer to the ab8500_fg structure
|
|
*
|
|
* Returns 0 or error code
|
|
* Note: This is part "one" and has to be called before
|
|
* ab8500_fg_inst_curr_finalize()
|
|
*/
|
|
int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
|
|
{
|
|
u8 reg_val;
|
|
int ret;
|
|
|
|
mutex_lock(&di->cc_lock);
|
|
|
|
ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
|
|
AB8500_RTC_CC_CONF_REG, ®_val);
|
|
if (ret < 0)
|
|
goto fail;
|
|
|
|
if (!(reg_val & CC_PWR_UP_ENA)) {
|
|
dev_dbg(di->dev, "%s Enable FG\n", __func__);
|
|
di->turn_off_fg = true;
|
|
|
|
/* Program the samples */
|
|
ret = abx500_set_register_interruptible(di->dev,
|
|
AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
|
|
SEC_TO_SAMPLE(10));
|
|
if (ret)
|
|
goto fail;
|
|
|
|
/* Start the CC */
|
|
ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
|
|
AB8500_RTC_CC_CONF_REG,
|
|
(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
|
|
if (ret)
|
|
goto fail;
|
|
} else {
|
|
di->turn_off_fg = false;
|
|
}
|
|
|
|
/* Return and WFI */
|
|
INIT_COMPLETION(di->ab8500_fg_complete);
|
|
enable_irq(di->irq);
|
|
|
|
/* Note: cc_lock is still locked */
|
|
return 0;
|
|
fail:
|
|
mutex_unlock(&di->cc_lock);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_inst_curr_done() - check if fg conversion is done
|
|
* @di: pointer to the ab8500_fg structure
|
|
*
|
|
* Returns 1 if conversion done, 0 if still waiting
|
|
*/
|
|
int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
|
|
{
|
|
return completion_done(&di->ab8500_fg_complete);
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_inst_curr_finalize() - battery instantaneous current
|
|
* @di: pointer to the ab8500_fg structure
|
|
* @res: battery instantenous current(on success)
|
|
*
|
|
* Returns 0 or an error code
|
|
* Note: This is part "two" and has to be called at earliest 250 ms
|
|
* after ab8500_fg_inst_curr_start()
|
|
*/
|
|
int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
|
|
{
|
|
u8 low, high;
|
|
int val;
|
|
int ret;
|
|
int timeout;
|
|
|
|
if (!completion_done(&di->ab8500_fg_complete)) {
|
|
timeout = wait_for_completion_timeout(&di->ab8500_fg_complete,
|
|
INS_CURR_TIMEOUT);
|
|
dev_dbg(di->dev, "Finalize time: %d ms\n",
|
|
((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
|
|
if (!timeout) {
|
|
ret = -ETIME;
|
|
disable_irq(di->irq);
|
|
dev_err(di->dev, "completion timed out [%d]\n",
|
|
__LINE__);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
disable_irq(di->irq);
|
|
|
|
ret = abx500_mask_and_set_register_interruptible(di->dev,
|
|
AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
|
|
READ_REQ, READ_REQ);
|
|
|
|
/* 100uS between read request and read is needed */
|
|
usleep_range(100, 100);
|
|
|
|
/* Read CC Sample conversion value Low and high */
|
|
ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
|
|
AB8500_GASG_CC_SMPL_CNVL_REG, &low);
|
|
if (ret < 0)
|
|
goto fail;
|
|
|
|
ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
|
|
AB8500_GASG_CC_SMPL_CNVH_REG, &high);
|
|
if (ret < 0)
|
|
goto fail;
|
|
|
|
/*
|
|
* negative value for Discharging
|
|
* convert 2's compliment into decimal
|
|
*/
|
|
if (high & 0x10)
|
|
val = (low | (high << 8) | 0xFFFFE000);
|
|
else
|
|
val = (low | (high << 8));
|
|
|
|
/*
|
|
* Convert to unit value in mA
|
|
* Full scale input voltage is
|
|
* 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
|
|
* Given a 250ms conversion cycle time the LSB corresponds
|
|
* to 112.9 nAh. Convert to current by dividing by the conversion
|
|
* time in hours (250ms = 1 / (3600 * 4)h)
|
|
* 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
|
|
*/
|
|
val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
|
|
(1000 * di->bat->fg_res);
|
|
|
|
if (di->turn_off_fg) {
|
|
dev_dbg(di->dev, "%s Disable FG\n", __func__);
|
|
|
|
/* Clear any pending read requests */
|
|
ret = abx500_set_register_interruptible(di->dev,
|
|
AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
/* Stop the CC */
|
|
ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
|
|
AB8500_RTC_CC_CONF_REG, 0);
|
|
if (ret)
|
|
goto fail;
|
|
}
|
|
mutex_unlock(&di->cc_lock);
|
|
(*res) = val;
|
|
|
|
return 0;
|
|
fail:
|
|
mutex_unlock(&di->cc_lock);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_inst_curr_blocking() - battery instantaneous current
|
|
* @di: pointer to the ab8500_fg structure
|
|
* @res: battery instantenous current(on success)
|
|
*
|
|
* Returns 0 else error code
|
|
*/
|
|
int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
|
|
{
|
|
int ret;
|
|
int res = 0;
|
|
|
|
ret = ab8500_fg_inst_curr_start(di);
|
|
if (ret) {
|
|
dev_err(di->dev, "Failed to initialize fg_inst\n");
|
|
return 0;
|
|
}
|
|
|
|
ret = ab8500_fg_inst_curr_finalize(di, &res);
|
|
if (ret) {
|
|
dev_err(di->dev, "Failed to finalize fg_inst\n");
|
|
return 0;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_acc_cur_work() - average battery current
|
|
* @work: pointer to the work_struct structure
|
|
*
|
|
* Updated the average battery current obtained from the
|
|
* coulomb counter.
|
|
*/
|
|
static void ab8500_fg_acc_cur_work(struct work_struct *work)
|
|
{
|
|
int val;
|
|
int ret;
|
|
u8 low, med, high;
|
|
|
|
struct ab8500_fg *di = container_of(work,
|
|
struct ab8500_fg, fg_acc_cur_work);
|
|
|
|
mutex_lock(&di->cc_lock);
|
|
ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
|
|
AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
|
|
if (ret)
|
|
goto exit;
|
|
|
|
ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
|
|
AB8500_GASG_CC_NCOV_ACCU_LOW, &low);
|
|
if (ret < 0)
|
|
goto exit;
|
|
|
|
ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
|
|
AB8500_GASG_CC_NCOV_ACCU_MED, &med);
|
|
if (ret < 0)
|
|
goto exit;
|
|
|
|
ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
|
|
AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
|
|
if (ret < 0)
|
|
goto exit;
|
|
|
|
/* Check for sign bit in case of negative value, 2's compliment */
|
|
if (high & 0x10)
|
|
val = (low | (med << 8) | (high << 16) | 0xFFE00000);
|
|
else
|
|
val = (low | (med << 8) | (high << 16));
|
|
|
|
/*
|
|
* Convert to uAh
|
|
* Given a 250ms conversion cycle time the LSB corresponds
|
|
* to 112.9 nAh.
