linux/drivers/scsi/libata-core.c
Linus Torvalds d99cf9d679 Merge branch 'post-2.6.15' of git://brick.kernel.dk/data/git/linux-2.6-block
Manual fixup for merge with Jens' "Suspend support for libata", commit
ID 9b84754866.

Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06 09:01:25 -08:00

5141 lines
124 KiB
C

/*
* libata-core.c - helper library for ATA
*
* Maintained by: Jeff Garzik <jgarzik@pobox.com>
* Please ALWAYS copy linux-ide@vger.kernel.org
* on emails.
*
* Copyright 2003-2004 Red Hat, Inc. All rights reserved.
* Copyright 2003-2004 Jeff Garzik
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/DocBook/libata.*
*
* Hardware documentation available from http://www.t13.org/ and
* http://www.sata-io.org/
*
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/suspend.h>
#include <linux/workqueue.h>
#include <linux/jiffies.h>
#include <linux/scatterlist.h>
#include <scsi/scsi.h>
#include "scsi_priv.h"
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_host.h>
#include <linux/libata.h>
#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/byteorder.h>
#include "libata.h"
static unsigned int ata_busy_sleep (struct ata_port *ap,
unsigned long tmout_pat,
unsigned long tmout);
static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
static void ata_set_mode(struct ata_port *ap);
static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
static int fgb(u32 bitmap);
static int ata_choose_xfer_mode(const struct ata_port *ap,
u8 *xfer_mode_out,
unsigned int *xfer_shift_out);
static void __ata_qc_complete(struct ata_queued_cmd *qc);
static unsigned int ata_unique_id = 1;
static struct workqueue_struct *ata_wq;
int atapi_enabled = 0;
module_param(atapi_enabled, int, 0444);
MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
MODULE_AUTHOR("Jeff Garzik");
MODULE_DESCRIPTION("Library module for ATA devices");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
/**
* ata_tf_load_pio - send taskfile registers to host controller
* @ap: Port to which output is sent
* @tf: ATA taskfile register set
*
* Outputs ATA taskfile to standard ATA host controller.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
if (tf->ctl != ap->last_ctl) {
outb(tf->ctl, ioaddr->ctl_addr);
ap->last_ctl = tf->ctl;
ata_wait_idle(ap);
}
if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
outb(tf->hob_feature, ioaddr->feature_addr);
outb(tf->hob_nsect, ioaddr->nsect_addr);
outb(tf->hob_lbal, ioaddr->lbal_addr);
outb(tf->hob_lbam, ioaddr->lbam_addr);
outb(tf->hob_lbah, ioaddr->lbah_addr);
VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
tf->hob_feature,
tf->hob_nsect,
tf->hob_lbal,
tf->hob_lbam,
tf->hob_lbah);
}
if (is_addr) {
outb(tf->feature, ioaddr->feature_addr);
outb(tf->nsect, ioaddr->nsect_addr);
outb(tf->lbal, ioaddr->lbal_addr);
outb(tf->lbam, ioaddr->lbam_addr);
outb(tf->lbah, ioaddr->lbah_addr);
VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
tf->feature,
tf->nsect,
tf->lbal,
tf->lbam,
tf->lbah);
}
if (tf->flags & ATA_TFLAG_DEVICE) {
outb(tf->device, ioaddr->device_addr);
VPRINTK("device 0x%X\n", tf->device);
}
ata_wait_idle(ap);
}
/**
* ata_tf_load_mmio - send taskfile registers to host controller
* @ap: Port to which output is sent
* @tf: ATA taskfile register set
*
* Outputs ATA taskfile to standard ATA host controller using MMIO.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
if (tf->ctl != ap->last_ctl) {
writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
ap->last_ctl = tf->ctl;
ata_wait_idle(ap);
}
if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
tf->hob_feature,
tf->hob_nsect,
tf->hob_lbal,
tf->hob_lbam,
tf->hob_lbah);
}
if (is_addr) {
writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
tf->feature,
tf->nsect,
tf->lbal,
tf->lbam,
tf->lbah);
}
if (tf->flags & ATA_TFLAG_DEVICE) {
writeb(tf->device, (void __iomem *) ioaddr->device_addr);
VPRINTK("device 0x%X\n", tf->device);
}
ata_wait_idle(ap);
}
/**
* ata_tf_load - send taskfile registers to host controller
* @ap: Port to which output is sent
* @tf: ATA taskfile register set
*
* Outputs ATA taskfile to standard ATA host controller using MMIO
* or PIO as indicated by the ATA_FLAG_MMIO flag.
* Writes the control, feature, nsect, lbal, lbam, and lbah registers.
* Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
* hob_lbal, hob_lbam, and hob_lbah.
*
* This function waits for idle (!BUSY and !DRQ) after writing
* registers. If the control register has a new value, this
* function also waits for idle after writing control and before
* writing the remaining registers.
*
* May be used as the tf_load() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
{
if (ap->flags & ATA_FLAG_MMIO)
ata_tf_load_mmio(ap, tf);
else
ata_tf_load_pio(ap, tf);
}
/**
* ata_exec_command_pio - issue ATA command to host controller
* @ap: port to which command is being issued
* @tf: ATA taskfile register set
*
* Issues PIO write to ATA command register, with proper
* synchronization with interrupt handler / other threads.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
{
DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
outb(tf->command, ap->ioaddr.command_addr);
ata_pause(ap);
}
/**
* ata_exec_command_mmio - issue ATA command to host controller
* @ap: port to which command is being issued
* @tf: ATA taskfile register set
*
* Issues MMIO write to ATA command register, with proper
* synchronization with interrupt handler / other threads.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
{
DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
ata_pause(ap);
}
/**
* ata_exec_command - issue ATA command to host controller
* @ap: port to which command is being issued
* @tf: ATA taskfile register set
*
* Issues PIO/MMIO write to ATA command register, with proper
* synchronization with interrupt handler / other threads.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
{
if (ap->flags & ATA_FLAG_MMIO)
ata_exec_command_mmio(ap, tf);
else
ata_exec_command_pio(ap, tf);
}
/**
* ata_tf_to_host - issue ATA taskfile to host controller
* @ap: port to which command is being issued
* @tf: ATA taskfile register set
*
* Issues ATA taskfile register set to ATA host controller,
* with proper synchronization with interrupt handler and
* other threads.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
static inline void ata_tf_to_host(struct ata_port *ap,
const struct ata_taskfile *tf)
{
ap->ops->tf_load(ap, tf);
ap->ops->exec_command(ap, tf);
}
/**
* ata_tf_read_pio - input device's ATA taskfile shadow registers
* @ap: Port from which input is read
* @tf: ATA taskfile register set for storing input
*
* Reads ATA taskfile registers for currently-selected device
* into @tf.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
tf->command = ata_check_status(ap);
tf->feature = inb(ioaddr->error_addr);
tf->nsect = inb(ioaddr->nsect_addr);
tf->lbal = inb(ioaddr->lbal_addr);
tf->lbam = inb(ioaddr->lbam_addr);
tf->lbah = inb(ioaddr->lbah_addr);
tf->device = inb(ioaddr->device_addr);
if (tf->flags & ATA_TFLAG_LBA48) {
outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
tf->hob_feature = inb(ioaddr->error_addr);
tf->hob_nsect = inb(ioaddr->nsect_addr);
tf->hob_lbal = inb(ioaddr->lbal_addr);
tf->hob_lbam = inb(ioaddr->lbam_addr);
tf->hob_lbah = inb(ioaddr->lbah_addr);
}
}
/**
* ata_tf_read_mmio - input device's ATA taskfile shadow registers
* @ap: Port from which input is read
* @tf: ATA taskfile register set for storing input
*
* Reads ATA taskfile registers for currently-selected device
* into @tf via MMIO.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
tf->command = ata_check_status(ap);
tf->feature = readb((void __iomem *)ioaddr->error_addr);
tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
tf->device = readb((void __iomem *)ioaddr->device_addr);
if (tf->flags & ATA_TFLAG_LBA48) {
writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
}
}
/**
* ata_tf_read - input device's ATA taskfile shadow registers
* @ap: Port from which input is read
* @tf: ATA taskfile register set for storing input
*
* Reads ATA taskfile registers for currently-selected device
* into @tf.
*
* Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
* is set, also reads the hob registers.
*
* May be used as the tf_read() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
{
if (ap->flags & ATA_FLAG_MMIO)
ata_tf_read_mmio(ap, tf);
else
ata_tf_read_pio(ap, tf);
}
/**
* ata_check_status_pio - Read device status reg & clear interrupt
* @ap: port where the device is
*
* Reads ATA taskfile status register for currently-selected device
* and return its value. This also clears pending interrupts
* from this device
*
* LOCKING:
* Inherited from caller.
*/
static u8 ata_check_status_pio(struct ata_port *ap)
{
return inb(ap->ioaddr.status_addr);
}
/**
* ata_check_status_mmio - Read device status reg & clear interrupt
* @ap: port where the device is
*
* Reads ATA taskfile status register for currently-selected device
* via MMIO and return its value. This also clears pending interrupts
* from this device
*
* LOCKING:
* Inherited from caller.
*/
static u8 ata_check_status_mmio(struct ata_port *ap)
{
return readb((void __iomem *) ap->ioaddr.status_addr);
}
/**
* ata_check_status - Read device status reg & clear interrupt
* @ap: port where the device is
*
* Reads ATA taskfile status register for currently-selected device
* and return its value. This also clears pending interrupts
* from this device
*
* May be used as the check_status() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
u8 ata_check_status(struct ata_port *ap)
{
if (ap->flags & ATA_FLAG_MMIO)
return ata_check_status_mmio(ap);
return ata_check_status_pio(ap);
}
/**
* ata_altstatus - Read device alternate status reg
* @ap: port where the device is
*
* Reads ATA taskfile alternate status register for
* currently-selected device and return its value.
*
* Note: may NOT be used as the check_altstatus() entry in
* ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
u8 ata_altstatus(struct ata_port *ap)
{
if (ap->ops->check_altstatus)
return ap->ops->check_altstatus(ap);
if (ap->flags & ATA_FLAG_MMIO)
return readb((void __iomem *)ap->ioaddr.altstatus_addr);
return inb(ap->ioaddr.altstatus_addr);
}
/**
* ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
* @tf: Taskfile to convert
* @fis: Buffer into which data will output
* @pmp: Port multiplier port
*
* Converts a standard ATA taskfile to a Serial ATA
* FIS structure (Register - Host to Device).
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
{
fis[0] = 0x27; /* Register - Host to Device FIS */
fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
bit 7 indicates Command FIS */
fis[2] = tf->command;
fis[3] = tf->feature;
fis[4] = tf->lbal;
fis[5] = tf->lbam;
fis[6] = tf->lbah;
fis[7] = tf->device;
fis[8] = tf->hob_lbal;
fis[9] = tf->hob_lbam;
fis[10] = tf->hob_lbah;
fis[11] = tf->hob_feature;
fis[12] = tf->nsect;
fis[13] = tf->hob_nsect;
fis[14] = 0;
fis[15] = tf->ctl;
fis[16] = 0;
fis[17] = 0;
fis[18] = 0;
fis[19] = 0;
}
/**
* ata_tf_from_fis - Convert SATA FIS to ATA taskfile
* @fis: Buffer from which data will be input
* @tf: Taskfile to output
*
* Converts a serial ATA FIS structure to a standard ATA taskfile.
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
{
tf->command = fis[2]; /* status */
tf->feature = fis[3]; /* error */
tf->lbal = fis[4];
tf->lbam = fis[5];
tf->lbah = fis[6];
tf->device = fis[7];
tf->hob_lbal = fis[8];
tf->hob_lbam = fis[9];
tf->hob_lbah = fis[10];
tf->nsect = fis[12];
tf->hob_nsect = fis[13];
}
static const u8 ata_rw_cmds[] = {
/* pio multi */
ATA_CMD_READ_MULTI,
ATA_CMD_WRITE_MULTI,
ATA_CMD_READ_MULTI_EXT,
ATA_CMD_WRITE_MULTI_EXT,
0,
0,
0,
ATA_CMD_WRITE_MULTI_FUA_EXT,
/* pio */
ATA_CMD_PIO_READ,
ATA_CMD_PIO_WRITE,
ATA_CMD_PIO_READ_EXT,
ATA_CMD_PIO_WRITE_EXT,
0,
0,
0,
0,
/* dma */
ATA_CMD_READ,
ATA_CMD_WRITE,
ATA_CMD_READ_EXT,
ATA_CMD_WRITE_EXT,
0,
0,
0,
ATA_CMD_WRITE_FUA_EXT
};
/**
* ata_rwcmd_protocol - set taskfile r/w commands and protocol
* @qc: command to examine and configure
*
* Examine the device configuration and tf->flags to calculate
* the proper read/write commands and protocol to use.
*
* LOCKING:
* caller.
*/
int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
{
struct ata_taskfile *tf = &qc->tf;
struct ata_device *dev = qc->dev;
u8 cmd;
int index, fua, lba48, write;
fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
if (dev->flags & ATA_DFLAG_PIO) {
tf->protocol = ATA_PROT_PIO;
index = dev->multi_count ? 0 : 8;
} else {
tf->protocol = ATA_PROT_DMA;
index = 16;
}
cmd = ata_rw_cmds[index + fua + lba48 + write];
if (cmd) {
tf->command = cmd;
return 0;
}
return -1;
}
static const char * const xfer_mode_str[] = {
"UDMA/16",
"UDMA/25",
"UDMA/33",
"UDMA/44",
"UDMA/66",
"UDMA/100",
"UDMA/133",
"UDMA7",
"MWDMA0",
"MWDMA1",
"MWDMA2",
"PIO0",
"PIO1",
"PIO2",
"PIO3",
"PIO4",
};
/**
* ata_udma_string - convert UDMA bit offset to string
* @mask: mask of bits supported; only highest bit counts.