|
|
* 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
|
|
*/
|
|
di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
|
|
(100 * di->bat->fg_res);
|
|
|
|
/*
|
|
* Convert to unit value in mA
|
|
* Full scale input voltage is
|
|
* 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
|
|
* Given a 250ms conversion cycle time the LSB corresponds
|
|
* to 112.9 nAh. Convert to current by dividing by the conversion
|
|
* time in hours (= samples / (3600 * 4)h)
|
|
* 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
|
|
*/
|
|
di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
|
|
(1000 * di->bat->fg_res * (di->fg_samples / 4));
|
|
|
|
di->flags.conv_done = true;
|
|
|
|
mutex_unlock(&di->cc_lock);
|
|
|
|
queue_work(di->fg_wq, &di->fg_work);
|
|
|
|
return;
|
|
exit:
|
|
dev_err(di->dev,
|
|
"Failed to read or write gas gauge registers\n");
|
|
mutex_unlock(&di->cc_lock);
|
|
queue_work(di->fg_wq, &di->fg_work);
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_bat_voltage() - get battery voltage
|
|
* @di: pointer to the ab8500_fg structure
|
|
*
|
|
* Returns battery voltage(on success) else error code
|
|
*/
|
|
static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
|
|
{
|
|
int vbat;
|
|
static int prev;
|
|
|
|
vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
|
|
if (vbat < 0) {
|
|
dev_err(di->dev,
|
|
"%s gpadc conversion failed, using previous value\n",
|
|
__func__);
|
|
return prev;
|
|
}
|
|
|
|
prev = vbat;
|
|
return vbat;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_volt_to_capacity() - Voltage based capacity
|
|
* @di: pointer to the ab8500_fg structure
|
|
* @voltage: The voltage to convert to a capacity
|
|
*
|
|
* Returns battery capacity in per mille based on voltage
|
|
*/
|
|
static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
|
|
{
|
|
int i, tbl_size;
|
|
struct abx500_v_to_cap *tbl;
|
|
int cap = 0;
|
|
|
|
tbl = di->bat->bat_type[di->bat->batt_id].v_to_cap_tbl,
|
|
tbl_size = di->bat->bat_type[di->bat->batt_id].n_v_cap_tbl_elements;
|
|
|
|
for (i = 0; i < tbl_size; ++i) {
|
|
if (voltage > tbl[i].voltage)
|
|
break;
|
|
}
|
|
|
|
if ((i > 0) && (i < tbl_size)) {
|
|
cap = interpolate(voltage,
|
|
tbl[i].voltage,
|
|
tbl[i].capacity * 10,
|
|
tbl[i-1].voltage,
|
|
tbl[i-1].capacity * 10);
|
|
} else if (i == 0) {
|
|
cap = 1000;
|
|
} else {
|
|
cap = 0;
|
|
}
|
|
|
|
dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
|
|
__func__, voltage, cap);
|
|
|
|
return cap;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
|
|
* @di: pointer to the ab8500_fg structure
|
|
*
|
|
* Returns battery capacity based on battery voltage that is not compensated
|
|
* for the voltage drop due to the load
|
|
*/
|
|
static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
|
|
{
|
|
di->vbat = ab8500_fg_bat_voltage(di);
|
|
return ab8500_fg_volt_to_capacity(di, di->vbat);
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_battery_resistance() - Returns the battery inner resistance
|
|
* @di: pointer to the ab8500_fg structure
|
|
*
|
|
* Returns battery inner resistance added with the fuel gauge resistor value
|
|
* to get the total resistance in the whole link from gnd to bat+ node.
|
|
*/
|
|
static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
|
|
{
|
|
int i, tbl_size;
|
|
struct batres_vs_temp *tbl;
|
|
int resist = 0;
|
|
|
|
tbl = di->bat->bat_type[di->bat->batt_id].batres_tbl;
|
|
tbl_size = di->bat->bat_type[di->bat->batt_id].n_batres_tbl_elements;
|
|
|
|
for (i = 0; i < tbl_size; ++i) {
|
|
if (di->bat_temp / 10 > tbl[i].temp)
|
|
break;
|
|
}
|
|
|
|
if ((i > 0) && (i < tbl_size)) {
|
|
resist = interpolate(di->bat_temp / 10,
|
|
tbl[i].temp,
|
|
tbl[i].resist,
|
|
tbl[i-1].temp,
|
|
tbl[i-1].resist);
|
|
} else if (i == 0) {
|
|
resist = tbl[0].resist;
|
|
} else {
|
|
resist = tbl[tbl_size - 1].resist;
|
|
}
|
|
|
|
dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
|
|
" fg resistance %d, total: %d (mOhm)\n",
|
|
__func__, di->bat_temp, resist, di->bat->fg_res / 10,
|
|
(di->bat->fg_res / 10) + resist);
|
|
|
|
/* fg_res variable is in 0.1mOhm */
|
|
resist += di->bat->fg_res / 10;
|
|
|
|
return resist;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
|
|
* @di: pointer to the ab8500_fg structure
|
|
*
|
|
* Returns battery capacity based on battery voltage that is load compensated
|
|
* for the voltage drop
|
|
*/
|
|
static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
|
|
{
|
|
int vbat_comp, res;
|
|
int i = 0;
|
|
int vbat = 0;
|
|
|
|
ab8500_fg_inst_curr_start(di);
|
|
|
|
do {
|
|
vbat += ab8500_fg_bat_voltage(di);
|
|
i++;
|
|
msleep(5);
|
|
} while (!ab8500_fg_inst_curr_done(di));
|
|
|
|
ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
|
|
|
|
di->vbat = vbat / i;
|
|
res = ab8500_fg_battery_resistance(di);
|
|
|
|
/* Use Ohms law to get the load compensated voltage */
|
|
vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
|
|
|
|
dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
|
|
"R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
|
|
__func__, di->vbat, vbat_comp, res, di->inst_curr, i);
|
|
|
|
return ab8500_fg_volt_to_capacity(di, vbat_comp);
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
|
|
* @di: pointer to the ab8500_fg structure
|
|
* @cap_mah: capacity in mAh
|
|
*
|
|
* Converts capacity in mAh to capacity in permille
|
|
*/
|
|
static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
|
|
{
|
|
return (cap_mah * 1000) / di->bat_cap.max_mah_design;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
|
|
* @di: pointer to the ab8500_fg structure
|
|
* @cap_pm: capacity in permille
|
|
*
|
|
* Converts capacity in permille to capacity in mAh
|
|
*/
|
|
static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
|
|
{
|
|
return cap_pm * di->bat_cap.max_mah_design / 1000;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
|
|
* @di: pointer to the ab8500_fg structure
|
|
* @cap_mah: capacity in mAh
|
|
*
|
|
* Converts capacity in mAh to capacity in uWh
|
|
*/
|
|
static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
|
|
{
|
|
u64 div_res;
|
|
u32 div_rem;
|
|
|
|
div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
|
|
div_rem = do_div(div_res, 1000);
|
|
|
|
/* Make sure to round upwards if necessary */
|
|
if (div_rem >= 1000 / 2)
|
|
div_res++;
|
|
|
|
return (int) div_res;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
|
|
* @di: pointer to the ab8500_fg structure
|
|
*
|
|
* Return the capacity in mAh based on previous calculated capcity and the FG
|
|
* accumulator register value. The filter is filled with this capacity
|
|
*/
|
|
static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
|
|
{
|
|
dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
|
|
__func__,
|
|
di->bat_cap.mah,
|
|
di->accu_charge);
|
|
|
|
/* Capacity should not be less than 0 */
|
|
if (di->bat_cap.mah + di->accu_charge > 0)
|
|
di->bat_cap.mah += di->accu_charge;
|
|
else
|
|
di->bat_cap.mah = 0;
|
|
/*
|
|
* We force capacity to 100% once when the algorithm
|
|
* reports that it's full.
|
|
*/
|
|
if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
|
|
di->flags.force_full) {
|
|
di->bat_cap.mah = di->bat_cap.max_mah_design;
|
|
}
|
|
|
|
ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
|
|
di->bat_cap.permille =
|
|
ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
|
|
|
|
/* We need to update battery voltage and inst current when charging */
|
|
di->vbat = ab8500_fg_bat_voltage(di);
|
|
di->inst_curr = ab8500_fg_inst_curr_blocking(di);
|
|
|
|
return di->bat_cap.mah;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
|
|
* @di: pointer to the ab8500_fg structure
|
|
* @comp: if voltage should be load compensated before capacity calc
|
|
*
|
|
* Return the capacity in mAh based on the battery voltage. The voltage can
|
|
* either be load compensated or not. This value is added to the filter and a
|
|
* new mean value is calculated and returned.
|
|
*/
|
|
static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
|
|
{
|
|
int permille, mah;
|
|
|
|
if (comp)
|
|
permille = ab8500_fg_load_comp_volt_to_capacity(di);
|
|
else
|
|
permille = ab8500_fg_uncomp_volt_to_capacity(di);
|
|
|
|
mah = ab8500_fg_convert_permille_to_mah(di, permille);
|
|
|
|
di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
|
|
di->bat_cap.permille =
|
|
ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
|
|
|
|
return di->bat_cap.mah;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
|
|
* @di: pointer to the ab8500_fg structure
|
|
*
|
|
* Return the capacity in mAh based on previous calculated capcity and the FG
|
|
* accumulator register value. This value is added to the filter and a
|
|
* new mean value is calculated and returned.
|
|
*/
|
|
static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
|
|
{
|
|
int permille_volt, permille;
|
|
|
|
dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
|
|
__func__,
|
|
di->bat_cap.mah,
|
|
di->accu_charge);
|
|
|
|
/* Capacity should not be less than 0 */
|
|
if (di->bat_cap.mah + di->accu_charge > 0)
|
|
di->bat_cap.mah += di->accu_charge;
|
|
else
|
|
di->bat_cap.mah = 0;
|
|
|
|
if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
|
|
di->bat_cap.mah = di->bat_cap.max_mah_design;
|
|
|
|
/*
|
|
* Check against voltage based capacity. It can not be lower
|
|
* than what the uncompensated voltage says
|
|
*/
|
|
permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
|
|
permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
|
|
|
|
if (permille < permille_volt) {
|
|
di->bat_cap.permille = permille_volt;
|
|
di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
|
|
di->bat_cap.permille);
|
|
|
|
dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
|
|
__func__,
|
|
permille,
|
|
permille_volt);
|
|
|
|
ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
|
|
} else {
|
|
ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
|
|
di->bat_cap.permille =
|
|
ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
|
|
}
|
|
|
|
return di->bat_cap.mah;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_capacity_level() - Get the battery capacity level
|
|
* @di: pointer to the ab8500_fg structure
|
|
*
|
|
* Get the battery capacity level based on the capacity in percent
|
|
*/
|
|
static int ab8500_fg_capacity_level(struct ab8500_fg *di)
|
|
{
|
|
int ret, percent;
|
|
|
|
percent = di->bat_cap.permille / 10;
|
|
|
|
if (percent <= di->bat->cap_levels->critical ||
|
|
di->flags.low_bat)
|
|
ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
|
|
else if (percent <= di->bat->cap_levels->low)
|
|
ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
|
|
else if (percent <= di->bat->cap_levels->normal)
|
|
ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
|
|
else if (percent <= di->bat->cap_levels->high)
|
|
ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
|
|
else
|
|
ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_check_capacity_limits() - Check if capacity has changed
|
|
* @di: pointer to the ab8500_fg structure
|
|
* @init: capacity is allowed to go up in init mode
|
|
*
|
|
* Check if capacity or capacity limit has changed and notify the system
|
|
* about it using the power_supply framework
|
|
*/
|
|
static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
|
|
{
|
|
bool changed = false;
|
|
|
|
di->bat_cap.level = ab8500_fg_capacity_level(di);
|
|
|
|
if (di->bat_cap.level != di->bat_cap.prev_level) {
|
|
/*
|
|
* We do not allow reported capacity level to go up
|
|
* unless we're charging or if we're in init
|
|
*/
|
|
if (!(!di->flags.charging && di->bat_cap.level >
|
|
di->bat_cap.prev_level) || init) {
|
|
dev_dbg(di->dev, "level changed from %d to %d\n",
|
|
di->bat_cap.prev_level,
|
|
di->bat_cap.level);
|
|
di->bat_cap.prev_level = di->bat_cap.level;
|
|
changed = true;
|
|
} else {
|
|
dev_dbg(di->dev, "level not allowed to go up "
|
|
"since no charger is connected: %d to %d\n",
|
|
di->bat_cap.prev_level,
|
|
di->bat_cap.level);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
|
|
* shutdown
|
|
*/
|
|
if (di->flags.low_bat) {
|
|
dev_dbg(di->dev, "Battery low, set capacity to 0\n");
|
|
di->bat_cap.prev_percent = 0;
|
|
di->bat_cap.permille = 0;
|
|
di->bat_cap.prev_mah = 0;
|
|
di->bat_cap.mah = 0;
|
|
changed = true;
|
|
} else if (di->flags.fully_charged) {
|
|
/*
|
|
* We report 100% if algorithm reported fully charged
|
|
* unless capacity drops too much
|
|
*/
|
|
if (di->flags.force_full) {
|
|
di->bat_cap.prev_percent = di->bat_cap.permille / 10;
|
|
di->bat_cap.prev_mah = di->bat_cap.mah;
|
|
} else if (!di->flags.force_full &&
|
|
di->bat_cap.prev_percent !=
|
|
(di->bat_cap.permille) / 10 &&
|
|
(di->bat_cap.permille / 10) <
|
|
di->bat->fg_params->maint_thres) {
|
|
dev_dbg(di->dev,
|
|
"battery reported full "
|
|
"but capacity dropping: %d\n",
|
|
di->bat_cap.permille / 10);
|
|
di->bat_cap.prev_percent = di->bat_cap.permille / 10;
|
|
di->bat_cap.prev_mah = di->bat_cap.mah;
|
|
|
|
changed = true;
|
|
}
|
|
} else if (di->bat_cap.prev_percent != di->bat_cap.permille / 10) {
|
|
if (di->bat_cap.permille / 10 == 0) {
|
|
/*
|
|
* We will not report 0% unless we've got
|
|
* the LOW_BAT IRQ, no matter what the FG
|
|
* algorithm says.
|
|
*/
|
|
di->bat_cap.prev_percent = 1;
|
|
di->bat_cap.permille = 1;
|
|
di->bat_cap.prev_mah = 1;
|
|
di->bat_cap.mah = 1;
|
|
|
|
changed = true;
|
|
} else if (!(!di->flags.charging &&
|
|
(di->bat_cap.permille / 10) >
|
|
di->bat_cap.prev_percent) || init) {
|
|
/*
|
|
* We do not allow reported capacity to go up
|
|
* unless we're charging or if we're in init
|
|
*/
|
|
dev_dbg(di->dev,
|
|
"capacity changed from %d to %d (%d)\n",
|
|
di->bat_cap.prev_percent,
|
|
di->bat_cap.permille / 10,
|
|
di->bat_cap.permille);
|
|
di->bat_cap.prev_percent = di->bat_cap.permille / 10;
|
|
di->bat_cap.prev_mah = di->bat_cap.mah;
|
|
|
|
changed = true;
|
|
} else {
|
|
dev_dbg(di->dev, "capacity not allowed to go up since "
|
|
"no charger is connected: %d to %d (%d)\n",
|
|
di->bat_cap.prev_percent,
|
|
di->bat_cap.permille / 10,
|
|
di->bat_cap.permille);
|
|
}
|
|
}
|
|
|
|
if (changed) {
|
|
power_supply_changed(&di->fg_psy);
|
|
if (di->flags.fully_charged && di->flags.force_full) {
|
|
dev_dbg(di->dev, "Battery full, notifying.\n");
|
|
di->flags.force_full = false;
|
|
sysfs_notify(&di->fg_kobject, NULL, "charge_full");
|
|
}
|
|
sysfs_notify(&di->fg_kobject, NULL, "charge_now");
|
|
}
|
|
}
|
|
|
|
static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
|
|
enum ab8500_fg_charge_state new_state)
|
|
{
|
|
dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
|
|
di->charge_state,
|
|
charge_state[di->charge_state],
|
|
new_state,
|
|
charge_state[new_state]);
|
|
|
|
di->charge_state = new_state;
|
|
}
|
|
|
|
static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
|
|
enum ab8500_fg_discharge_state new_state)
|
|
{
|
|
dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
|
|
di->discharge_state,
|
|
discharge_state[di->discharge_state],
|
|
new_state,
|
|
discharge_state[new_state]);
|
|
|
|
di->discharge_state = new_state;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_algorithm_charging() - FG algorithm for when charging
|
|
* @di: pointer to the ab8500_fg structure
|
|
*
|
|
* Battery capacity calculation state machine for when we're charging
|
|
*/
|
|
static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
|
|
{
|
|
/*
|
|
* If we change to discharge mode
|
|
* we should start with recovery
|
|
*/
|
|
if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
|
|
ab8500_fg_discharge_state_to(di,
|
|
AB8500_FG_DISCHARGE_INIT_RECOVERY);
|
|
|
|
switch (di->charge_state) {
|
|
case AB8500_FG_CHARGE_INIT:
|
|
di->fg_samples = SEC_TO_SAMPLE(
|
|
di->bat->fg_params->accu_charging);
|
|
|
|
ab8500_fg_coulomb_counter(di, true);
|
|
ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
|
|
|
|
break;
|
|
|
|
case AB8500_FG_CHARGE_READOUT:
|
|
/*
|
|
* Read the FG and calculate the new capacity
|
|
*/
|
|
mutex_lock(&di->cc_lock);
|
|
if (!di->flags.conv_done) {
|
|
/* Wasn't the CC IRQ that got us here */
|
|
mutex_unlock(&di->cc_lock);
|
|
dev_dbg(di->dev, "%s CC conv not done\n",
|
|
__func__);
|
|
|
|
break;
|
|
}
|
|
di->flags.conv_done = false;
|
|
mutex_unlock(&di->cc_lock);
|
|
|
|
ab8500_fg_calc_cap_charging(di);
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Check capacity limits */
|
|
ab8500_fg_check_capacity_limits(di, false);
|
|
}
|
|
|
|
static void force_capacity(struct ab8500_fg *di)
|
|
{
|
|
int cap;
|
|
|
|
ab8500_fg_clear_cap_samples(di);
|
|
cap = di->bat_cap.user_mah;
|
|
if (cap > di->bat_cap.max_mah_design) {
|
|
dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
|
|
" %d\n", cap, di->bat_cap.max_mah_design);
|
|
cap = di->bat_cap.max_mah_design;
|
|
}
|
|
ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
|
|
di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
|
|
di->bat_cap.mah = cap;
|
|
ab8500_fg_check_capacity_limits(di, true);
|
|
}
|
|
|
|
static bool check_sysfs_capacity(struct ab8500_fg *di)
|
|
{
|
|
int cap, lower, upper;
|
|
int cap_permille;
|
|
|
|
cap = di->bat_cap.user_mah;
|
|
|
|
cap_permille = ab8500_fg_convert_mah_to_permille(di,
|
|
di->bat_cap.user_mah);
|
|
|
|
lower = di->bat_cap.permille - di->bat->fg_params->user_cap_limit * 10;
|
|
upper = di->bat_cap.permille + di->bat->fg_params->user_cap_limit * 10;
|
|
|
|
if (lower < 0)
|
|
lower = 0;
|
|
/* 1000 is permille, -> 100 percent */
|
|
if (upper > 1000)
|
|
upper = 1000;
|
|
|
|
dev_dbg(di->dev, "Capacity limits:"
|
|
" (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
|
|
lower, cap_permille, upper, cap, di->bat_cap.mah);
|
|
|
|
/* If within limits, use the saved capacity and exit estimation...*/
|
|
if (cap_permille > lower && cap_permille < upper) {
|
|
dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
|
|
force_capacity(di);
|
|
return true;
|
|
}
|
|
dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
|
|
* @di: pointer to the ab8500_fg structure
|
|
*
|
|
* Battery capacity calculation state machine for when we're discharging
|
|
*/
|
|
static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
|
|
{
|
|
int sleep_time;
|
|
|
|
/* If we change to charge mode we should start with init */
|
|
if (di->charge_state != AB8500_FG_CHARGE_INIT)
|
|
ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
|
|
|
|
switch (di->discharge_state) {
|
|
case AB8500_FG_DISCHARGE_INIT:
|
|
/* We use the FG IRQ to work on */
|
|
di->init_cnt = 0;
|
|
di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer);
|
|
ab8500_fg_coulomb_counter(di, true);
|
|
ab8500_fg_discharge_state_to(di,
|
|
AB8500_FG_DISCHARGE_INITMEASURING);
|
|
|
|
/* Intentional fallthrough */
|
|
case AB8500_FG_DISCHARGE_INITMEASURING:
|
|
/*
|
|
* Discard a number of samples during startup.