*
* Determine string which represents the highest speed
* (highest bit in @udma_mask).
*
* LOCKING:
* None.
*
* RETURNS:
* Constant C string representing highest speed listed in
* @udma_mask, or the constant C string "<n/a>".
*/
static const char *ata_mode_string(unsigned int mask)
{
int i;
for (i = 7; i >= 0; i--)
if (mask & (1 << i))
goto out;
for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
if (mask & (1 << i))
goto out;
for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
if (mask & (1 << i))
goto out;
return "<n/a>";
out:
return xfer_mode_str[i];
}
/**
* ata_pio_devchk - PATA device presence detection
* @ap: ATA channel to examine
* @device: Device to examine (starting at zero)
*
* This technique was originally described in
* Hale Landis's ATADRVR (www.ata-atapi.com), and
* later found its way into the ATA/ATAPI spec.
*
* Write a pattern to the ATA shadow registers,
* and if a device is present, it will respond by
* correctly storing and echoing back the
* ATA shadow register contents.
*
* LOCKING:
* caller.
*/
static unsigned int ata_pio_devchk(struct ata_port *ap,
unsigned int device)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
u8 nsect, lbal;
ap->ops->dev_select(ap, device);
outb(0x55, ioaddr->nsect_addr);
outb(0xaa, ioaddr->lbal_addr);
outb(0xaa, ioaddr->nsect_addr);
outb(0x55, ioaddr->lbal_addr);
outb(0x55, ioaddr->nsect_addr);
outb(0xaa, ioaddr->lbal_addr);
nsect = inb(ioaddr->nsect_addr);
lbal = inb(ioaddr->lbal_addr);
if ((nsect == 0x55) && (lbal == 0xaa))
return 1; /* we found a device */
return 0; /* nothing found */
}
/**
* ata_mmio_devchk - PATA device presence detection
* @ap: ATA channel to examine
* @device: Device to examine (starting at zero)
*
* This technique was originally described in
* Hale Landis's ATADRVR (www.ata-atapi.com), and
* later found its way into the ATA/ATAPI spec.
*
* Write a pattern to the ATA shadow registers,
* and if a device is present, it will respond by
* correctly storing and echoing back the
* ATA shadow register contents.
*
* LOCKING:
* caller.
*/
static unsigned int ata_mmio_devchk(struct ata_port *ap,
unsigned int device)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
u8 nsect, lbal;
ap->ops->dev_select(ap, device);
writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
nsect = readb((void __iomem *) ioaddr->nsect_addr);
lbal = readb((void __iomem *) ioaddr->lbal_addr);
if ((nsect == 0x55) && (lbal == 0xaa))
return 1; /* we found a device */
return 0; /* nothing found */
}
/**
* ata_devchk - PATA device presence detection
* @ap: ATA channel to examine
* @device: Device to examine (starting at zero)
*
* Dispatch ATA device presence detection, depending
* on whether we are using PIO or MMIO to talk to the
* ATA shadow registers.
*
* LOCKING:
* caller.
*/
static unsigned int ata_devchk(struct ata_port *ap,
unsigned int device)
{
if (ap->flags & ATA_FLAG_MMIO)
return ata_mmio_devchk(ap, device);
return ata_pio_devchk(ap, device);
}
/**
* ata_dev_classify - determine device type based on ATA-spec signature
* @tf: ATA taskfile register set for device to be identified
*
* Determine from taskfile register contents whether a device is
* ATA or ATAPI, as per "Signature and persistence" section
* of ATA/PI spec (volume 1, sect 5.14).
*
* LOCKING:
* None.
*
* RETURNS:
* Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
* the event of failure.
*/
unsigned int ata_dev_classify(const struct ata_taskfile *tf)
{
/* Apple's open source Darwin code hints that some devices only
* put a proper signature into the LBA mid/high registers,
* So, we only check those. It's sufficient for uniqueness.
*/
if (((tf->lbam == 0) && (tf->lbah == 0)) ||
((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
DPRINTK("found ATA device by sig\n");
return ATA_DEV_ATA;
}
if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
DPRINTK("found ATAPI device by sig\n");
return ATA_DEV_ATAPI;
}
DPRINTK("unknown device\n");
return ATA_DEV_UNKNOWN;
}
/**
* ata_dev_try_classify - Parse returned ATA device signature
* @ap: ATA channel to examine
* @device: Device to examine (starting at zero)
*
* After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
* an ATA/ATAPI-defined set of values is placed in the ATA
* shadow registers, indicating the results of device detection
* and diagnostics.
*
* Select the ATA device, and read the values from the ATA shadow
* registers. Then parse according to the Error register value,
* and the spec-defined values examined by ata_dev_classify().
*
* LOCKING:
* caller.
*/
static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
{
struct ata_device *dev = &ap->device[device];
struct ata_taskfile tf;
unsigned int class;
u8 err;
ap->ops->dev_select(ap, device);
memset(&tf, 0, sizeof(tf));
ap->ops->tf_read(ap, &tf);
err = tf.feature;
dev->class = ATA_DEV_NONE;
/* see if device passed diags */
if (err == 1)
/* do nothing */ ;
else if ((device == 0) && (err == 0x81))
/* do nothing */ ;
else
return err;
/* determine if device if ATA or ATAPI */
class = ata_dev_classify(&tf);
if (class == ATA_DEV_UNKNOWN)
return err;
if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
return err;
dev->class = class;
return err;
}
/**
* ata_dev_id_string - Convert IDENTIFY DEVICE page into string
* @id: IDENTIFY DEVICE results we will examine
* @s: string into which data is output
* @ofs: offset into identify device page
* @len: length of string to return. must be an even number.
*
* The strings in the IDENTIFY DEVICE page are broken up into
* 16-bit chunks. Run through the string, and output each
* 8-bit chunk linearly, regardless of platform.
*
* LOCKING:
* caller.
*/
void ata_dev_id_string(const u16 *id, unsigned char *s,
unsigned int ofs, unsigned int len)
{
unsigned int c;
while (len > 0) {
c = id[ofs] >> 8;
*s = c;
s++;
c = id[ofs] & 0xff;
*s = c;
s++;
ofs++;
len -= 2;
}
}
/**
* ata_noop_dev_select - Select device 0/1 on ATA bus
* @ap: ATA channel to manipulate
* @device: ATA device (numbered from zero) to select
*
* This function performs no actual function.
*
* May be used as the dev_select() entry in ata_port_operations.
*
* LOCKING:
* caller.
*/
void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
{
}
/**
* ata_std_dev_select - Select device 0/1 on ATA bus
* @ap: ATA channel to manipulate
* @device: ATA device (numbered from zero) to select
*
* Use the method defined in the ATA specification to
* make either device 0, or device 1, active on the
* ATA channel. Works with both PIO and MMIO.
*
* May be used as the dev_select() entry in ata_port_operations.
*
* LOCKING:
* caller.
*/
void ata_std_dev_select (struct ata_port *ap, unsigned int device)
{
u8 tmp;
if (device == 0)
tmp = ATA_DEVICE_OBS;
else
tmp = ATA_DEVICE_OBS | ATA_DEV1;
if (ap->flags & ATA_FLAG_MMIO) {
writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
} else {
outb(tmp, ap->ioaddr.device_addr);
}
ata_pause(ap); /* needed; also flushes, for mmio */
}
/**
* ata_dev_select - Select device 0/1 on ATA bus
* @ap: ATA channel to manipulate
* @device: ATA device (numbered from zero) to select
* @wait: non-zero to wait for Status register BSY bit to clear
* @can_sleep: non-zero if context allows sleeping
*
* Use the method defined in the ATA specification to
* make either device 0, or device 1, active on the
* ATA channel.
*
* This is a high-level version of ata_std_dev_select(),
* which additionally provides the services of inserting
* the proper pauses and status polling, where needed.
*
* LOCKING:
* caller.
*/
void ata_dev_select(struct ata_port *ap, unsigned int device,
unsigned int wait, unsigned int can_sleep)
{
VPRINTK("ENTER, ata%u: device %u, wait %u\n",
ap->id, device, wait);
if (wait)
ata_wait_idle(ap);
ap->ops->dev_select(ap, device);
if (wait) {
if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
msleep(150);
ata_wait_idle(ap);
}
}
/**
* ata_dump_id - IDENTIFY DEVICE info debugging output
* @dev: Device whose IDENTIFY DEVICE page we will dump
*
* Dump selected 16-bit words from a detected device's
* IDENTIFY PAGE page.
*
* LOCKING:
* caller.
*/
static inline void ata_dump_id(const struct ata_device *dev)
{
DPRINTK("49==0x%04x "
"53==0x%04x "
"63==0x%04x "
"64==0x%04x "
"75==0x%04x \n",
dev->id[49],
dev->id[53],
dev->id[63],
dev->id[64],
dev->id[75]);
DPRINTK("80==0x%04x "
"81==0x%04x "
"82==0x%04x "
"83==0x%04x "
"84==0x%04x \n",
dev->id[80],
dev->id[81],
dev->id[82],
dev->id[83],
dev->id[84]);
DPRINTK("88==0x%04x "
"93==0x%04x\n",
dev->id[88],
dev->id[93]);
}
/*
* Compute the PIO modes available for this device. This is not as
* trivial as it seems if we must consider early devices correctly.
*
* FIXME: pre IDE drive timing (do we care ?).
*/
static unsigned int ata_pio_modes(const struct ata_device *adev)
{
u16 modes;
/* Usual case. Word 53 indicates word 88 is valid */
if (adev->id[ATA_ID_FIELD_VALID] & (1 << 2)) {
modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
modes <<= 3;
modes |= 0x7;
return modes;
}
/* If word 88 isn't valid then Word 51 holds the PIO timing number
for the maximum. Turn it into a mask and return it */
modes = (2 << (adev->id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
return modes;
}
struct ata_exec_internal_arg {
unsigned int err_mask;
struct ata_taskfile *tf;
struct completion *waiting;
};
int ata_qc_complete_internal(struct ata_queued_cmd *qc)
{
struct ata_exec_internal_arg *arg = qc->private_data;
struct completion *waiting = arg->waiting;
if (!(qc->err_mask & ~AC_ERR_DEV))
qc->ap->ops->tf_read(qc->ap, arg->tf);
arg->err_mask = qc->err_mask;
arg->waiting = NULL;
complete(waiting);
return 0;
}
/**
* ata_exec_internal - execute libata internal command
* @ap: Port to which the command is sent
* @dev: Device to which the command is sent
* @tf: Taskfile registers for the command and the result
* @dma_dir: Data tranfer direction of the command
* @buf: Data buffer of the command
* @buflen: Length of data buffer
*
* Executes libata internal command with timeout. @tf contains
* command on entry and result on return. Timeout and error
* conditions are reported via return value. No recovery action
* is taken after a command times out. It's caller's duty to
* clean up after timeout.
*
* LOCKING:
* None. Should be called with kernel context, might sleep.
*/
static unsigned
ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
struct ata_taskfile *tf,
int dma_dir, void *buf, unsigned int buflen)
{
u8 command = tf->command;
struct ata_queued_cmd *qc;
DECLARE_COMPLETION(wait);
unsigned long flags;
struct ata_exec_internal_arg arg;
spin_lock_irqsave(&ap->host_set->lock, flags);
qc = ata_qc_new_init(ap, dev);
BUG_ON(qc == NULL);
qc->tf = *tf;
qc->dma_dir = dma_dir;
if (dma_dir != DMA_NONE) {
ata_sg_init_one(qc, buf, buflen);
qc->nsect = buflen / ATA_SECT_SIZE;
}
arg.waiting = &wait;
arg.tf = tf;
qc->private_data = &arg;
qc->complete_fn = ata_qc_complete_internal;
if (ata_qc_issue(qc))
goto issue_fail;
spin_unlock_irqrestore(&ap->host_set->lock, flags);
if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
spin_lock_irqsave(&ap->host_set->lock, flags);
/* We're racing with irq here. If we lose, the
* following test prevents us from completing the qc
* again. If completion irq occurs after here but
* before the caller cleans up, it will result in a
* spurious interrupt. We can live with that.
*/
if (arg.waiting) {
qc->err_mask = AC_ERR_OTHER;
ata_qc_complete(qc);
printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
ap->id, command);
}
spin_unlock_irqrestore(&ap->host_set->lock, flags);
}
return arg.err_mask;
issue_fail:
ata_qc_free(qc);
spin_unlock_irqrestore(&ap->host_set->lock, flags);
return AC_ERR_OTHER;
}
/**
* ata_dev_identify - obtain IDENTIFY x DEVICE page
* @ap: port on which device we wish to probe resides
* @device: device bus address, starting at zero
*
* Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
* command, and read back the 512-byte device information page.
* The device information page is fed to us via the standard
* PIO-IN protocol, but we hand-code it here. (TODO: investigate
* using standard PIO-IN paths)
*
* After reading the device information page, we use several
* bits of information from it to initialize data structures
* that will be used during the lifetime of the ata_device.
* Other data from the info page is used to disqualify certain
* older ATA devices we do not wish to support.
*
* LOCKING:
* Inherited from caller. Some functions called by this function
* obtain the host_set lock.