|
|
* After that, use compensated voltage for a few
|
|
* samples to get an initial capacity.
|
|
* Then go to READOUT
|
|
*/
|
|
sleep_time = di->bat->fg_params->init_timer;
|
|
|
|
/* Discard the first [x] seconds */
|
|
if (di->init_cnt >
|
|
di->bat->fg_params->init_discard_time) {
|
|
ab8500_fg_calc_cap_discharge_voltage(di, true);
|
|
|
|
ab8500_fg_check_capacity_limits(di, true);
|
|
}
|
|
|
|
di->init_cnt += sleep_time;
|
|
if (di->init_cnt > di->bat->fg_params->init_total_time)
|
|
ab8500_fg_discharge_state_to(di,
|
|
AB8500_FG_DISCHARGE_READOUT_INIT);
|
|
|
|
break;
|
|
|
|
case AB8500_FG_DISCHARGE_INIT_RECOVERY:
|
|
di->recovery_cnt = 0;
|
|
di->recovery_needed = true;
|
|
ab8500_fg_discharge_state_to(di,
|
|
AB8500_FG_DISCHARGE_RECOVERY);
|
|
|
|
/* Intentional fallthrough */
|
|
|
|
case AB8500_FG_DISCHARGE_RECOVERY:
|
|
sleep_time = di->bat->fg_params->recovery_sleep_timer;
|
|
|
|
/*
|
|
* We should check the power consumption
|
|
* If low, go to READOUT (after x min) or
|
|
* RECOVERY_SLEEP if time left.
|
|
* If high, go to READOUT
|
|
*/
|
|
di->inst_curr = ab8500_fg_inst_curr_blocking(di);
|
|
|
|
if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
|
|
if (di->recovery_cnt >
|
|
di->bat->fg_params->recovery_total_time) {
|
|
di->fg_samples = SEC_TO_SAMPLE(
|
|
di->bat->fg_params->accu_high_curr);
|
|
ab8500_fg_coulomb_counter(di, true);
|
|
ab8500_fg_discharge_state_to(di,
|
|
AB8500_FG_DISCHARGE_READOUT);
|
|
di->recovery_needed = false;
|
|
} else {
|
|
queue_delayed_work(di->fg_wq,
|
|
&di->fg_periodic_work,
|
|
sleep_time * HZ);
|
|
}
|
|
di->recovery_cnt += sleep_time;
|
|
} else {
|
|
di->fg_samples = SEC_TO_SAMPLE(
|
|
di->bat->fg_params->accu_high_curr);
|
|
ab8500_fg_coulomb_counter(di, true);
|
|
ab8500_fg_discharge_state_to(di,
|
|
AB8500_FG_DISCHARGE_READOUT);
|
|
}
|
|
break;
|
|
|
|
case AB8500_FG_DISCHARGE_READOUT_INIT:
|
|
di->fg_samples = SEC_TO_SAMPLE(
|
|
di->bat->fg_params->accu_high_curr);
|
|
ab8500_fg_coulomb_counter(di, true);
|
|
ab8500_fg_discharge_state_to(di,
|
|
AB8500_FG_DISCHARGE_READOUT);
|
|
break;
|
|
|
|
case AB8500_FG_DISCHARGE_READOUT:
|
|
di->inst_curr = ab8500_fg_inst_curr_blocking(di);
|
|
|
|
if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
|
|
/* Detect mode change */
|
|
if (di->high_curr_mode) {
|
|
di->high_curr_mode = false;
|
|
di->high_curr_cnt = 0;
|
|
}
|
|
|
|
if (di->recovery_needed) {
|
|
ab8500_fg_discharge_state_to(di,
|
|
AB8500_FG_DISCHARGE_RECOVERY);
|
|
|
|
queue_delayed_work(di->fg_wq,
|
|
&di->fg_periodic_work, 0);
|
|
|
|
break;
|
|
}
|
|
|
|
ab8500_fg_calc_cap_discharge_voltage(di, true);
|
|
} else {
|
|
mutex_lock(&di->cc_lock);
|
|
if (!di->flags.conv_done) {
|
|
/* Wasn't the CC IRQ that got us here */
|
|
mutex_unlock(&di->cc_lock);
|
|
dev_dbg(di->dev, "%s CC conv not done\n",
|
|
__func__);
|
|
|
|
break;
|
|
}
|
|
di->flags.conv_done = false;
|
|
mutex_unlock(&di->cc_lock);
|
|
|
|
/* Detect mode change */
|
|
if (!di->high_curr_mode) {
|
|
di->high_curr_mode = true;
|
|
di->high_curr_cnt = 0;
|
|
}
|
|
|
|
di->high_curr_cnt +=
|
|
di->bat->fg_params->accu_high_curr;
|
|
if (di->high_curr_cnt >
|
|
di->bat->fg_params->high_curr_time)
|
|
di->recovery_needed = true;
|
|
|
|
ab8500_fg_calc_cap_discharge_fg(di);
|
|
}
|
|
|
|
ab8500_fg_check_capacity_limits(di, false);
|
|
|
|
break;
|
|
|
|
case AB8500_FG_DISCHARGE_WAKEUP:
|
|
ab8500_fg_coulomb_counter(di, true);
|
|
di->inst_curr = ab8500_fg_inst_curr_blocking(di);
|
|
|
|
ab8500_fg_calc_cap_discharge_voltage(di, true);
|
|
|
|
di->fg_samples = SEC_TO_SAMPLE(
|
|
di->bat->fg_params->accu_high_curr);
|
|
ab8500_fg_coulomb_counter(di, true);
|
|
ab8500_fg_discharge_state_to(di,
|
|
AB8500_FG_DISCHARGE_READOUT);
|
|
|
|
ab8500_fg_check_capacity_limits(di, false);
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
|
|
* @di: pointer to the ab8500_fg structure
|
|
*
|
|
*/
|
|
static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
|
|
{
|
|
int ret;
|
|
|
|
switch (di->calib_state) {
|
|
case AB8500_FG_CALIB_INIT:
|
|
dev_dbg(di->dev, "Calibration ongoing...\n");
|
|
|
|
ret = abx500_mask_and_set_register_interruptible(di->dev,
|
|
AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
|
|
CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
ret = abx500_mask_and_set_register_interruptible(di->dev,
|
|
AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
|
|
CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
|
|
if (ret < 0)
|
|
goto err;
|
|
di->calib_state = AB8500_FG_CALIB_WAIT;
|
|
break;
|
|
case AB8500_FG_CALIB_END:
|
|
ret = abx500_mask_and_set_register_interruptible(di->dev,
|
|
AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
|
|
CC_MUXOFFSET, CC_MUXOFFSET);
|
|
if (ret < 0)
|
|
goto err;
|
|
di->flags.calibrate = false;
|
|
dev_dbg(di->dev, "Calibration done...\n");
|
|
queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
|
|
break;
|
|
case AB8500_FG_CALIB_WAIT:
|
|
dev_dbg(di->dev, "Calibration WFI\n");
|
|
default:
|
|
break;
|
|
}
|
|
return;
|
|
err:
|
|
/* Something went wrong, don't calibrate then */
|
|
dev_err(di->dev, "failed to calibrate the CC\n");
|
|
di->flags.calibrate = false;
|
|
di->calib_state = AB8500_FG_CALIB_INIT;
|
|
queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_algorithm() - Entry point for the FG algorithm
|
|
* @di: pointer to the ab8500_fg structure
|
|
*
|
|
* Entry point for the battery capacity calculation state machine
|
|
*/
|
|
static void ab8500_fg_algorithm(struct ab8500_fg *di)
|
|
{
|
|
if (di->flags.calibrate)
|
|
ab8500_fg_algorithm_calibrate(di);
|
|
else {
|
|
if (di->flags.charging)
|
|
ab8500_fg_algorithm_charging(di);
|
|
else
|
|
ab8500_fg_algorithm_discharging(di);
|
|
}
|
|
|
|
dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d "
|
|
"%d %d %d %d %d %d %d\n",
|
|
di->bat_cap.max_mah_design,
|
|
di->bat_cap.mah,
|
|
di->bat_cap.permille,
|
|
di->bat_cap.level,
|
|
di->bat_cap.prev_mah,
|
|
di->bat_cap.prev_percent,
|
|
di->bat_cap.prev_level,
|
|
di->vbat,
|
|
di->inst_curr,
|
|
di->avg_curr,
|
|
di->accu_charge,
|
|
di->flags.charging,
|
|
di->charge_state,
|
|
di->discharge_state,
|
|
di->high_curr_mode,
|
|
di->recovery_needed);
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_periodic_work() - Run the FG state machine periodically
|
|