*/
static void ata_dev_identify(struct ata_port *ap, unsigned int device)
{
struct ata_device *dev = &ap->device[device];
unsigned int major_version;
u16 tmp;
unsigned long xfer_modes;
unsigned int using_edd;
struct ata_taskfile tf;
unsigned int err_mask;
int rc;
if (!ata_dev_present(dev)) {
DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ap->id, device);
return;
}
if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
using_edd = 0;
else
using_edd = 1;
DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
dev->class == ATA_DEV_NONE);
ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
retry:
ata_tf_init(ap, &tf, device);
if (dev->class == ATA_DEV_ATA) {
tf.command = ATA_CMD_ID_ATA;
DPRINTK("do ATA identify\n");
} else {
tf.command = ATA_CMD_ID_ATAPI;
DPRINTK("do ATAPI identify\n");
}
tf.protocol = ATA_PROT_PIO;
err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
dev->id, sizeof(dev->id));
if (err_mask) {
if (err_mask & ~AC_ERR_DEV)
goto err_out;
/*
* arg! EDD works for all test cases, but seems to return
* the ATA signature for some ATAPI devices. Until the
* reason for this is found and fixed, we fix up the mess
* here. If IDENTIFY DEVICE returns command aborted
* (as ATAPI devices do), then we issue an
* IDENTIFY PACKET DEVICE.
*
* ATA software reset (SRST, the default) does not appear
* to have this problem.
*/
if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
u8 err = tf.feature;
if (err & ATA_ABORTED) {
dev->class = ATA_DEV_ATAPI;
goto retry;
}
}
goto err_out;
}
swap_buf_le16(dev->id, ATA_ID_WORDS);
/* print device capabilities */
printk(KERN_DEBUG "ata%u: dev %u cfg "
"49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
ap->id, device, dev->id[49],
dev->id[82], dev->id[83], dev->id[84],
dev->id[85], dev->id[86], dev->id[87],
dev->id[88]);
/*
* common ATA, ATAPI feature tests
*/
/* we require DMA support (bits 8 of word 49) */
if (!ata_id_has_dma(dev->id)) {
printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
goto err_out_nosup;
}
/* quick-n-dirty find max transfer mode; for printk only */
xfer_modes = dev->id[ATA_ID_UDMA_MODES];
if (!xfer_modes)
xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
if (!xfer_modes)
xfer_modes = ata_pio_modes(dev);
ata_dump_id(dev);
/* ATA-specific feature tests */
if (dev->class == ATA_DEV_ATA) {
if (!ata_id_is_ata(dev->id)) /* sanity check */
goto err_out_nosup;
/* get major version */
tmp = dev->id[ATA_ID_MAJOR_VER];
for (major_version = 14; major_version >= 1; major_version--)
if (tmp & (1 << major_version))
break;
/*
* The exact sequence expected by certain pre-ATA4 drives is:
* SRST RESET
* IDENTIFY
* INITIALIZE DEVICE PARAMETERS
* anything else..
* Some drives were very specific about that exact sequence.
*/
if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
ata_dev_init_params(ap, dev);
/* current CHS translation info (id[53-58]) might be
* changed. reread the identify device info.
*/
ata_dev_reread_id(ap, dev);
}
if (ata_id_has_lba(dev->id)) {
dev->flags |= ATA_DFLAG_LBA;
if (ata_id_has_lba48(dev->id)) {
dev->flags |= ATA_DFLAG_LBA48;
dev->n_sectors = ata_id_u64(dev->id, 100);
} else {
dev->n_sectors = ata_id_u32(dev->id, 60);
}
/* print device info to dmesg */
printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
ap->id, device,
major_version,
ata_mode_string(xfer_modes),
(unsigned long long)dev->n_sectors,
dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
} else {
/* CHS */
/* Default translation */
dev->cylinders = dev->id[1];
dev->heads = dev->id[3];
dev->sectors = dev->id[6];
dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
if (ata_id_current_chs_valid(dev->id)) {
/* Current CHS translation is valid. */
dev->cylinders = dev->id[54];
dev->heads = dev->id[55];
dev->sectors = dev->id[56];
dev->n_sectors = ata_id_u32(dev->id, 57);
}
/* print device info to dmesg */
printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
ap->id, device,
major_version,
ata_mode_string(xfer_modes),
(unsigned long long)dev->n_sectors,
(int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
}
ap->host->max_cmd_len = 16;
}
/* ATAPI-specific feature tests */
else if (dev->class == ATA_DEV_ATAPI) {
if (ata_id_is_ata(dev->id)) /* sanity check */
goto err_out_nosup;
rc = atapi_cdb_len(dev->id);
if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
goto err_out_nosup;
}
ap->cdb_len = (unsigned int) rc;
ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
/* print device info to dmesg */
printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
ap->id, device,
ata_mode_string(xfer_modes));
}
DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
return;
err_out_nosup:
printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
ap->id, device);
err_out:
dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
DPRINTK("EXIT, err\n");
}
static inline u8 ata_dev_knobble(const struct ata_port *ap)
{
return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
}
/**
* ata_dev_config - Run device specific handlers and check for
* SATA->PATA bridges
* @ap: Bus
* @i: Device
*
* LOCKING:
*/
void ata_dev_config(struct ata_port *ap, unsigned int i)
{
/* limit bridge transfers to udma5, 200 sectors */
if (ata_dev_knobble(ap)) {
printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
ap->id, ap->device->devno);
ap->udma_mask &= ATA_UDMA5;
ap->host->max_sectors = ATA_MAX_SECTORS;
ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
}
if (ap->ops->dev_config)
ap->ops->dev_config(ap, &ap->device[i]);
}
/**
* ata_bus_probe - Reset and probe ATA bus
* @ap: Bus to probe
*
* Master ATA bus probing function. Initiates a hardware-dependent
* bus reset, then attempts to identify any devices found on
* the bus.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* Zero on success, non-zero on error.
*/
static int ata_bus_probe(struct ata_port *ap)
{
unsigned int i, found = 0;
ap->ops->phy_reset(ap);
if (ap->flags & ATA_FLAG_PORT_DISABLED)
goto err_out;
for (i = 0; i < ATA_MAX_DEVICES; i++) {
ata_dev_identify(ap, i);
if (ata_dev_present(&ap->device[i])) {
found = 1;
ata_dev_config(ap,i);
}
}
if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
goto err_out_disable;
ata_set_mode(ap);
if (ap->flags & ATA_FLAG_PORT_DISABLED)
goto err_out_disable;
return 0;
err_out_disable:
ap->ops->port_disable(ap);
err_out:
return -1;
}
/**
* ata_port_probe - Mark port as enabled
* @ap: Port for which we indicate enablement
*
* Modify @ap data structure such that the system
* thinks that the entire port is enabled.
*
* LOCKING: host_set lock, or some other form of
* serialization.
*/
void ata_port_probe(struct ata_port *ap)
{
ap->flags &= ~ATA_FLAG_PORT_DISABLED;
}
/**
* __sata_phy_reset - Wake/reset a low-level SATA PHY
* @ap: SATA port associated with target SATA PHY.
*
* This function issues commands to standard SATA Sxxx
* PHY registers, to wake up the phy (and device), and
* clear any reset condition.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
*/
void __sata_phy_reset(struct ata_port *ap)
{
u32 sstatus;
unsigned long timeout = jiffies + (HZ * 5);
if (ap->flags & ATA_FLAG_SATA_RESET) {
/* issue phy wake/reset */
scr_write_flush(ap, SCR_CONTROL, 0x301);
/* Couldn't find anything in SATA I/II specs, but
* AHCI-1.1 10.4.2 says at least 1 ms. */
mdelay(1);
}
scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
/* wait for phy to become ready, if necessary */
do {
msleep(200);
sstatus = scr_read(ap, SCR_STATUS);
if ((sstatus & 0xf) != 1)
break;
} while (time_before(jiffies, timeout));
/* TODO: phy layer with polling, timeouts, etc. */
sstatus = scr_read(ap, SCR_STATUS);
if (sata_dev_present(ap)) {
const char *speed;
u32 tmp;
tmp = (sstatus >> 4) & 0xf;
if (tmp & (1 << 0))
speed = "1.5";
else if (tmp & (1 << 1))
speed = "3.0";
else
speed = "<unknown>";
printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
ap->id, speed, sstatus);
ata_port_probe(ap);
} else {
printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
ap->id, sstatus);
ata_port_disable(ap);
}
if (ap->flags & ATA_FLAG_PORT_DISABLED)
return;
if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
ata_port_disable(ap);
return;
}
ap->cbl = ATA_CBL_SATA;
}
/**
* sata_phy_reset - Reset SATA bus.
* @ap: SATA port associated with target SATA PHY.
*
* This function resets the SATA bus, and then probes
* the bus for devices.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
*/
void sata_phy_reset(struct ata_port *ap)
{
__sata_phy_reset(ap);
if (ap->flags & ATA_FLAG_PORT_DISABLED)
return;
ata_bus_reset(ap);
}
/**
* ata_port_disable - Disable port.
* @ap: Port to be disabled.
*
* Modify @ap data structure such that the system
* thinks that the entire port is disabled, and should
* never attempt to probe or communicate with devices
* on this port.
*
* LOCKING: host_set lock, or some other form of
* serialization.
*/
void ata_port_disable(struct ata_port *ap)
{
ap->device[0].class = ATA_DEV_NONE;
ap->device[1].class = ATA_DEV_NONE;
ap->flags |= ATA_FLAG_PORT_DISABLED;
}
/*
* This mode timing computation functionality is ported over from
* drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
*/
/*
* PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
* These were taken from ATA/ATAPI-6 standard, rev 0a, except
* for PIO 5, which is a nonstandard extension and UDMA6, which
* is currently supported only by Maxtor drives.
*/
static const struct ata_timing ata_timing[] = {
{ XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
{ XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
{ XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
{ XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
{ XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
{ XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
{ XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
{ XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
{ XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
{ XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
{ XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
{ XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
{ XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
{ XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
{ XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
{ XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
{ XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
{ XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
{ 0xFF }
};
#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
{
q->setup = EZ(t->setup * 1000, T);
q->act8b = EZ(t->act8b * 1000, T);
q->rec8b = EZ(t->rec8b * 1000, T);
q->cyc8b = EZ(t->cyc8b * 1000, T);
q->active = EZ(t->active * 1000, T);
q->recover = EZ(t->recover * 1000, T);
q->cycle = EZ(t->cycle * 1000, T);
q->udma = EZ(t->udma * 1000, UT);
}
void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
struct ata_timing *m, unsigned int what)
{
if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
}
static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
{
const struct ata_timing *t;
for (t = ata_timing; t->mode != speed; t++)
if (t->mode == 0xFF)
return NULL;
return t;
}
int ata_timing_compute(struct ata_device *adev, unsigned short speed,
struct ata_timing *t, int T, int UT)
{
const struct ata_timing *s;
struct ata_timing p;
/*
* Find the mode.
*/
if (!(s = ata_timing_find_mode(speed)))
return -EINVAL;
memcpy(t, s, sizeof(*s));
/*
* If the drive is an EIDE drive, it can tell us it needs extended
* PIO/MW_DMA cycle timing.
*/
if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
memset(&p, 0, sizeof(p));
if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
} else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
}
ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
}
/*
* Convert the timing to bus clock counts.
*/
ata_timing_quantize(t, t, T, UT);
/*
* Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
* and some other commands. We have to ensure that the DMA cycle timing is
* slower/equal than the fastest PIO timing.
*/
if (speed > XFER_PIO_4) {
ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
}
/*
* Lenghten active & recovery time so that cycle time is correct.
*/
if (t->act8b + t->rec8b < t->cyc8b) {
t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
t->rec8b = t->cyc8b - t->act8b;
}
if (t->active + t->recover < t->cycle) {
t->active += (t->cycle - (t->active + t->recover)) / 2;
t->recover = t->cycle - t->active;
}
return 0;
}
static const struct {
unsigned int shift;
u8 base;
} xfer_mode_classes[] = {
{ ATA_SHIFT_UDMA, XFER_UDMA_0 },
{ ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
{ ATA_SHIFT_PIO, XFER_PIO_0 },
};
static inline u8 base_from_shift(unsigned int shift)
{
int i;
for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
if (xfer_mode_classes[i].shift == shift)
return xfer_mode_classes[i].base;
return 0xff;
}
static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
{
int ofs, idx;
u8 base;
if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
return;
if (dev->xfer_shift == ATA_SHIFT_PIO)
dev->flags |= ATA_DFLAG_PIO;
ata_dev_set_xfermode(ap, dev);
base = base_from_shift(dev->xfer_shift);
ofs = dev->xfer_mode - base;
idx = ofs + dev->xfer_shift;
WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
printk(KERN_INFO "ata%u: dev %u configured for %s\n",
ap->id, dev->devno, xfer_mode_str[idx]);
}
static int ata_host_set_pio(struct ata_port *ap)
{
unsigned int mask;
int x, i;
u8 base, xfer_mode;
mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
x = fgb(mask);
if (x < 0) {
printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
return -1;
}
base = base_from_shift(ATA_SHIFT_PIO);
xfer_mode = base + x;
DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
(int)base, (int)xfer_mode, mask, x);
for (i = 0; i < ATA_MAX_DEVICES; i++) {
struct ata_device *dev = &ap->device[i];
if (ata_dev_present(dev)) {
dev->pio_mode = xfer_mode;
dev->xfer_mode = xfer_mode;
dev->xfer_shift = ATA_SHIFT_PIO;
if (ap->ops->set_piomode)
ap->ops->set_piomode(ap, dev);
}
}
return 0;
}
static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
unsigned int xfer_shift)
{
int i;
for (i = 0; i < ATA_MAX_DEVICES; i++) {
struct ata_device *dev = &ap->device[i];
if (ata_dev_present(dev)) {
dev->dma_mode = xfer_mode;
dev->xfer_mode = xfer_mode;
dev->xfer_shift = xfer_shift;
if (ap->ops->set_dmamode)
ap->ops->set_dmamode(ap, dev);
}
}
}
/**
* ata_set_mode - Program timings and issue SET FEATURES - XFER
* @ap: port on which timings will be programmed
*
* Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
*
* LOCKING:
* PCI/etc. bus probe sem.