* @work: pointer to the work_struct structure
|
|
*
|
|
* Work queue function for periodic work
|
|
*/
|
|
static void ab8500_fg_periodic_work(struct work_struct *work)
|
|
{
|
|
struct ab8500_fg *di = container_of(work, struct ab8500_fg,
|
|
fg_periodic_work.work);
|
|
|
|
if (di->init_capacity) {
|
|
/* A dummy read that will return 0 */
|
|
di->inst_curr = ab8500_fg_inst_curr_blocking(di);
|
|
/* Get an initial capacity calculation */
|
|
ab8500_fg_calc_cap_discharge_voltage(di, true);
|
|
ab8500_fg_check_capacity_limits(di, true);
|
|
di->init_capacity = false;
|
|
|
|
queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
|
|
} else if (di->flags.user_cap) {
|
|
if (check_sysfs_capacity(di)) {
|
|
ab8500_fg_check_capacity_limits(di, true);
|
|
if (di->flags.charging)
|
|
ab8500_fg_charge_state_to(di,
|
|
AB8500_FG_CHARGE_INIT);
|
|
else
|
|
ab8500_fg_discharge_state_to(di,
|
|
AB8500_FG_DISCHARGE_READOUT_INIT);
|
|
}
|
|
di->flags.user_cap = false;
|
|
queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
|
|
} else
|
|
ab8500_fg_algorithm(di);
|
|
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
|
|
* @work: pointer to the work_struct structure
|
|
*
|
|
* Work queue function for checking the OVV_BAT condition
|
|
*/
|
|
static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
|
|
{
|
|
int ret;
|
|
u8 reg_value;
|
|
|
|
struct ab8500_fg *di = container_of(work, struct ab8500_fg,
|
|
fg_check_hw_failure_work.work);
|
|
|
|
/*
|
|
* If we have had a battery over-voltage situation,
|
|
* check ovv-bit to see if it should be reset.
|
|
*/
|
|
if (di->flags.bat_ovv) {
|
|
ret = abx500_get_register_interruptible(di->dev,
|
|
AB8500_CHARGER, AB8500_CH_STAT_REG,
|
|
®_value);
|
|
if (ret < 0) {
|
|
dev_err(di->dev, "%s ab8500 read failed\n", __func__);
|
|
return;
|
|
}
|
|
if ((reg_value & BATT_OVV) != BATT_OVV) {
|
|
dev_dbg(di->dev, "Battery recovered from OVV\n");
|
|
di->flags.bat_ovv = false;
|
|
power_supply_changed(&di->fg_psy);
|
|
return;
|
|
}
|
|
|
|
/* Not yet recovered from ovv, reschedule this test */
|
|
queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
|
|
round_jiffies(HZ));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_low_bat_work() - Check LOW_BAT condition
|
|
* @work: pointer to the work_struct structure
|
|
*
|
|
* Work queue function for checking the LOW_BAT condition
|
|
*/
|
|
static void ab8500_fg_low_bat_work(struct work_struct *work)
|
|
{
|
|
int vbat;
|
|
|
|
struct ab8500_fg *di = container_of(work, struct ab8500_fg,
|
|
fg_low_bat_work.work);
|
|
|
|
vbat = ab8500_fg_bat_voltage(di);
|
|
|
|
/* Check if LOW_BAT still fulfilled */
|
|
if (vbat < di->bat->fg_params->lowbat_threshold) {
|
|
di->flags.low_bat = true;
|
|
dev_warn(di->dev, "Battery voltage still LOW\n");
|
|
|
|
/*
|
|
* We need to re-schedule this check to be able to detect
|
|
* if the voltage increases again during charging
|
|
*/
|
|
queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
|
|
round_jiffies(LOW_BAT_CHECK_INTERVAL));
|
|
} else {
|
|
di->flags.low_bat = false;
|
|
dev_warn(di->dev, "Battery voltage OK again\n");
|
|
}
|
|
|
|
/* This is needed to dispatch LOW_BAT */
|
|
ab8500_fg_check_capacity_limits(di, false);
|
|
|
|
/* Set this flag to check if LOW_BAT IRQ still occurs */
|
|
di->flags.low_bat_delay = false;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_battok_calc - calculate the bit pattern corresponding
|
|
* to the target voltage.
|
|
* @di: pointer to the ab8500_fg structure
|
|
* @target target voltage
|
|
*
|
|
* Returns bit pattern closest to the target voltage
|
|
* valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
|
|
*/
|
|
|
|
static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
|
|
{
|
|
if (target > BATT_OK_MIN +
|
|
(BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
|
|
return BATT_OK_MAX_NR_INCREMENTS;
|
|
if (target < BATT_OK_MIN)
|
|
return 0;
|
|
return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_battok_init_hw_register - init battok levels
|
|
* @di: pointer to the ab8500_fg structure
|
|
*
|
|
*/
|
|
|
|
static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
|
|
{
|
|
int selected;
|
|
int sel0;
|
|
int sel1;
|
|
int cbp_sel0;
|
|
int cbp_sel1;
|
|
int ret;
|
|
int new_val;
|
|
|
|
sel0 = di->bat->fg_params->battok_falling_th_sel0;
|
|
sel1 = di->bat->fg_params->battok_raising_th_sel1;
|
|
|
|
cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
|
|
cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
|
|
|
|
selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
|
|
|
|
if (selected != sel0)
|
|
dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
|
|
sel0, selected, cbp_sel0);
|
|
|
|
selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
|
|
|
|
if (selected != sel1)
|
|
dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
|
|
sel1, selected, cbp_sel1);
|
|
|
|
new_val = cbp_sel0 | (cbp_sel1 << 4);
|
|
|
|
dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
|
|
ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
|
|
AB8500_BATT_OK_REG, new_val);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_instant_work() - Run the FG state machine instantly
|
|
* @work: pointer to the work_struct structure
|
|
*
|
|
* Work queue function for instant work
|
|
*/
|
|
static void ab8500_fg_instant_work(struct work_struct *work)
|
|
{
|
|
struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
|
|
|
|
ab8500_fg_algorithm(di);
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_cc_data_end_handler() - isr to get battery avg current.
|
|
* @irq: interrupt number
|
|
* @_di: pointer to the ab8500_fg structure
|
|
*
|
|
* Returns IRQ status(IRQ_HANDLED)
|
|
*/
|
|
static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
|
|
{
|
|
struct ab8500_fg *di = _di;
|
|
complete(&di->ab8500_fg_complete);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_cc_convend_handler() - isr to get battery avg current.
|
|
* @irq: interrupt number
|
|
* @_di: pointer to the ab8500_fg structure
|
|
*
|
|
* Returns IRQ status(IRQ_HANDLED)
|
|
*/
|
|
static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
|
|
{
|
|
struct ab8500_fg *di = _di;
|
|
di->calib_state = AB8500_FG_CALIB_END;
|
|
queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_cc_convend_handler() - isr to get battery avg current.