*
*/
static void ata_set_mode(struct ata_port *ap)
{
unsigned int xfer_shift;
u8 xfer_mode;
int rc;
/* step 1: always set host PIO timings */
rc = ata_host_set_pio(ap);
if (rc)
goto err_out;
/* step 2: choose the best data xfer mode */
xfer_mode = xfer_shift = 0;
rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
if (rc)
goto err_out;
/* step 3: if that xfer mode isn't PIO, set host DMA timings */
if (xfer_shift != ATA_SHIFT_PIO)
ata_host_set_dma(ap, xfer_mode, xfer_shift);
/* step 4: update devices' xfer mode */
ata_dev_set_mode(ap, &ap->device[0]);
ata_dev_set_mode(ap, &ap->device[1]);
if (ap->flags & ATA_FLAG_PORT_DISABLED)
return;
if (ap->ops->post_set_mode)
ap->ops->post_set_mode(ap);
return;
err_out:
ata_port_disable(ap);
}
/**
* ata_busy_sleep - sleep until BSY clears, or timeout
* @ap: port containing status register to be polled
* @tmout_pat: impatience timeout
* @tmout: overall timeout
*
* Sleep until ATA Status register bit BSY clears,
* or a timeout occurs.
*
* LOCKING: None.
*
*/
static unsigned int ata_busy_sleep (struct ata_port *ap,
unsigned long tmout_pat,
unsigned long tmout)
{
unsigned long timer_start, timeout;
u8 status;
status = ata_busy_wait(ap, ATA_BUSY, 300);
timer_start = jiffies;
timeout = timer_start + tmout_pat;
while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
msleep(50);
status = ata_busy_wait(ap, ATA_BUSY, 3);
}
if (status & ATA_BUSY)
printk(KERN_WARNING "ata%u is slow to respond, "
"please be patient\n", ap->id);
timeout = timer_start + tmout;
while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
msleep(50);
status = ata_chk_status(ap);
}
if (status & ATA_BUSY) {
printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
ap->id, tmout / HZ);
return 1;
}
return 0;
}
static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int dev0 = devmask & (1 << 0);
unsigned int dev1 = devmask & (1 << 1);
unsigned long timeout;
/* if device 0 was found in ata_devchk, wait for its
* BSY bit to clear
*/
if (dev0)
ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
/* if device 1 was found in ata_devchk, wait for
* register access, then wait for BSY to clear
*/
timeout = jiffies + ATA_TMOUT_BOOT;
while (dev1) {
u8 nsect, lbal;
ap->ops->dev_select(ap, 1);
if (ap->flags & ATA_FLAG_MMIO) {
nsect = readb((void __iomem *) ioaddr->nsect_addr);
lbal = readb((void __iomem *) ioaddr->lbal_addr);
} else {
nsect = inb(ioaddr->nsect_addr);
lbal = inb(ioaddr->lbal_addr);
}
if ((nsect == 1) && (lbal == 1))
break;
if (time_after(jiffies, timeout)) {
dev1 = 0;
break;
}
msleep(50); /* give drive a breather */
}
if (dev1)
ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
/* is all this really necessary? */
ap->ops->dev_select(ap, 0);
if (dev1)
ap->ops->dev_select(ap, 1);
if (dev0)
ap->ops->dev_select(ap, 0);
}
/**
* ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
* @ap: Port to reset and probe
*
* Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
* probe the bus. Not often used these days.
*
* LOCKING:
* PCI/etc. bus probe sem.
* Obtains host_set lock.
*
*/
static unsigned int ata_bus_edd(struct ata_port *ap)
{
struct ata_taskfile tf;
unsigned long flags;
/* set up execute-device-diag (bus reset) taskfile */
/* also, take interrupts to a known state (disabled) */
DPRINTK("execute-device-diag\n");
ata_tf_init(ap, &tf, 0);
tf.ctl |= ATA_NIEN;
tf.command = ATA_CMD_EDD;
tf.protocol = ATA_PROT_NODATA;
/* do bus reset */
spin_lock_irqsave(&ap->host_set->lock, flags);
ata_tf_to_host(ap, &tf);
spin_unlock_irqrestore(&ap->host_set->lock, flags);
/* spec says at least 2ms. but who knows with those
* crazy ATAPI devices...
*/
msleep(150);
return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
}
static unsigned int ata_bus_softreset(struct ata_port *ap,
unsigned int devmask)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
DPRINTK("ata%u: bus reset via SRST\n", ap->id);
/* software reset. causes dev0 to be selected */
if (ap->flags & ATA_FLAG_MMIO) {
writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
udelay(20); /* FIXME: flush */
writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
udelay(20); /* FIXME: flush */
writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
} else {
outb(ap->ctl, ioaddr->ctl_addr);
udelay(10);
outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
udelay(10);
outb(ap->ctl, ioaddr->ctl_addr);
}
/* spec mandates ">= 2ms" before checking status.
* We wait 150ms, because that was the magic delay used for
* ATAPI devices in Hale Landis's ATADRVR, for the period of time
* between when the ATA command register is written, and then
* status is checked. Because waiting for "a while" before
* checking status is fine, post SRST, we perform this magic
* delay here as well.
*/
msleep(150);
ata_bus_post_reset(ap, devmask);
return 0;
}
/**
* ata_bus_reset - reset host port and associated ATA channel
* @ap: port to reset
*
* This is typically the first time we actually start issuing
* commands to the ATA channel. We wait for BSY to clear, then
* issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
* result. Determine what devices, if any, are on the channel
* by looking at the device 0/1 error register. Look at the signature
* stored in each device's taskfile registers, to determine if
* the device is ATA or ATAPI.
*
* LOCKING:
* PCI/etc. bus probe sem.
* Obtains host_set lock.
*
* SIDE EFFECTS:
* Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
*/
void ata_bus_reset(struct ata_port *ap)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
u8 err;
unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
/* determine if device 0/1 are present */
if (ap->flags & ATA_FLAG_SATA_RESET)
dev0 = 1;
else {
dev0 = ata_devchk(ap, 0);
if (slave_possible)
dev1 = ata_devchk(ap, 1);
}
if (dev0)
devmask |= (1 << 0);
if (dev1)
devmask |= (1 << 1);
/* select device 0 again */
ap->ops->dev_select(ap, 0);
/* issue bus reset */
if (ap->flags & ATA_FLAG_SRST)
rc = ata_bus_softreset(ap, devmask);
else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
/* set up device control */
if (ap->flags & ATA_FLAG_MMIO)
writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
else
outb(ap->ctl, ioaddr->ctl_addr);
rc = ata_bus_edd(ap);
}
if (rc)
goto err_out;
/*
* determine by signature whether we have ATA or ATAPI devices
*/
err = ata_dev_try_classify(ap, 0);
if ((slave_possible) && (err != 0x81))
ata_dev_try_classify(ap, 1);
/* re-enable interrupts */
if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
ata_irq_on(ap);
/* is double-select really necessary? */
if (ap->device[1].class != ATA_DEV_NONE)
ap->ops->dev_select(ap, 1);
if (ap->device[0].class != ATA_DEV_NONE)
ap->ops->dev_select(ap, 0);
/* if no devices were detected, disable this port */
if ((ap->device[0].class == ATA_DEV_NONE) &&
(ap->device[1].class == ATA_DEV_NONE))
goto err_out;
if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
/* set up device control for ATA_FLAG_SATA_RESET */
if (ap->flags & ATA_FLAG_MMIO)
writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
else
outb(ap->ctl, ioaddr->ctl_addr);
}
DPRINTK("EXIT\n");
return;
err_out:
printk(KERN_ERR "ata%u: disabling port\n", ap->id);
ap->ops->port_disable(ap);
DPRINTK("EXIT\n");
}
static void ata_pr_blacklisted(const struct ata_port *ap,
const struct ata_device *dev)
{
printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
ap->id, dev->devno);
}
static const char * const ata_dma_blacklist [] = {
"WDC AC11000H",
"WDC AC22100H",
"WDC AC32500H",
"WDC AC33100H",
"WDC AC31600H",
"WDC AC32100H",
"WDC AC23200L",
"Compaq CRD-8241B",
"CRD-8400B",
"CRD-8480B",
"CRD-8482B",
"CRD-84",
"SanDisk SDP3B",
"SanDisk SDP3B-64",
"SANYO CD-ROM CRD",
"HITACHI CDR-8",
"HITACHI CDR-8335",
"HITACHI CDR-8435",
"Toshiba CD-ROM XM-6202B",
"TOSHIBA CD-ROM XM-1702BC",
"CD-532E-A",
"E-IDE CD-ROM CR-840",
"CD-ROM Drive/F5A",
"WPI CDD-820",
"SAMSUNG CD-ROM SC-148C",
"SAMSUNG CD-ROM SC",
"SanDisk SDP3B-64",
"ATAPI CD-ROM DRIVE 40X MAXIMUM",
"_NEC DV5800A",
};
static int ata_dma_blacklisted(const struct ata_device *dev)
{
unsigned char model_num[40];
char *s;
unsigned int len;
int i;
ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
sizeof(model_num));
s = &model_num[0];
len = strnlen(s, sizeof(model_num));
/* ATAPI specifies that empty space is blank-filled; remove blanks */
while ((len > 0) && (s[len - 1] == ' ')) {
len--;
s[len] = 0;
}
for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
if (!strncmp(ata_dma_blacklist[i], s, len))
return 1;
return 0;
}
static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
{
const struct ata_device *master, *slave;
unsigned int mask;
master = &ap->device[0];
slave = &ap->device[1];
assert (ata_dev_present(master) || ata_dev_present(slave));
if (shift == ATA_SHIFT_UDMA) {
mask = ap->udma_mask;
if (ata_dev_present(master)) {
mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
if (ata_dma_blacklisted(master)) {
mask = 0;
ata_pr_blacklisted(ap, master);
}
}
if (ata_dev_present(slave)) {
mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
if (ata_dma_blacklisted(slave)) {
mask = 0;
ata_pr_blacklisted(ap, slave);
}
}
}
else if (shift == ATA_SHIFT_MWDMA) {
mask = ap->mwdma_mask;
if (ata_dev_present(master)) {
mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
if (ata_dma_blacklisted(master)) {
mask = 0;
ata_pr_blacklisted(ap, master);
}
}
if (ata_dev_present(slave)) {
mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
if (ata_dma_blacklisted(slave)) {
mask = 0;
ata_pr_blacklisted(ap, slave);
}
}
}
else if (shift == ATA_SHIFT_PIO) {
mask = ap->pio_mask;
if (ata_dev_present(master)) {
/* spec doesn't return explicit support for
* PIO0-2, so we fake it
*/
u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
tmp_mode <<= 3;
tmp_mode |= 0x7;
mask &= tmp_mode;
}
if (ata_dev_present(slave)) {
/* spec doesn't return explicit support for
* PIO0-2, so we fake it
*/
u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
tmp_mode <<= 3;
tmp_mode |= 0x7;
mask &= tmp_mode;
}
}
else {
mask = 0xffffffff; /* shut up compiler warning */
BUG();
}
return mask;
}
/* find greatest bit */
static int fgb(u32 bitmap)
{
unsigned int i;
int x = -1;
for (i = 0; i < 32; i++)
if (bitmap & (1 << i))
x = i;
return x;
}
/**
* ata_choose_xfer_mode - attempt to find best transfer mode
* @ap: Port for which an xfer mode will be selected
* @xfer_mode_out: (output) SET FEATURES - XFER MODE code
* @xfer_shift_out: (output) bit shift that selects this mode
*
* Based on host and device capabilities, determine the
* maximum transfer mode that is amenable to all.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* Zero on success, negative on error.
*/
static int ata_choose_xfer_mode(const struct ata_port *ap,
u8 *xfer_mode_out,
unsigned int *xfer_shift_out)
{
unsigned int mask, shift;
int x, i;
for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
shift = xfer_mode_classes[i].shift;
mask = ata_get_mode_mask(ap, shift);
x = fgb(mask);
if (x >= 0) {
*xfer_mode_out = xfer_mode_classes[i].base + x;
*xfer_shift_out = shift;
return 0;
}
}
return -1;
}
/**
* ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
* @ap: Port associated with device @dev
* @dev: Device to which command will be sent
*
* Issue SET FEATURES - XFER MODE command to device @dev
* on port @ap.
*
* LOCKING:
* PCI/etc. bus probe sem.
*/
static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
{
struct ata_taskfile tf;
/* set up set-features taskfile */
DPRINTK("set features - xfer mode\n");
ata_tf_init(ap, &tf, dev->devno);
tf.command = ATA_CMD_SET_FEATURES;
tf.feature = SETFEATURES_XFER;
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_NODATA;
tf.nsect = dev->xfer_mode;
if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
ap->id);
ata_port_disable(ap);
}
DPRINTK("EXIT\n");
}
/**
* ata_dev_reread_id - Reread the device identify device info
* @ap: port where the device is
* @dev: device to reread the identify device info
*
* LOCKING:
*/
static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
{
struct ata_taskfile tf;
ata_tf_init(ap, &tf, dev->devno);
if (dev->class == ATA_DEV_ATA) {
tf.command = ATA_CMD_ID_ATA;
DPRINTK("do ATA identify\n");
} else {
tf.command = ATA_CMD_ID_ATAPI;
DPRINTK("do ATAPI identify\n");
}
tf.flags |= ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_PIO;
if (ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
dev->id, sizeof(dev->id)))
goto err_out;
swap_buf_le16(dev->id, ATA_ID_WORDS);
ata_dump_id(dev);
DPRINTK("EXIT\n");
return;
err_out:
printk(KERN_ERR "ata%u: failed to reread ID, disabled\n", ap->id);
ata_port_disable(ap);
}
/**
* ata_dev_init_params - Issue INIT DEV PARAMS command
* @ap: Port associated with device @dev
* @dev: Device to which command will be sent
*
* LOCKING:
*/
static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
{
struct ata_taskfile tf;
u16 sectors = dev->id[6];
u16 heads = dev->id[3];
/* Number of sectors per track 1-255. Number of heads 1-16 */
if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
return;
/* set up init dev params taskfile */
DPRINTK("init dev params \n");
ata_tf_init(ap, &tf, dev->devno);
tf.command = ATA_CMD_INIT_DEV_PARAMS;
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_NODATA;
tf.nsect = sectors;
tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
printk(KERN_ERR "ata%u: failed to init parameters, disabled\n",
ap->id);
ata_port_disable(ap);
}
DPRINTK("EXIT\n");
}
/**
* ata_sg_clean - Unmap DMA memory associated with command
* @qc: Command containing DMA memory to be released
*
* Unmap all mapped DMA memory associated with this command.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
static void ata_sg_clean(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct scatterlist *sg = qc->__sg;
int dir = qc->dma_dir;
void *pad_buf = NULL;
assert(qc->flags & ATA_QCFLAG_DMAMAP);
assert(sg != NULL);
if (qc->flags & ATA_QCFLAG_SINGLE)
assert(qc->n_elem == 1);
VPRINTK("unmapping %u sg elements\n", qc->n_elem);
/* if we padded the buffer out to 32-bit bound, and data
* xfer direction is from-device, we must copy from the
* pad buffer back into the supplied buffer
*/
if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
if (qc->flags & ATA_QCFLAG_SG) {
if (qc->n_elem)
dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
/* restore last sg */
sg[qc->orig_n_elem - 1].length += qc->pad_len;
if (pad_buf) {
struct scatterlist *psg = &qc->pad_sgent;
void *addr = kmap_atomic(psg->page, KM_IRQ0);
memcpy(addr + psg->offset, pad_buf, qc->pad_len);
kunmap_atomic(addr, KM_IRQ0);
}
} else {
if (sg_dma_len(&sg[0]) > 0)
dma_unmap_single(ap->host_set->dev,
sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
dir);
/* restore sg */
sg->length += qc->pad_len;
if (pad_buf)
memcpy(qc->buf_virt + sg->length - qc->pad_len,
pad_buf, qc->pad_len);
}
qc->flags &= ~ATA_QCFLAG_DMAMAP;
qc->__sg = NULL;
}
/**
* ata_fill_sg - Fill PCI IDE PRD table
* @qc: Metadata associated with taskfile to be transferred
*
* Fill PCI IDE PRD (scatter-gather) table with segments
* associated with the current disk command.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
*/
static void ata_fill_sg(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct scatterlist *sg;
unsigned int idx;
assert(qc->__sg != NULL);
assert(qc->n_elem > 0);
idx = 0;
ata_for_each_sg(sg, qc) {
u32 addr, offset;
u32 sg_len, len;
/* determine if physical DMA addr spans 64K boundary.
* Note h/w doesn't support 64-bit, so we unconditionally
* truncate dma_addr_t to u32.
*/
addr = (u32) sg_dma_address(sg);
sg_len = sg_dma_len(sg);
while (sg_len) {
offset = addr & 0xffff;
len = sg_len;
if ((offset + sg_len) > 0x10000)
len = 0x10000 - offset;
ap->prd[idx].addr = cpu_to_le32(addr);
ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
idx++;
sg_len -= len;
addr += len;
}
}
if (idx)
ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
}
/**
* ata_check_atapi_dma - Check whether ATAPI DMA can be supported
* @qc: Metadata associated with taskfile to check
*
* Allow low-level driver to filter ATA PACKET commands, returning
* a status indicating whether or not it is OK to use DMA for the
* supplied PACKET command.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS: 0 when ATAPI DMA can be used
* nonzero otherwise
*/
int ata_check_atapi_dma(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
int rc = 0; /* Assume ATAPI DMA is OK by default */
if (ap->ops->check_atapi_dma)
rc = ap->ops->check_atapi_dma(qc);
return rc;
}
/**
* ata_qc_prep - Prepare taskfile for submission
* @qc: Metadata associated with taskfile to be prepared
*
* Prepare ATA taskfile for submission.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_qc_prep(struct ata_queued_cmd *qc)
{
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
return;
ata_fill_sg(qc);
}
/**
* ata_sg_init_one - Associate command with memory buffer
* @qc: Command to be associated
* @buf: Memory buffer
* @buflen: Length of memory buffer, in bytes.
*
* Initialize the data-related elements of queued_cmd @qc
* to point to a single memory buffer, @buf of byte length @buflen.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
{
struct scatterlist *sg;
qc->flags |= ATA_QCFLAG_SINGLE;
memset(&qc->sgent, 0, sizeof(qc->sgent));
qc->__sg = &qc->sgent;
qc->n_elem = 1;
qc->orig_n_elem = 1;
qc->buf_virt = buf;
sg = qc->__sg;
sg_init_one(sg, buf, buflen);
}
/**
* ata_sg_init - Associate command with scatter-gather table.
* @qc: Command to be associated
* @sg: Scatter-gather table.
* @n_elem: Number of elements in s/g table.
*
* Initialize the data-related elements of queued_cmd @qc
* to point to a scatter-gather table @sg, containing @n_elem
* elements.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
unsigned int n_elem)
{
qc->flags |= ATA_QCFLAG_SG;
qc->__sg = sg;
qc->n_elem = n_elem;
qc->orig_n_elem = n_elem;
}
/**
* ata_sg_setup_one - DMA-map the memory buffer associated with a command.
* @qc: Command with memory buffer to be mapped.
*
* DMA-map the memory buffer associated with queued_cmd @qc.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Zero on success, negative on error.
*/
static int ata_sg_setup_one(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
int dir = qc->dma_dir;
struct scatterlist *sg = qc->__sg;
dma_addr_t dma_address;
/* we must lengthen transfers to end on a 32-bit boundary */
qc->pad_len = sg->length & 3;
if (qc->pad_len) {
void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
struct scatterlist *psg = &qc->pad_sgent;
assert(qc->dev->class == ATA_DEV_ATAPI);
memset(pad_buf, 0, ATA_DMA_PAD_SZ);
if (qc->tf.flags & ATA_TFLAG_WRITE)
memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
qc->pad_len);
sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
sg_dma_len(psg) = ATA_DMA_PAD_SZ;
/* trim sg */
sg->length -= qc->pad_len;
DPRINTK("padding done, sg->length=%u pad_len=%u\n",
sg->length, qc->pad_len);
}
if (!sg->length) {
sg_dma_address(sg) = 0;
goto skip_map;
}
dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
sg->length, dir);
if (dma_mapping_error(dma_address)) {
/* restore sg */
sg->length += qc->pad_len;
return -1;
}
sg_dma_address(sg) = dma_address;
skip_map:
sg_dma_len(sg) = sg->length;
DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
return 0;
}
/**
* ata_sg_setup - DMA-map the scatter-gather table associated with a command.
* @qc: Command with scatter-gather table to be mapped.
*
* DMA-map the scatter-gather table associated with queued_cmd @qc.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Zero on success, negative on error.
*
*/
static int ata_sg_setup(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct scatterlist *sg = qc->__sg;
struct scatterlist *lsg = &sg[qc->n_elem - 1];
int n_elem, pre_n_elem, dir, trim_sg = 0;
VPRINTK("ENTER, ata%u\n", ap->id);
assert(qc->flags & ATA_QCFLAG_SG);
/* we must lengthen transfers to end on a 32-bit boundary */
qc->pad_len = lsg->length & 3;
if (qc->pad_len) {
void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
struct scatterlist *psg = &qc->pad_sgent;
unsigned int offset;
assert(qc->dev->class == ATA_DEV_ATAPI);
memset(pad_buf, 0, ATA_DMA_PAD_SZ);
/*
* psg->page/offset are used to copy to-be-written
* data in this function or read data in ata_sg_clean.
*/
offset = lsg->offset + lsg->length - qc->pad_len;
psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
psg->offset = offset_in_page(offset);
if (qc->tf.flags & ATA_TFLAG_WRITE) {
void *addr = kmap_atomic(psg->page, KM_IRQ0);
memcpy(pad_buf, addr + psg->offset, qc->pad_len);
kunmap_atomic(addr, KM_IRQ0);
}
sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
sg_dma_len(psg) = ATA_DMA_PAD_SZ;
/* trim last sg */
lsg->length -= qc->pad_len;
if (lsg->length == 0)
trim_sg = 1;
DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
qc->n_elem - 1, lsg->length, qc->pad_len);
}
pre_n_elem = qc->n_elem;
if (trim_sg && pre_n_elem)
pre_n_elem--;
if (!pre_n_elem) {
n_elem = 0;
goto skip_map;
}
dir = qc->dma_dir;
n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
if (n_elem < 1) {
/* restore last sg */
lsg->length += qc->pad_len;
return -1;
}
DPRINTK("%d sg elements mapped\n", n_elem);
skip_map:
qc->n_elem = n_elem;
return 0;
}
/**
* ata_poll_qc_complete - turn irq back on and finish qc
* @qc: Command to complete
* @err_mask: ATA status register content
*
* LOCKING:
* None. (grabs host lock)
*/
void ata_poll_qc_complete(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned long flags;
spin_lock_irqsave(&ap->host_set->lock, flags);
ap->flags &= ~ATA_FLAG_NOINTR;
ata_irq_on(ap);
ata_qc_complete(qc);
spin_unlock_irqrestore(&ap->host_set->lock, flags);
}
/**
* ata_pio_poll -
* @ap: the target ata_port
*
* LOCKING:
* None. (executing in kernel thread context)
*
* RETURNS:
* timeout value to use
*/
static unsigned long ata_pio_poll(struct ata_port *ap)
{
struct ata_queued_cmd *qc;
u8 status;
unsigned int poll_state = HSM_ST_UNKNOWN;
unsigned int reg_state = HSM_ST_UNKNOWN;
qc = ata_qc_from_tag(ap, ap->active_tag);
assert(qc != NULL);
switch (ap->hsm_task_state) {
case HSM_ST:
case HSM_ST_POLL:
poll_state = HSM_ST_POLL;
reg_state = HSM_ST;
break;
case HSM_ST_LAST:
case HSM_ST_LAST_POLL:
poll_state = HSM_ST_LAST_POLL;
reg_state = HSM_ST_LAST;
break;
default:
BUG();
break;
}
status = ata_chk_status(ap);
if (status & ATA_BUSY) {
if (time_after(jiffies, ap->pio_task_timeout)) {
qc->err_mask |= AC_ERR_ATA_BUS;
ap->hsm_task_state = HSM_ST_TMOUT;
return 0;
}
ap->hsm_task_state = poll_state;
return ATA_SHORT_PAUSE;
}
ap->hsm_task_state = reg_state;
return 0;
}
/**
* ata_pio_complete - check if drive is busy or idle
* @ap: the target ata_port
*
* LOCKING:
* None. (executing in kernel thread context)
*
* RETURNS:
* Non-zero if qc completed, zero otherwise.
*/
static int ata_pio_complete (struct ata_port *ap)
{
struct ata_queued_cmd *qc;
u8 drv_stat;
/*
* This is purely heuristic. This is a fast path. Sometimes when
* we enter, BSY will be cleared in a chk-status or two. If not,
* the drive is probably seeking or something. Snooze for a couple
* msecs, then chk-status again. If still busy, fall back to
* HSM_ST_POLL state.
*/
drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
if (drv_stat & ATA_BUSY) {
msleep(2);
drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
if (drv_stat & ATA_BUSY) {
ap->hsm_task_state = HSM_ST_LAST_POLL;
ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
return 0;
}
}
qc = ata_qc_from_tag(ap, ap->active_tag);
assert(qc != NULL);
drv_stat = ata_wait_idle(ap);
if (!ata_ok(drv_stat)) {
qc->err_mask |= __ac_err_mask(drv_stat);
ap->hsm_task_state = HSM_ST_ERR;
return 0;
}
ap->hsm_task_state = HSM_ST_IDLE;
assert(qc->err_mask == 0);
ata_poll_qc_complete(qc);
/* another command may start at this point */
return 1;
}
/**
* swap_buf_le16 - swap halves of 16-words in place
* @buf: Buffer to swap
* @buf_words: Number of 16-bit words in buffer.
*
* Swap halves of 16-bit words if needed to convert from
* little-endian byte order to native cpu byte order, or
* vice-versa.
*
* LOCKING:
* Inherited from caller.
*/
void swap_buf_le16(u16 *buf, unsigned int buf_words)
{
#ifdef __BIG_ENDIAN
unsigned int i;
for (i = 0; i < buf_words; i++)
buf[i] = le16_to_cpu(buf[i]);
#endif /* __BIG_ENDIAN */
}
/**
* ata_mmio_data_xfer - Transfer data by MMIO
* @ap: port to read/write
* @buf: data buffer
* @buflen: buffer length
* @write_data: read/write
*
* Transfer data from/to the device data register by MMIO.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
unsigned int buflen, int write_data)
{
unsigned int i;
unsigned int words = buflen >> 1;
u16 *buf16 = (u16 *) buf;
void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
/* Transfer multiple of 2 bytes */
if (write_data) {
for (i = 0; i < words; i++)
writew(le16_to_cpu(buf16[i]), mmio);
} else {
for (i = 0; i < words; i++)
buf16[i] = cpu_to_le16(readw(mmio));
}
/* Transfer trailing 1 byte, if any. */
if (unlikely(buflen & 0x01)) {
u16 align_buf[1] = { 0 };
unsigned char *trailing_buf = buf + buflen - 1;
if (write_data) {
memcpy(align_buf, trailing_buf, 1);
writew(le16_to_cpu(align_buf[0]), mmio);
} else {
align_buf[0] = cpu_to_le16(readw(mmio));
memcpy(trailing_buf, align_buf, 1);
}
}
}
/**
* ata_pio_data_xfer - Transfer data by PIO
* @ap: port to read/write
* @buf: data buffer
* @buflen: buffer length
* @write_data: read/write
*
* Transfer data from/to the device data register by PIO.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
unsigned int buflen, int write_data)
{
unsigned int words = buflen >> 1;
/* Transfer multiple of 2 bytes */
if (write_data)
outsw(ap->ioaddr.data_addr, buf, words);
else
insw(ap->ioaddr.data_addr, buf, words);
/* Transfer trailing 1 byte, if any. */
if (unlikely(buflen & 0x01)) {
u16 align_buf[1] = { 0 };
unsigned char *trailing_buf = buf + buflen - 1;
if (write_data) {
memcpy(align_buf, trailing_buf, 1);
outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
} else {
align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
memcpy(trailing_buf, align_buf, 1);
}
}
}
/**
* ata_data_xfer - Transfer data from/to the data register.