|
|
* @irq: interrupt number
|
|
* @_di: pointer to the ab8500_fg structure
|
|
*
|
|
* Returns IRQ status(IRQ_HANDLED)
|
|
*/
|
|
static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
|
|
{
|
|
struct ab8500_fg *di = _di;
|
|
|
|
queue_work(di->fg_wq, &di->fg_acc_cur_work);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_batt_ovv_handler() - Battery OVV occured
|
|
* @irq: interrupt number
|
|
* @_di: pointer to the ab8500_fg structure
|
|
*
|
|
* Returns IRQ status(IRQ_HANDLED)
|
|
*/
|
|
static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
|
|
{
|
|
struct ab8500_fg *di = _di;
|
|
|
|
dev_dbg(di->dev, "Battery OVV\n");
|
|
di->flags.bat_ovv = true;
|
|
power_supply_changed(&di->fg_psy);
|
|
|
|
/* Schedule a new HW failure check */
|
|
queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
|
|
* @irq: interrupt number
|
|
* @_di: pointer to the ab8500_fg structure
|
|
*
|
|
* Returns IRQ status(IRQ_HANDLED)
|
|
*/
|
|
static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
|
|
{
|
|
struct ab8500_fg *di = _di;
|
|
|
|
if (!di->flags.low_bat_delay) {
|
|
dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
|
|
di->flags.low_bat_delay = true;
|
|
/*
|
|
* Start a timer to check LOW_BAT again after some time
|
|
* This is done to avoid shutdown on single voltage dips
|
|
*/
|
|
queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
|
|
round_jiffies(LOW_BAT_CHECK_INTERVAL));
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_get_property() - get the fg properties
|
|
* @psy: pointer to the power_supply structure
|
|
* @psp: pointer to the power_supply_property structure
|
|
* @val: pointer to the power_supply_propval union
|
|
*
|
|
* This function gets called when an application tries to get the
|
|
* fg properties by reading the sysfs files.
|
|
* voltage_now: battery voltage
|
|
* current_now: battery instant current
|
|
* current_avg: battery average current
|
|
* charge_full_design: capacity where battery is considered full
|
|
* charge_now: battery capacity in nAh
|
|
* capacity: capacity in percent
|
|
* capacity_level: capacity level
|
|
*
|
|
* Returns error code in case of failure else 0 on success
|
|
*/
|
|
static int ab8500_fg_get_property(struct power_supply *psy,
|
|
enum power_supply_property psp,
|
|
union power_supply_propval *val)
|
|
{
|
|
struct ab8500_fg *di;
|
|
|
|
di = to_ab8500_fg_device_info(psy);
|
|
|
|
/*
|
|
* If battery is identified as unknown and charging of unknown
|
|
* batteries is disabled, we always report 100% capacity and
|
|
* capacity level UNKNOWN, since we can't calculate
|
|
* remaining capacity
|
|
*/
|
|
|
|
switch (psp) {
|
|
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
|
|
if (di->flags.bat_ovv)
|
|
val->intval = BATT_OVV_VALUE * 1000;
|
|
else
|
|
val->intval = di->vbat * 1000;
|
|
break;
|
|
case POWER_SUPPLY_PROP_CURRENT_NOW:
|
|
val->intval = di->inst_curr * 1000;
|
|
break;
|
|
case POWER_SUPPLY_PROP_CURRENT_AVG:
|
|
val->intval = di->avg_curr * 1000;
|
|
break;
|
|
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
|
|
val->intval = ab8500_fg_convert_mah_to_uwh(di,
|
|
di->bat_cap.max_mah_design);
|
|
break;
|
|
case POWER_SUPPLY_PROP_ENERGY_FULL:
|
|
val->intval = ab8500_fg_convert_mah_to_uwh(di,
|
|
di->bat_cap.max_mah);
|
|
break;
|
|
case POWER_SUPPLY_PROP_ENERGY_NOW:
|
|
if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
|
|
di->flags.batt_id_received)
|
|
val->intval = ab8500_fg_convert_mah_to_uwh(di,
|
|
di->bat_cap.max_mah);
|
|
else
|
|
val->intval = ab8500_fg_convert_mah_to_uwh(di,
|
|
di->bat_cap.prev_mah);
|
|
break;
|
|
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
|
|
val->intval = di->bat_cap.max_mah_design;
|
|
break;
|
|
case POWER_SUPPLY_PROP_CHARGE_FULL:
|
|
val->intval = di->bat_cap.max_mah;
|
|
break;
|
|
case POWER_SUPPLY_PROP_CHARGE_NOW:
|
|
if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
|
|
di->flags.batt_id_received)
|
|
val->intval = di->bat_cap.max_mah;
|
|
else
|
|
val->intval = di->bat_cap.prev_mah;
|
|
break;
|
|
case POWER_SUPPLY_PROP_CAPACITY:
|
|
if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
|
|
di->flags.batt_id_received)
|
|
val->intval = 100;
|
|
else
|
|
val->intval = di->bat_cap.prev_percent;
|
|
break;
|
|
case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
|
|
if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
|
|
di->flags.batt_id_received)
|
|
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
|
|
else
|
|
val->intval = di->bat_cap.prev_level;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
|
|
{
|
|
struct power_supply *psy;
|
|
struct power_supply *ext;
|
|
struct ab8500_fg *di;
|
|
union power_supply_propval ret;
|
|
int i, j;
|
|
bool psy_found = false;
|
|
|
|
psy = (struct power_supply *)data;
|
|
ext = dev_get_drvdata(dev);
|
|
di = to_ab8500_fg_device_info(psy);
|
|
|
|
/*
|
|
* For all psy where the name of your driver
|
|
* appears in any supplied_to
|
|
*/
|
|
for (i = 0; i < ext->num_supplicants; i++) {
|
|
if (!strcmp(ext->supplied_to[i], psy->name))
|
|
psy_found = true;
|
|
}
|
|
|
|
if (!psy_found)
|
|
return 0;
|
|
|
|
/* Go through all properties for the psy */
|
|
for (j = 0; j < ext->num_properties; j++) {
|
|
enum power_supply_property prop;
|
|
prop = ext->properties[j];
|
|
|
|
if (ext->get_property(ext, prop, &ret))
|
|
continue;
|
|
|
|
switch (prop) {
|
|
case POWER_SUPPLY_PROP_STATUS:
|
|
switch (ext->type) {
|
|
case POWER_SUPPLY_TYPE_BATTERY:
|
|
switch (ret.intval) {
|
|
case POWER_SUPPLY_STATUS_UNKNOWN:
|
|
case POWER_SUPPLY_STATUS_DISCHARGING:
|
|
case POWER_SUPPLY_STATUS_NOT_CHARGING:
|
|
if (!di->flags.charging)
|
|
break;
|
|
di->flags.charging = false;
|
|
di->flags.fully_charged = false;
|
|
queue_work(di->fg_wq, &di->fg_work);
|
|
break;
|
|
case POWER_SUPPLY_STATUS_FULL:
|
|
if (di->flags.fully_charged)
|
|
break;
|
|
di->flags.fully_charged = true;
|
|
di->flags.force_full = true;
|
|
/* Save current capacity as maximum */
|
|
di->bat_cap.max_mah = di->bat_cap.mah;
|
|
queue_work(di->fg_wq, &di->fg_work);
|
|
break;
|
|
case POWER_SUPPLY_STATUS_CHARGING:
|
|
if (di->flags.charging)
|
|
break;
|
|
di->flags.charging = true;
|
|
di->flags.fully_charged = false;
|
|
queue_work(di->fg_wq, &di->fg_work);
|
|
break;
|
|
};
|
|
default:
|
|
break;
|
|
};
|
|
break;
|
|
case POWER_SUPPLY_PROP_TECHNOLOGY:
|
|
switch (ext->type) {
|
|
case POWER_SUPPLY_TYPE_BATTERY:
|
|
if (!di->flags.batt_id_received) {
|
|
const struct abx500_battery_type *b;
|
|
|
|
b = &(di->bat->bat_type[di->bat->batt_id]);
|
|
|
|
di->flags.batt_id_received = true;
|
|
|
|
di->bat_cap.max_mah_design =
|
|
MILLI_TO_MICRO *
|
|
b->charge_full_design;
|
|
|
|
di->bat_cap.max_mah =
|
|
di->bat_cap.max_mah_design;
|
|
|
|
di->vbat_nom = b->nominal_voltage;
|
|
}
|
|
|
|
if (ret.intval)
|
|
di->flags.batt_unknown = false;
|
|
else
|
|
di->flags.batt_unknown = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case POWER_SUPPLY_PROP_TEMP:
|
|
switch (ext->type) {
|
|
case POWER_SUPPLY_TYPE_BATTERY:
|
|
if (di->flags.batt_id_received)
|
|
di->bat_temp = ret.intval;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_init_hw_registers() - Set up FG related registers
|
|
* @di: pointer to the ab8500_fg structure
|
|
*
|
|
* Set up battery OVV, low battery voltage registers
|
|
*/
|
|
static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
|
|
{
|
|
int ret;
|
|
|
|
/* Set VBAT OVV threshold */
|
|
ret = abx500_mask_and_set_register_interruptible(di->dev,
|
|
AB8500_CHARGER,
|
|
AB8500_BATT_OVV,
|
|
BATT_OVV_TH_4P75,
|
|
BATT_OVV_TH_4P75);
|
|
if (ret) {
|
|
dev_err(di->dev, "failed to set BATT_OVV\n");
|
|
goto out;
|
|
}
|
|
|
|
/* Enable VBAT OVV detection */
|
|
ret = abx500_mask_and_set_register_interruptible(di->dev,
|
|
AB8500_CHARGER,
|
|
AB8500_BATT_OVV,
|
|
BATT_OVV_ENA,
|
|
BATT_OVV_ENA);
|
|
if (ret) {
|
|
dev_err(di->dev, "failed to enable BATT_OVV\n");
|
|
goto out;
|
|
}
|
|
|
|
/* Low Battery Voltage */
|
|
ret = abx500_set_register_interruptible(di->dev,
|
|
AB8500_SYS_CTRL2_BLOCK,
|
|
AB8500_LOW_BAT_REG,
|
|
ab8500_volt_to_regval(
|
|
di->bat->fg_params->lowbat_threshold) << 1 |
|
|
LOW_BAT_ENABLE);
|
|
if (ret) {
|
|
dev_err(di->dev, "%s write failed\n", __func__);
|
|
goto out;
|
|
}
|
|
|
|
/* Battery OK threshold */
|
|
ret = ab8500_fg_battok_init_hw_register(di);
|
|
if (ret) {
|
|
dev_err(di->dev, "BattOk init write failed.\n");
|
|
goto out;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_external_power_changed() - callback for power supply changes
|
|
* @psy: pointer to the structure power_supply
|
|
*
|
|
* This function is the entry point of the pointer external_power_changed
|
|
* of the structure power_supply.