* @ap: port to read/write
* @buf: data buffer
* @buflen: buffer length
* @do_write: read/write
*
* Transfer data from/to the device data register.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
unsigned int buflen, int do_write)
{
if (ap->flags & ATA_FLAG_MMIO)
ata_mmio_data_xfer(ap, buf, buflen, do_write);
else
ata_pio_data_xfer(ap, buf, buflen, do_write);
}
/**
* ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
* @qc: Command on going
*
* Transfer ATA_SECT_SIZE of data from/to the ATA device.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_pio_sector(struct ata_queued_cmd *qc)
{
int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
struct scatterlist *sg = qc->__sg;
struct ata_port *ap = qc->ap;
struct page *page;
unsigned int offset;
unsigned char *buf;
if (qc->cursect == (qc->nsect - 1))
ap->hsm_task_state = HSM_ST_LAST;
page = sg[qc->cursg].page;
offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
/* get the current page and offset */
page = nth_page(page, (offset >> PAGE_SHIFT));
offset %= PAGE_SIZE;
buf = kmap(page) + offset;
qc->cursect++;
qc->cursg_ofs++;
if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
qc->cursg++;
qc->cursg_ofs = 0;
}
DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
/* do the actual data transfer */
do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
kunmap(page);
}
/**
* __atapi_pio_bytes - Transfer data from/to the ATAPI device.
* @qc: Command on going
* @bytes: number of bytes
*
* Transfer Transfer data from/to the ATAPI device.
*
* LOCKING:
* Inherited from caller.
*
*/
static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
{
int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
struct scatterlist *sg = qc->__sg;
struct ata_port *ap = qc->ap;
struct page *page;
unsigned char *buf;
unsigned int offset, count;
if (qc->curbytes + bytes >= qc->nbytes)
ap->hsm_task_state = HSM_ST_LAST;
next_sg:
if (unlikely(qc->cursg >= qc->n_elem)) {
/*
* The end of qc->sg is reached and the device expects
* more data to transfer. In order not to overrun qc->sg
* and fulfill length specified in the byte count register,
* - for read case, discard trailing data from the device
* - for write case, padding zero data to the device
*/
u16 pad_buf[1] = { 0 };
unsigned int words = bytes >> 1;
unsigned int i;
if (words) /* warning if bytes > 1 */
printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
ap->id, bytes);
for (i = 0; i < words; i++)
ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
ap->hsm_task_state = HSM_ST_LAST;
return;
}
sg = &qc->__sg[qc->cursg];
page = sg->page;
offset = sg->offset + qc->cursg_ofs;
/* get the current page and offset */
page = nth_page(page, (offset >> PAGE_SHIFT));
offset %= PAGE_SIZE;
/* don't overrun current sg */
count = min(sg->length - qc->cursg_ofs, bytes);
/* don't cross page boundaries */
count = min(count, (unsigned int)PAGE_SIZE - offset);
buf = kmap(page) + offset;
bytes -= count;
qc->curbytes += count;
qc->cursg_ofs += count;
if (qc->cursg_ofs == sg->length) {
qc->cursg++;
qc->cursg_ofs = 0;
}
DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
/* do the actual data transfer */
ata_data_xfer(ap, buf, count, do_write);
kunmap(page);
if (bytes)
goto next_sg;
}
/**
* atapi_pio_bytes - Transfer data from/to the ATAPI device.
* @qc: Command on going
*
* Transfer Transfer data from/to the ATAPI device.
*
* LOCKING:
* Inherited from caller.
*/
static void atapi_pio_bytes(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_device *dev = qc->dev;
unsigned int ireason, bc_lo, bc_hi, bytes;
int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
ap->ops->tf_read(ap, &qc->tf);
ireason = qc->tf.nsect;
bc_lo = qc->tf.lbam;
bc_hi = qc->tf.lbah;
bytes = (bc_hi << 8) | bc_lo;
/* shall be cleared to zero, indicating xfer of data */
if (ireason & (1 << 0))
goto err_out;
/* make sure transfer direction matches expected */
i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
if (do_write != i_write)
goto err_out;
__atapi_pio_bytes(qc, bytes);
return;
err_out:
printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
ap->id, dev->devno);
qc->err_mask |= AC_ERR_ATA_BUS;
ap->hsm_task_state = HSM_ST_ERR;
}
/**
* ata_pio_block - start PIO on a block
* @ap: the target ata_port
*
* LOCKING:
* None. (executing in kernel thread context)
*/
static void ata_pio_block(struct ata_port *ap)
{
struct ata_queued_cmd *qc;
u8 status;
/*
* This is purely heuristic. This is a fast path.
* Sometimes when we enter, BSY will be cleared in
* a chk-status or two. If not, the drive is probably seeking
* or something. Snooze for a couple msecs, then
* chk-status again. If still busy, fall back to
* HSM_ST_POLL state.
*/
status = ata_busy_wait(ap, ATA_BUSY, 5);
if (status & ATA_BUSY) {
msleep(2);
status = ata_busy_wait(ap, ATA_BUSY, 10);
if (status & ATA_BUSY) {
ap->hsm_task_state = HSM_ST_POLL;
ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
return;
}
}
qc = ata_qc_from_tag(ap, ap->active_tag);
assert(qc != NULL);
/* check error */
if (status & (ATA_ERR | ATA_DF)) {
qc->err_mask |= AC_ERR_DEV;
ap->hsm_task_state = HSM_ST_ERR;
return;
}
/* transfer data if any */
if (is_atapi_taskfile(&qc->tf)) {
/* DRQ=0 means no more data to transfer */
if ((status & ATA_DRQ) == 0) {
ap->hsm_task_state = HSM_ST_LAST;
return;
}
atapi_pio_bytes(qc);
} else {
/* handle BSY=0, DRQ=0 as error */
if ((status & ATA_DRQ) == 0) {
qc->err_mask |= AC_ERR_ATA_BUS;
ap->hsm_task_state = HSM_ST_ERR;
return;
}
ata_pio_sector(qc);
}
}
static void ata_pio_error(struct ata_port *ap)
{
struct ata_queued_cmd *qc;
printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
qc = ata_qc_from_tag(ap, ap->active_tag);
assert(qc != NULL);
/* make sure qc->err_mask is available to
* know what's wrong and recover
*/
assert(qc->err_mask);
ap->hsm_task_state = HSM_ST_IDLE;
ata_poll_qc_complete(qc);
}
static void ata_pio_task(void *_data)
{
struct ata_port *ap = _data;
unsigned long timeout;
int qc_completed;
fsm_start:
timeout = 0;
qc_completed = 0;
switch (ap->hsm_task_state) {
case HSM_ST_IDLE:
return;
case HSM_ST:
ata_pio_block(ap);
break;
case HSM_ST_LAST:
qc_completed = ata_pio_complete(ap);
break;
case HSM_ST_POLL:
case HSM_ST_LAST_POLL:
timeout = ata_pio_poll(ap);
break;
case HSM_ST_TMOUT:
case HSM_ST_ERR:
ata_pio_error(ap);
return;
}
if (timeout)
queue_delayed_work(ata_wq, &ap->pio_task, timeout);
else if (!qc_completed)
goto fsm_start;
}
/**
* ata_qc_timeout - Handle timeout of queued command
* @qc: Command that timed out
*
* Some part of the kernel (currently, only the SCSI layer)
* has noticed that the active command on port @ap has not
* completed after a specified length of time. Handle this
* condition by disabling DMA (if necessary) and completing
* transactions, with error if necessary.
*
* This also handles the case of the "lost interrupt", where
* for some reason (possibly hardware bug, possibly driver bug)
* an interrupt was not delivered to the driver, even though the
* transaction completed successfully.
*
* LOCKING:
* Inherited from SCSI layer (none, can sleep)
*/
static void ata_qc_timeout(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_host_set *host_set = ap->host_set;
u8 host_stat = 0, drv_stat;
unsigned long flags;
DPRINTK("ENTER\n");
spin_lock_irqsave(&host_set->lock, flags);
/* hack alert! We cannot use the supplied completion
* function from inside the ->eh_strategy_handler() thread.
* libata is the only user of ->eh_strategy_handler() in
* any kernel, so the default scsi_done() assumes it is
* not being called from the SCSI EH.
*/
qc->scsidone = scsi_finish_command;
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
case ATA_PROT_ATAPI_DMA:
host_stat = ap->ops->bmdma_status(ap);
/* before we do anything else, clear DMA-Start bit */
ap->ops->bmdma_stop(qc);
/* fall through */
default:
ata_altstatus(ap);
drv_stat = ata_chk_status(ap);
/* ack bmdma irq events */
ap->ops->irq_clear(ap);
printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
ap->id, qc->tf.command, drv_stat, host_stat);
/* complete taskfile transaction */
qc->err_mask |= ac_err_mask(drv_stat);
ata_qc_complete(qc);
break;
}
spin_unlock_irqrestore(&host_set->lock, flags);
DPRINTK("EXIT\n");
}
/**
* ata_eng_timeout - Handle timeout of queued command
* @ap: Port on which timed-out command is active
*
* Some part of the kernel (currently, only the SCSI layer)
* has noticed that the active command on port @ap has not
* completed after a specified length of time. Handle this
* condition by disabling DMA (if necessary) and completing
* transactions, with error if necessary.
*
* This also handles the case of the "lost interrupt", where
* for some reason (possibly hardware bug, possibly driver bug)
* an interrupt was not delivered to the driver, even though the
* transaction completed successfully.
*
* LOCKING:
* Inherited from SCSI layer (none, can sleep)
*/
void ata_eng_timeout(struct ata_port *ap)
{
struct ata_queued_cmd *qc;
DPRINTK("ENTER\n");
qc = ata_qc_from_tag(ap, ap->active_tag);
if (qc)
ata_qc_timeout(qc);
else {
printk(KERN_ERR "ata%u: BUG: timeout without command\n",
ap->id);
goto out;
}
out:
DPRINTK("EXIT\n");
}
/**
* ata_qc_new - Request an available ATA command, for queueing
* @ap: Port associated with device @dev
* @dev: Device from whom we request an available command structure
*
* LOCKING:
* None.
*/
static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
{
struct ata_queued_cmd *qc = NULL;
unsigned int i;
for (i = 0; i < ATA_MAX_QUEUE; i++)
if (!test_and_set_bit(i, &ap->qactive)) {
qc = ata_qc_from_tag(ap, i);
break;
}
if (qc)
qc->tag = i;
return qc;
}
/**
* ata_qc_new_init - Request an available ATA command, and initialize it
* @ap: Port associated with device @dev
* @dev: Device from whom we request an available command structure
*
* LOCKING:
* None.
*/
struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
struct ata_device *dev)
{
struct ata_queued_cmd *qc;
qc = ata_qc_new(ap);
if (qc) {
qc->scsicmd = NULL;
qc->ap = ap;
qc->dev = dev;
ata_qc_reinit(qc);
}
return qc;
}
static void __ata_qc_complete(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned int tag;
qc->flags = 0;
tag = qc->tag;
if (likely(ata_tag_valid(tag))) {
if (tag == ap->active_tag)
ap->active_tag = ATA_TAG_POISON;
qc->tag = ATA_TAG_POISON;
clear_bit(tag, &ap->qactive);
}
}
/**
* ata_qc_free - free unused ata_queued_cmd
* @qc: Command to complete
*
* Designed to free unused ata_queued_cmd object
* in case something prevents using it.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_qc_free(struct ata_queued_cmd *qc)
{
assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
__ata_qc_complete(qc);
}
/**
* ata_qc_complete - Complete an active ATA command
* @qc: Command to complete
* @err_mask: ATA Status register contents
*
* Indicate to the mid and upper layers that an ATA
* command has completed, with either an ok or not-ok status.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_qc_complete(struct ata_queued_cmd *qc)
{
int rc;
assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
assert(qc->flags & ATA_QCFLAG_ACTIVE);
if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
ata_sg_clean(qc);
/* atapi: mark qc as inactive to prevent the interrupt handler
* from completing the command twice later, before the error handler
* is called. (when rc != 0 and atapi request sense is needed)
*/
qc->flags &= ~ATA_QCFLAG_ACTIVE;
/* call completion callback */
rc = qc->complete_fn(qc);
/* if callback indicates not to complete command (non-zero),
* return immediately
*/
if (rc != 0)
return;
__ata_qc_complete(qc);
VPRINTK("EXIT\n");
}
static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
case ATA_PROT_ATAPI_DMA:
return 1;
case ATA_PROT_ATAPI:
case ATA_PROT_PIO:
case ATA_PROT_PIO_MULT:
if (ap->flags & ATA_FLAG_PIO_DMA)
return 1;
/* fall through */
default:
return 0;
}
/* never reached */
}
/**
* ata_qc_issue - issue taskfile to device
* @qc: command to issue to device
*
* Prepare an ATA command to submission to device.
* This includes mapping the data into a DMA-able
* area, filling in the S/G table, and finally
* writing the taskfile to hardware, starting the command.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Zero on success, negative on error.
*/
int ata_qc_issue(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
if (ata_should_dma_map(qc)) {
if (qc->flags & ATA_QCFLAG_SG) {
if (ata_sg_setup(qc))
goto err_out;
} else if (qc->flags & ATA_QCFLAG_SINGLE) {
if (ata_sg_setup_one(qc))
goto err_out;
}
} else {
qc->flags &= ~ATA_QCFLAG_DMAMAP;
}
ap->ops->qc_prep(qc);
qc->ap->active_tag = qc->tag;
qc->flags |= ATA_QCFLAG_ACTIVE;
return ap->ops->qc_issue(qc);
err_out:
return -1;
}
/**
* ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
* @qc: command to issue to device
*
* Using various libata functions and hooks, this function
* starts an ATA command. ATA commands are grouped into
* classes called "protocols", and issuing each type of protocol
* is slightly different.
*
* May be used as the qc_issue() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Zero on success, negative on error.
*/
int ata_qc_issue_prot(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
ata_dev_select(ap, qc->dev->devno, 1, 0);
switch (qc->tf.protocol) {
case ATA_PROT_NODATA:
ata_tf_to_host(ap, &qc->tf);
break;
case ATA_PROT_DMA:
ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
ap->ops->bmdma_setup(qc); /* set up bmdma */
ap->ops->bmdma_start(qc); /* initiate bmdma */
break;
case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
ata_qc_set_polling(qc);
ata_tf_to_host(ap, &qc->tf);
ap->hsm_task_state = HSM_ST;
queue_work(ata_wq, &ap->pio_task);
break;
case ATA_PROT_ATAPI:
ata_qc_set_polling(qc);
ata_tf_to_host(ap, &qc->tf);
queue_work(ata_wq, &ap->packet_task);
break;
case ATA_PROT_ATAPI_NODATA:
ap->flags |= ATA_FLAG_NOINTR;
ata_tf_to_host(ap, &qc->tf);
queue_work(ata_wq, &ap->packet_task);
break;
case ATA_PROT_ATAPI_DMA:
ap->flags |= ATA_FLAG_NOINTR;
ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
ap->ops->bmdma_setup(qc); /* set up bmdma */
queue_work(ata_wq, &ap->packet_task);
break;
default:
WARN_ON(1);
return -1;
}
return 0;
}
/**
* ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
* @qc: Info associated with this ATA transaction.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
u8 dmactl;
void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
/* load PRD table addr. */
mb(); /* make sure PRD table writes are visible to controller */
writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
/* specify data direction, triple-check start bit is clear */
dmactl = readb(mmio + ATA_DMA_CMD);
dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
if (!rw)
dmactl |= ATA_DMA_WR;
writeb(dmactl, mmio + ATA_DMA_CMD);
/* issue r/w command */
ap->ops->exec_command(ap, &qc->tf);
}
/**
* ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
* @qc: Info associated with this ATA transaction.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
u8 dmactl;
/* start host DMA transaction */
dmactl = readb(mmio + ATA_DMA_CMD);
writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
/* Strictly, one may wish to issue a readb() here, to
* flush the mmio write. However, control also passes
* to the hardware at this point, and it will interrupt
* us when we are to resume control. So, in effect,
* we don't care when the mmio write flushes.
* Further, a read of the DMA status register _immediately_
* following the write may not be what certain flaky hardware
* is expected, so I think it is best to not add a readb()
* without first all the MMIO ATA cards/mobos.
* Or maybe I'm just being paranoid.
*/
}
/**
* ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
* @qc: Info associated with this ATA transaction.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
u8 dmactl;
/* load PRD table addr. */
outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
/* specify data direction, triple-check start bit is clear */
dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
if (!rw)
dmactl |= ATA_DMA_WR;
outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
/* issue r/w command */
ap->ops->exec_command(ap, &qc->tf);
}
/**
* ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
* @qc: Info associated with this ATA transaction.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
u8 dmactl;
/* start host DMA transaction */
dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
outb(dmactl | ATA_DMA_START,
ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
}
/**
* ata_bmdma_start - Start a PCI IDE BMDMA transaction
* @qc: Info associated with this ATA transaction.
*
* Writes the ATA_DMA_START flag to the DMA command register.
*
* May be used as the bmdma_start() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_bmdma_start(struct ata_queued_cmd *qc)
{
if (qc->ap->flags & ATA_FLAG_MMIO)
ata_bmdma_start_mmio(qc);
else
ata_bmdma_start_pio(qc);
}
/**
* ata_bmdma_setup - Set up PCI IDE BMDMA transaction
* @qc: Info associated with this ATA transaction.
*
* Writes address of PRD table to device's PRD Table Address
* register, sets the DMA control register, and calls
* ops->exec_command() to start the transfer.
*
* May be used as the bmdma_setup() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_bmdma_setup(struct ata_queued_cmd *qc)
{
if (qc->ap->flags & ATA_FLAG_MMIO)
ata_bmdma_setup_mmio(qc);
else
ata_bmdma_setup_pio(qc);
}
/**
* ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
* @ap: Port associated with this ATA transaction.
*
* Clear interrupt and error flags in DMA status register.
*
* May be used as the irq_clear() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_bmdma_irq_clear(struct ata_port *ap)
{
if (ap->flags & ATA_FLAG_MMIO) {
void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
writeb(readb(mmio), mmio);
} else {
unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
outb(inb(addr), addr);
}
}
/**
* ata_bmdma_status - Read PCI IDE BMDMA status
* @ap: Port associated with this ATA transaction.
*
* Read and return BMDMA status register.
*
* May be used as the bmdma_status() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
u8 ata_bmdma_status(struct ata_port *ap)
{
u8 host_stat;
if (ap->flags & ATA_FLAG_MMIO) {
void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
host_stat = readb(mmio + ATA_DMA_STATUS);
} else
host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
return host_stat;
}
/**
* ata_bmdma_stop - Stop PCI IDE BMDMA transfer
* @qc: Command we are ending DMA for
*
* Clears the ATA_DMA_START flag in the dma control register
*
* May be used as the bmdma_stop() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_bmdma_stop(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
if (ap->flags & ATA_FLAG_MMIO) {
void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
/* clear start/stop bit */
writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
mmio + ATA_DMA_CMD);
} else {
/* clear start/stop bit */
outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
}
/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
ata_altstatus(ap); /* dummy read */
}
/**
* ata_host_intr - Handle host interrupt for given (port, task)
* @ap: Port on which interrupt arrived (possibly...)
* @qc: Taskfile currently active in engine
*
* Handle host interrupt for given queued command. Currently,
* only DMA interrupts are handled. All other commands are
* handled via polling with interrupts disabled (nIEN bit).
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* One if interrupt was handled, zero if not (shared irq).
*/
inline unsigned int ata_host_intr (struct ata_port *ap,
struct ata_queued_cmd *qc)
{
u8 status, host_stat;
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
case ATA_PROT_ATAPI_DMA:
case ATA_PROT_ATAPI:
/* check status of DMA engine */
host_stat = ap->ops->bmdma_status(ap);
VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
/* if it's not our irq... */
if (!(host_stat & ATA_DMA_INTR))
goto idle_irq;
/* before we do anything else, clear DMA-Start bit */
ap->ops->bmdma_stop(qc);
/* fall through */
case ATA_PROT_ATAPI_NODATA:
case ATA_PROT_NODATA:
/* check altstatus */
status = ata_altstatus(ap);
if (status & ATA_BUSY)
goto idle_irq;
/* check main status, clearing INTRQ */
status = ata_chk_status(ap);
if (unlikely(status & ATA_BUSY))
goto idle_irq;
DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
ap->id, qc->tf.protocol, status);
/* ack bmdma irq events */
ap->ops->irq_clear(ap);
/* complete taskfile transaction */
qc->err_mask |= ac_err_mask(status);
ata_qc_complete(qc);
break;
default:
goto idle_irq;
}
return 1; /* irq handled */
idle_irq:
ap->stats.idle_irq++;
#ifdef ATA_IRQ_TRAP
if ((ap->stats.idle_irq % 1000) == 0) {
handled = 1;
ata_irq_ack(ap, 0); /* debug trap */
printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
}
#endif
return 0; /* irq not handled */
}
/**
* ata_interrupt - Default ATA host interrupt handler
* @irq: irq line (unused)
* @dev_instance: pointer to our ata_host_set information structure
* @regs: unused
*
* Default interrupt handler for PCI IDE devices. Calls
* ata_host_intr() for each port that is not disabled.
*
* LOCKING:
* Obtains host_set lock during operation.
*
* RETURNS:
* IRQ_NONE or IRQ_HANDLED.
*/
irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
{
struct ata_host_set *host_set = dev_instance;
unsigned int i;
unsigned int handled = 0;
unsigned long flags;
/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
spin_lock_irqsave(&host_set->lock, flags);
for (i = 0; i < host_set->n_ports; i++) {
struct ata_port *ap;
ap = host_set->ports[i];
if (ap &&
!(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
struct ata_queued_cmd *qc;
qc = ata_qc_from_tag(ap, ap->active_tag);
if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
(qc->flags & ATA_QCFLAG_ACTIVE))
handled |= ata_host_intr(ap, qc);
}
}
spin_unlock_irqrestore(&host_set->lock, flags);
return IRQ_RETVAL(handled);
}
/**
* atapi_packet_task - Write CDB bytes to hardware
* @_data: Port to which ATAPI device is attached.
*
* When device has indicated its readiness to accept
* a CDB, this function is called. Send the CDB.
* If DMA is to be performed, exit immediately.
* Otherwise, we are in polling mode, so poll
* status under operation succeeds or fails.
*
* LOCKING:
* Kernel thread context (may sleep)
*/
static void atapi_packet_task(void *_data)
{
struct ata_port *ap = _data;
struct ata_queued_cmd *qc;
u8 status;
qc = ata_qc_from_tag(ap, ap->active_tag);
assert(qc != NULL);
assert(qc->flags & ATA_QCFLAG_ACTIVE);
/* sleep-wait for BSY to clear */
DPRINTK("busy wait\n");
if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
qc->err_mask |= AC_ERR_ATA_BUS;
goto err_out;
}
/* make sure DRQ is set */
status = ata_chk_status(ap);
if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
qc->err_mask |= AC_ERR_ATA_BUS;
goto err_out;
}
/* send SCSI cdb */
DPRINTK("send cdb\n");
assert(ap->cdb_len >= 12);
if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
unsigned long flags;
/* Once we're done issuing command and kicking bmdma,
* irq handler takes over. To not lose irq, we need
* to clear NOINTR flag before sending cdb, but
* interrupt handler shouldn't be invoked before we're
* finished. Hence, the following locking.
*/
spin_lock_irqsave(&ap->host_set->lock, flags);
ap->flags &= ~ATA_FLAG_NOINTR;
ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
ap->ops->bmdma_start(qc); /* initiate bmdma */
spin_unlock_irqrestore(&ap->host_set->lock, flags);
} else {
ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
/* PIO commands are handled by polling */
ap->hsm_task_state = HSM_ST;
queue_work(ata_wq, &ap->pio_task);
}
return;
err_out:
ata_poll_qc_complete(qc);
}
/**
* ata_port_start - Set port up for dma.
* @ap: Port to initialize
*
* Called just after data structures for each port are
* initialized. Allocates space for PRD table.
*
* May be used as the port_start() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
/*
* Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
* without filling any other registers
*/
static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
u8 cmd)
{
struct ata_taskfile tf;
int err;
ata_tf_init(ap, &tf, dev->devno);
tf.command = cmd;
tf.flags |= ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_NODATA;
err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
if (err)
printk(KERN_ERR "%s: ata command failed: %d\n",
__FUNCTION__, err);
return err;
}
static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
{
u8 cmd;
if (!ata_try_flush_cache(dev))
return 0;
if (ata_id_has_flush_ext(dev->id))
cmd = ATA_CMD_FLUSH_EXT;
else
cmd = ATA_CMD_FLUSH;
return ata_do_simple_cmd(ap, dev, cmd);
}
static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
{
return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
}
static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
{
return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
}
/**
* ata_device_resume - wakeup a previously suspended devices
*
* Kick the drive back into action, by sending it an idle immediate
* command and making sure its transfer mode matches between drive
* and host.
*
*/
int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
{
if (ap->flags & ATA_FLAG_SUSPENDED) {
ap->flags &= ~ATA_FLAG_SUSPENDED;
ata_set_mode(ap);
}
if (!ata_dev_present(dev))
return 0;
if (dev->class == ATA_DEV_ATA)
ata_start_drive(ap, dev);
return 0;
}
/**
* ata_device_suspend - prepare a device for suspend
*
* Flush the cache on the drive, if appropriate, then issue a
* standbynow command.
*
*/
int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
{
if (!ata_dev_present(dev))
return 0;
if (dev->class == ATA_DEV_ATA)
ata_flush_cache(ap, dev);
ata_standby_drive(ap, dev);
ap->flags |= ATA_FLAG_SUSPENDED;
return 0;
}
int ata_port_start (struct ata_port *ap)
{
struct device *dev = ap->host_set->dev;
int rc;
ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
if (!ap->prd)
return -ENOMEM;
rc = ata_pad_alloc(ap, dev);
if (rc) {
dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
return rc;
}
DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
return 0;
}
/**
* ata_port_stop - Undo ata_port_start()
* @ap: Port to shut down
*
* Frees the PRD table.