|
|
* This function gets executed when there is a change in any external power
|
|
* supply that this driver needs to be notified of.
|
|
*/
|
|
static void ab8500_fg_external_power_changed(struct power_supply *psy)
|
|
{
|
|
struct ab8500_fg *di = to_ab8500_fg_device_info(psy);
|
|
|
|
class_for_each_device(power_supply_class, NULL,
|
|
&di->fg_psy, ab8500_fg_get_ext_psy_data);
|
|
}
|
|
|
|
/**
|
|
* abab8500_fg_reinit_work() - work to reset the FG algorithm
|
|
* @work: pointer to the work_struct structure
|
|
*
|
|
* Used to reset the current battery capacity to be able to
|
|
* retrigger a new voltage base capacity calculation. For
|
|
* test and verification purpose.
|
|
*/
|
|
static void ab8500_fg_reinit_work(struct work_struct *work)
|
|
{
|
|
struct ab8500_fg *di = container_of(work, struct ab8500_fg,
|
|
fg_reinit_work.work);
|
|
|
|
if (di->flags.calibrate == false) {
|
|
dev_dbg(di->dev, "Resetting FG state machine to init.\n");
|
|
ab8500_fg_clear_cap_samples(di);
|
|
ab8500_fg_calc_cap_discharge_voltage(di, true);
|
|
ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
|
|
ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
|
|
queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
|
|
|
|
} else {
|
|
dev_err(di->dev, "Residual offset calibration ongoing "
|
|
"retrying..\n");
|
|
/* Wait one second until next try*/
|
|
queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
|
|
round_jiffies(1));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
|
|
*
|
|
* This function can be used to force the FG algorithm to recalculate a new
|
|
* voltage based battery capacity.
|
|
*/
|
|
void ab8500_fg_reinit(void)
|
|
{
|
|
struct ab8500_fg *di = ab8500_fg_get();
|
|
/* User won't be notified if a null pointer returned. */
|
|
if (di != NULL)
|
|
queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0);
|
|
}
|
|
|
|
/* Exposure to the sysfs interface */
|
|
|
|
struct ab8500_fg_sysfs_entry {
|
|
struct attribute attr;
|
|
ssize_t (*show)(struct ab8500_fg *, char *);
|
|
ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
|
|
};
|
|
|
|
static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", di->bat_cap.max_mah);
|
|
}
|
|
|
|
static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
|
|
size_t count)
|
|
{
|
|
unsigned long charge_full;
|
|
ssize_t ret = -EINVAL;
|
|
|
|
ret = strict_strtoul(buf, 10, &charge_full);
|
|
|
|
dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
|
|
|
|
if (!ret) {
|
|
di->bat_cap.max_mah = (int) charge_full;
|
|
ret = count;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
|
|
}
|
|
|
|
static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
|
|
size_t count)
|
|
{
|
|
unsigned long charge_now;
|
|
ssize_t ret;
|
|
|
|
ret = strict_strtoul(buf, 10, &charge_now);
|
|
|
|
dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
|
|
ret, charge_now, di->bat_cap.prev_mah);
|
|
|
|
if (!ret) {
|
|
di->bat_cap.user_mah = (int) charge_now;
|
|
di->flags.user_cap = true;
|
|
ret = count;
|
|
queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static struct ab8500_fg_sysfs_entry charge_full_attr =
|
|
__ATTR(charge_full, 0644, charge_full_show, charge_full_store);
|
|
|
|
static struct ab8500_fg_sysfs_entry charge_now_attr =
|
|
__ATTR(charge_now, 0644, charge_now_show, charge_now_store);
|
|
|
|
static ssize_t
|
|
ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
|
|
{
|
|
struct ab8500_fg_sysfs_entry *entry;
|
|
struct ab8500_fg *di;
|
|
|
|
entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
|
|
di = container_of(kobj, struct ab8500_fg, fg_kobject);
|
|
|
|
if (!entry->show)
|
|
return -EIO;
|
|
|
|
return entry->show(di, buf);
|
|
}
|
|
static ssize_t
|
|
ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
struct ab8500_fg_sysfs_entry *entry;
|
|
struct ab8500_fg *di;
|
|
|
|
entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
|
|
di = container_of(kobj, struct ab8500_fg, fg_kobject);
|
|
|
|
if (!entry->store)
|
|
return -EIO;
|
|
|
|
return entry->store(di, buf, count);
|
|
}
|
|
|
|
static const struct sysfs_ops ab8500_fg_sysfs_ops = {
|
|
.show = ab8500_fg_show,
|
|
.store = ab8500_fg_store,
|
|
};
|
|
|
|
static struct attribute *ab8500_fg_attrs[] = {
|
|
&charge_full_attr.attr,
|
|
&charge_now_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct kobj_type ab8500_fg_ktype = {
|
|
.sysfs_ops = &ab8500_fg_sysfs_ops,
|
|
.default_attrs = ab8500_fg_attrs,
|
|
};
|
|
|
|
/**
|
|
* ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
|
|
* @di: pointer to the struct ab8500_chargalg
|
|
*
|
|
* This function removes the entry in sysfs.
|
|
*/
|
|
static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
|
|
{
|
|
kobject_del(&di->fg_kobject);
|
|
}
|
|
|
|
/**
|
|
* ab8500_chargalg_sysfs_init() - init of sysfs entry
|
|
* @di: pointer to the struct ab8500_chargalg
|
|
*
|
|
* This function adds an entry in sysfs.
|
|
* Returns error code in case of failure else 0(on success)
|
|
*/
|
|
static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
|
|
{
|
|
int ret = 0;
|
|
|
|
ret = kobject_init_and_add(&di->fg_kobject,
|
|
&ab8500_fg_ktype,
|
|
NULL, "battery");
|
|
if (ret < 0)
|
|
dev_err(di->dev, "failed to create sysfs entry\n");
|
|
|
|
return ret;
|
|
}
|
|
/* Exposure to the sysfs interface <<END>> */
|
|
|
|
#if defined(CONFIG_PM)
|
|
static int ab8500_fg_resume(struct platform_device *pdev)
|
|
{
|
|
struct ab8500_fg *di = platform_get_drvdata(pdev);
|
|
|
|
/*
|
|
* Change state if we're not charging. If we're charging we will wake
|
|
* up on the FG IRQ
|
|
*/
|
|
if (!di->flags.charging) {
|
|
ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
|
|
queue_work(di->fg_wq, &di->fg_work);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ab8500_fg_suspend(struct platform_device *pdev,
|
|
pm_message_t state)
|
|
{
|
|
struct ab8500_fg *di = platform_get_drvdata(pdev);
|
|
|
|
flush_delayed_work(&di->fg_periodic_work);
|
|
|
|
/*
|
|
* If the FG is enabled we will disable it before going to suspend
|
|
* only if we're not charging
|
|
*/
|
|
if (di->flags.fg_enabled && !di->flags.charging)
|
|
ab8500_fg_coulomb_counter(di, false);
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
#define ab8500_fg_suspend NULL
|
|
#define ab8500_fg_resume NULL
|
|
#endif
|
|
|
|
static int __devexit ab8500_fg_remove(struct platform_device *pdev)
|
|
{
|
|
int ret = 0;
|
|
struct ab8500_fg *di = platform_get_drvdata(pdev);
|
|
|
|
list_del(&di->node);
|
|
|
|
/* Disable coulomb counter */
|
|
ret = ab8500_fg_coulomb_counter(di, false);
|
|
if (ret)
|
|
dev_err(di->dev, "failed to disable coulomb counter\n");
|
|
|
|
destroy_workqueue(di->fg_wq);
|
|
ab8500_fg_sysfs_exit(di);
|
|
|
|
flush_scheduled_work();
|
|
power_supply_unregister(&di->fg_psy);
|
|
platform_set_drvdata(pdev, NULL);
|
|
kfree(di);
|
|
return ret;
|
|
}
|
|
|
|
/* ab8500 fg driver interrupts and their respective isr */
|
|
static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
|
|
{"NCONV_ACCU", ab8500_fg_cc_convend_handler},
|
|
{"BATT_OVV", ab8500_fg_batt_ovv_handler},
|
|
{"LOW_BAT_F", ab8500_fg_lowbatf_handler},
|
|
{"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
|
|
{"CCEOC", ab8500_fg_cc_data_end_handler},
|
|
};
|
|
|
|
static int __devinit ab8500_fg_probe(struct platform_device *pdev)
|
|
{
|
|
int i, irq;
|
|
int ret = 0;
|
|
struct abx500_bm_plat_data *plat_data;
|
|
|
|
struct ab8500_fg *di =
|
|
kzalloc(sizeof(struct ab8500_fg), GFP_KERNEL);
|
|
if (!di)
|
|
return -ENOMEM;
|
|
|
|
mutex_init(&di->cc_lock);
|
|
|
|
/* get parent data */
|
|
di->dev = &pdev->dev;
|
|
di->parent = dev_get_drvdata(pdev->dev.parent);
|
|
di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
|
|
|
|
/* get fg specific platform data */
|
|
plat_data = pdev->dev.platform_data;
|
|
di->pdata = plat_data->fg;
|
|
if (!di->pdata) {
|
|
dev_err(di->dev, "no fg platform data supplied\n");
|
|
ret = -EINVAL;
|
|
goto free_device_info;
|
|
}
|
|
|
|
/* get battery specific platform data */
|
|
di->bat = plat_data->battery;
|
|
if (!di->bat) {
|
|
dev_err(di->dev, "no battery platform data supplied\n");
|
|
ret = -EINVAL;
|
|
goto free_device_info;
|
|
}
|
|
|
|
di->fg_psy.name = "ab8500_fg";
|
|
di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY;
|
|
di->fg_psy.properties = ab8500_fg_props;
|
|
di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props);
|
|
di->fg_psy.get_property = ab8500_fg_get_property;
|
|
di->fg_psy.supplied_to = di->pdata->supplied_to;
|
|
di->fg_psy.num_supplicants = di->pdata->num_supplicants;
|
|
di->fg_psy.external_power_changed = ab8500_fg_external_power_changed;
|
|
|
|
di->bat_cap.max_mah_design = MILLI_TO_MICRO *
|
|
di->bat->bat_type[di->bat->batt_id].charge_full_design;
|
|
|
|
di->bat_cap.max_mah = di->bat_cap.max_mah_design;
|
|
|
|
di->vbat_nom = di->bat->bat_type[di->bat->batt_id].nominal_voltage;
|
|
|
|
di->init_capacity = true;
|
|
|
|
ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
|
|
ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
|
|
|
|
/* Create a work queue for running the FG algorithm */
|
|
di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
|
|
if (di->fg_wq == NULL) {
|
|
dev_err(di->dev, "failed to create work queue\n");
|
|
goto free_device_info;
|
|
}
|
|
|
|
/* Init work for running the fg algorithm instantly */
|
|
INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
|
|
|
|
/* Init work for getting the battery accumulated current */
|
|
INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
|
|
|
|
/* Init work for reinitialising the fg algorithm */
|
|
INIT_DELAYED_WORK_DEFERRABLE(&di->fg_reinit_work,
|
|
ab8500_fg_reinit_work);
|
|
|
|
/* Work delayed Queue to run the state machine */
|
|
INIT_DELAYED_WORK_DEFERRABLE(&di->fg_periodic_work,
|
|
ab8500_fg_periodic_work);
|
|
|
|
/* Work to check low battery condition */
|
|
INIT_DELAYED_WORK_DEFERRABLE(&di->fg_low_bat_work,
|
|
ab8500_fg_low_bat_work);
|
|
|
|
/* Init work for HW failure check */
|
|
INIT_DELAYED_WORK_DEFERRABLE(&di->fg_check_hw_failure_work,
|
|
ab8500_fg_check_hw_failure_work);
|
|
|
|
/* Initialize OVV, and other registers */
|
|
ret = ab8500_fg_init_hw_registers(di);
|
|
if (ret) {
|
|
dev_err(di->dev, "failed to initialize registers\n");
|
|
goto free_inst_curr_wq;
|
|
}
|
|
|
|
/* Consider battery unknown until we're informed otherwise */
|
|
di->flags.batt_unknown = true;
|
|
di->flags.batt_id_received = false;
|
|
|
|
/* Register FG power supply class */
|
|
ret = power_supply_register(di->dev, &di->fg_psy);
|
|
if (ret) {
|
|
dev_err(di->dev, "failed to register FG psy\n");
|
|
goto free_inst_curr_wq;
|
|
}
|
|
|
|
di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer);
|
|
ab8500_fg_coulomb_counter(di, true);
|
|
|
|
/* Initialize completion used to notify completion of inst current */
|
|
init_completion(&di->ab8500_fg_complete);
|
|
|
|
/* Register interrupts */
|
|
for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
|
|
irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
|
|
ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
|
|
IRQF_SHARED | IRQF_NO_SUSPEND,
|
|
ab8500_fg_irq[i].name, di);
|
|
|
|
if (ret != 0) {
|
|
dev_err(di->dev, "failed to request %s IRQ %d: %d\n"
|
|
, ab8500_fg_irq[i].name, irq, ret);
|
|
goto free_irq;
|
|
}
|
|
dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
|
|
ab8500_fg_irq[i].name, irq, ret);
|
|
}
|
|
di->irq = platform_get_irq_byname(pdev, "CCEOC");
|
|
disable_irq(di->irq);
|
|
|
|
platform_set_drvdata(pdev, di);
|
|
|
|
ret = ab8500_fg_sysfs_init(di);
|
|
if (ret) {
|
|
dev_err(di->dev, "failed to create sysfs entry\n");
|
|
goto free_irq;
|
|
}
|
|
|
|
/* Calibrate the fg first time */
|
|
di->flags.calibrate = true;
|
|
di->calib_state = AB8500_FG_CALIB_INIT;
|
|
|
|
/* Use room temp as default value until we get an update from driver. */
|
|
di->bat_temp = 210;
|
|
|
|
/* Run the FG algorithm */
|
|
queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
|
|
|
|
list_add_tail(&di->node, &ab8500_fg_list);
|
|
|
|
return ret;
|
|
|
|
free_irq:
|
|
power_supply_unregister(&di->fg_psy);
|
|
|
|
/* We also have to free all successfully registered irqs */
|
|
for (i = i - 1; i >= 0; i--) {
|
|
irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
|
|
free_irq(irq, di);
|
|
}
|
|
free_inst_curr_wq:
|
|
destroy_workqueue(di->fg_wq);
|
|
free_device_info:
|
|
kfree(di);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct platform_driver ab8500_fg_driver = {
|
|
.probe = ab8500_fg_probe,
|
|
.remove = __devexit_p(ab8500_fg_remove),
|
|
.suspend = ab8500_fg_suspend,
|
|
.resume = ab8500_fg_resume,
|
|
.driver = {
|
|
.name = "ab8500-fg",
|
|
.owner = THIS_MODULE,
|
|
},
|
|
};
|
|
|
|
static int __init ab8500_fg_init(void)
|
|
{
|
|
return platform_driver_register(&ab8500_fg_driver);
|
|
}
|
|
|
|
static void __exit ab8500_fg_exit(void)
|
|
{
|
|
platform_driver_unregister(&ab8500_fg_driver);
|
|
}
|
|
|
|
subsys_initcall_sync(ab8500_fg_init);
|
|
module_exit(ab8500_fg_exit);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
|
|
MODULE_ALIAS("platform:ab8500-fg");
|
|
MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
|