*
* May be used as the port_stop() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
void ata_port_stop (struct ata_port *ap)
{
struct device *dev = ap->host_set->dev;
dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
ata_pad_free(ap, dev);
}
void ata_host_stop (struct ata_host_set *host_set)
{
if (host_set->mmio_base)
iounmap(host_set->mmio_base);
}
/**
* ata_host_remove - Unregister SCSI host structure with upper layers
* @ap: Port to unregister
* @do_unregister: 1 if we fully unregister, 0 to just stop the port
*
* LOCKING:
* Inherited from caller.
*/
static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
{
struct Scsi_Host *sh = ap->host;
DPRINTK("ENTER\n");
if (do_unregister)
scsi_remove_host(sh);
ap->ops->port_stop(ap);
}
/**
* ata_host_init - Initialize an ata_port structure
* @ap: Structure to initialize
* @host: associated SCSI mid-layer structure
* @host_set: Collection of hosts to which @ap belongs
* @ent: Probe information provided by low-level driver
* @port_no: Port number associated with this ata_port
*
* Initialize a new ata_port structure, and its associated
* scsi_host.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
struct ata_host_set *host_set,
const struct ata_probe_ent *ent, unsigned int port_no)
{
unsigned int i;
host->max_id = 16;
host->max_lun = 1;
host->max_channel = 1;
host->unique_id = ata_unique_id++;
host->max_cmd_len = 12;
ap->flags = ATA_FLAG_PORT_DISABLED;
ap->id = host->unique_id;
ap->host = host;
ap->ctl = ATA_DEVCTL_OBS;
ap->host_set = host_set;
ap->port_no = port_no;
ap->hard_port_no =
ent->legacy_mode ? ent->hard_port_no : port_no;
ap->pio_mask = ent->pio_mask;
ap->mwdma_mask = ent->mwdma_mask;
ap->udma_mask = ent->udma_mask;
ap->flags |= ent->host_flags;
ap->ops = ent->port_ops;
ap->cbl = ATA_CBL_NONE;
ap->active_tag = ATA_TAG_POISON;
ap->last_ctl = 0xFF;
INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
INIT_WORK(&ap->pio_task, ata_pio_task, ap);
for (i = 0; i < ATA_MAX_DEVICES; i++)
ap->device[i].devno = i;
#ifdef ATA_IRQ_TRAP
ap->stats.unhandled_irq = 1;
ap->stats.idle_irq = 1;
#endif
memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
}
/**
* ata_host_add - Attach low-level ATA driver to system
* @ent: Information provided by low-level driver
* @host_set: Collections of ports to which we add
* @port_no: Port number associated with this host
*
* Attach low-level ATA driver to system.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* New ata_port on success, for NULL on error.
*/
static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
struct ata_host_set *host_set,
unsigned int port_no)
{
struct Scsi_Host *host;
struct ata_port *ap;
int rc;
DPRINTK("ENTER\n");
host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
if (!host)
return NULL;
ap = (struct ata_port *) &host->hostdata[0];
ata_host_init(ap, host, host_set, ent, port_no);
rc = ap->ops->port_start(ap);
if (rc)
goto err_out;
return ap;
err_out:
scsi_host_put(host);
return NULL;
}
/**
* ata_device_add - Register hardware device with ATA and SCSI layers
* @ent: Probe information describing hardware device to be registered
*
* This function processes the information provided in the probe
* information struct @ent, allocates the necessary ATA and SCSI
* host information structures, initializes them, and registers
* everything with requisite kernel subsystems.
*
* This function requests irqs, probes the ATA bus, and probes
* the SCSI bus.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* Number of ports registered. Zero on error (no ports registered).
*/
int ata_device_add(const struct ata_probe_ent *ent)
{
unsigned int count = 0, i;
struct device *dev = ent->dev;
struct ata_host_set *host_set;
DPRINTK("ENTER\n");
/* alloc a container for our list of ATA ports (buses) */
host_set = kzalloc(sizeof(struct ata_host_set) +
(ent->n_ports * sizeof(void *)), GFP_KERNEL);
if (!host_set)
return 0;
spin_lock_init(&host_set->lock);
host_set->dev = dev;
host_set->n_ports = ent->n_ports;
host_set->irq = ent->irq;
host_set->mmio_base = ent->mmio_base;
host_set->private_data = ent->private_data;
host_set->ops = ent->port_ops;
/* register each port bound to this device */
for (i = 0; i < ent->n_ports; i++) {
struct ata_port *ap;
unsigned long xfer_mode_mask;
ap = ata_host_add(ent, host_set, i);
if (!ap)
goto err_out;
host_set->ports[i] = ap;
xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
(ap->mwdma_mask << ATA_SHIFT_MWDMA) |
(ap->pio_mask << ATA_SHIFT_PIO);
/* print per-port info to dmesg */
printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
"bmdma 0x%lX irq %lu\n",
ap->id,
ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
ata_mode_string(xfer_mode_mask),
ap->ioaddr.cmd_addr,
ap->ioaddr.ctl_addr,
ap->ioaddr.bmdma_addr,
ent->irq);
ata_chk_status(ap);
host_set->ops->irq_clear(ap);
count++;
}
if (!count)
goto err_free_ret;
/* obtain irq, that is shared between channels */
if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
DRV_NAME, host_set))
goto err_out;
/* perform each probe synchronously */
DPRINTK("probe begin\n");
for (i = 0; i < count; i++) {
struct ata_port *ap;
int rc;
ap = host_set->ports[i];
DPRINTK("ata%u: probe begin\n", ap->id);
rc = ata_bus_probe(ap);
DPRINTK("ata%u: probe end\n", ap->id);
if (rc) {
/* FIXME: do something useful here?
* Current libata behavior will
* tear down everything when
* the module is removed
* or the h/w is unplugged.
*/
}
rc = scsi_add_host(ap->host, dev);
if (rc) {
printk(KERN_ERR "ata%u: scsi_add_host failed\n",
ap->id);
/* FIXME: do something useful here */
/* FIXME: handle unconditional calls to
* scsi_scan_host and ata_host_remove, below,
* at the very least
*/
}
}
/* probes are done, now scan each port's disk(s) */
DPRINTK("probe begin\n");
for (i = 0; i < count; i++) {
struct ata_port *ap = host_set->ports[i];
ata_scsi_scan_host(ap);
}
dev_set_drvdata(dev, host_set);
VPRINTK("EXIT, returning %u\n", ent->n_ports);
return ent->n_ports; /* success */
err_out:
for (i = 0; i < count; i++) {
ata_host_remove(host_set->ports[i], 1);
scsi_host_put(host_set->ports[i]->host);
}
err_free_ret:
kfree(host_set);
VPRINTK("EXIT, returning 0\n");
return 0;
}
/**
* ata_host_set_remove - PCI layer callback for device removal
* @host_set: ATA host set that was removed
*
* Unregister all objects associated with this host set. Free those
* objects.
*
* LOCKING:
* Inherited from calling layer (may sleep).
*/
void ata_host_set_remove(struct ata_host_set *host_set)
{
struct ata_port *ap;
unsigned int i;
for (i = 0; i < host_set->n_ports; i++) {
ap = host_set->ports[i];
scsi_remove_host(ap->host);
}
free_irq(host_set->irq, host_set);
for (i = 0; i < host_set->n_ports; i++) {
ap = host_set->ports[i];
ata_scsi_release(ap->host);
if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
struct ata_ioports *ioaddr = &ap->ioaddr;
if (ioaddr->cmd_addr == 0x1f0)
release_region(0x1f0, 8);
else if (ioaddr->cmd_addr == 0x170)
release_region(0x170, 8);
}
scsi_host_put(ap->host);
}
if (host_set->ops->host_stop)
host_set->ops->host_stop(host_set);
kfree(host_set);
}
/**
* ata_scsi_release - SCSI layer callback hook for host unload
* @host: libata host to be unloaded
*
* Performs all duties necessary to shut down a libata port...
* Kill port kthread, disable port, and release resources.
*
* LOCKING:
* Inherited from SCSI layer.
*
* RETURNS:
* One.
*/
int ata_scsi_release(struct Scsi_Host *host)
{
struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
DPRINTK("ENTER\n");
ap->ops->port_disable(ap);
ata_host_remove(ap, 0);
DPRINTK("EXIT\n");
return 1;
}
/**
* ata_std_ports - initialize ioaddr with standard port offsets.
* @ioaddr: IO address structure to be initialized
*
* Utility function which initializes data_addr, error_addr,
* feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
* device_addr, status_addr, and command_addr to standard offsets
* relative to cmd_addr.
*
* Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
*/
void ata_std_ports(struct ata_ioports *ioaddr)
{
ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
}
static struct ata_probe_ent *
ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
{
struct ata_probe_ent *probe_ent;
probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
if (!probe_ent) {
printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
kobject_name(&(dev->kobj)));
return NULL;
}
INIT_LIST_HEAD(&probe_ent->node);
probe_ent->dev = dev;
probe_ent->sht = port->sht;
probe_ent->host_flags = port->host_flags;
probe_ent->pio_mask = port->pio_mask;
probe_ent->mwdma_mask = port->mwdma_mask;
probe_ent->udma_mask = port->udma_mask;
probe_ent->port_ops = port->port_ops;
return probe_ent;
}
#ifdef CONFIG_PCI
void ata_pci_host_stop (struct ata_host_set *host_set)
{
struct pci_dev *pdev = to_pci_dev(host_set->dev);
pci_iounmap(pdev, host_set->mmio_base);
}
/**
* ata_pci_init_native_mode - Initialize native-mode driver
* @pdev: pci device to be initialized
* @port: array[2] of pointers to port info structures.
* @ports: bitmap of ports present
*
* Utility function which allocates and initializes an
* ata_probe_ent structure for a standard dual-port
* PIO-based IDE controller. The returned ata_probe_ent
* structure can be passed to ata_device_add(). The returned
* ata_probe_ent structure should then be freed with kfree().
*
* The caller need only pass the address of the primary port, the
* secondary will be deduced automatically. If the device has non
* standard secondary port mappings this function can be called twice,
* once for each interface.
*/
struct ata_probe_ent *
ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
{
struct ata_probe_ent *probe_ent =
ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
int p = 0;
if (!probe_ent)
return NULL;
probe_ent->irq = pdev->irq;
probe_ent->irq_flags = SA_SHIRQ;
probe_ent->private_data = port[0]->private_data;
if (ports & ATA_PORT_PRIMARY) {
probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
probe_ent->port[p].altstatus_addr =
probe_ent->port[p].ctl_addr =
pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
ata_std_ports(&probe_ent->port[p]);
p++;
}
if (ports & ATA_PORT_SECONDARY) {
probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
probe_ent->port[p].altstatus_addr =
probe_ent->port[p].ctl_addr =
pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
ata_std_ports(&probe_ent->port[p]);
p++;
}
probe_ent->n_ports = p;
return probe_ent;
}
static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num)
{
struct ata_probe_ent *probe_ent;
probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port);
if (!probe_ent)
return NULL;
probe_ent->legacy_mode = 1;
probe_ent->n_ports = 1;
probe_ent->hard_port_no = port_num;
probe_ent->private_data = port->private_data;
switch(port_num)
{
case 0:
probe_ent->irq = 14;
probe_ent->port[0].cmd_addr = 0x1f0;
probe_ent->port[0].altstatus_addr =
probe_ent->port[0].ctl_addr = 0x3f6;
break;
case 1:
probe_ent->irq = 15;
probe_ent->port[0].cmd_addr = 0x170;
probe_ent->port[0].altstatus_addr =
probe_ent->port[0].ctl_addr = 0x376;
break;
}
probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
ata_std_ports(&probe_ent->port[0]);
return probe_ent;
}
/**
* ata_pci_init_one - Initialize/register PCI IDE host controller
* @pdev: Controller to be initialized
* @port_info: Information from low-level host driver
* @n_ports: Number of ports attached to host controller
*
* This is a helper function which can be called from a driver's
* xxx_init_one() probe function if the hardware uses traditional
* IDE taskfile registers.
*
* This function calls pci_enable_device(), reserves its register
* regions, sets the dma mask, enables bus master mode, and calls
* ata_device_add()
*
* LOCKING:
* Inherited from PCI layer (may sleep).
*
* RETURNS:
* Zero on success, negative on errno-based value on error.
*/
int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
unsigned int n_ports)
{
struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
struct ata_port_info *port[2];
u8 tmp8, mask;
unsigned int legacy_mode = 0;
int disable_dev_on_err = 1;
int rc;
DPRINTK("ENTER\n");
port[0] = port_info[0];
if (n_ports > 1)
port[1] = port_info[1];
else
port[1] = port[0];
if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
&& (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
/* TODO: What if one channel is in native mode ... */
pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
mask = (1 << 2) | (1 << 0);
if ((tmp8 & mask) != mask)
legacy_mode = (1 << 3);
}
/* FIXME... */
if ((!legacy_mode) && (n_ports > 2)) {
printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
n_ports = 2;
/* For now */
}
/* FIXME: Really for ATA it isn't safe because the device may be
multi-purpose and we want to leave it alone if it was already
enabled. Secondly for shared use as Arjan says we want refcounting
Checking dev->is_enabled is insufficient as this is not set at
boot for the primary video which is BIOS enabled
*/
rc = pci_enable_device(pdev);
if (rc)
return rc;
rc = pci_request_regions(pdev, DRV_NAME);
if (rc) {
disable_dev_on_err = 0;
goto err_out;
}
/* FIXME: Should use platform specific mappers for legacy port ranges */
if (legacy_mode) {
if (!request_region(0x1f0, 8, "libata")) {
struct resource *conflict, res;
res.start = 0x1f0;
res.end = 0x1f0 + 8 - 1;
conflict = ____request_resource(&ioport_resource, &res);
if (!strcmp(conflict->name, "libata"))
legacy_mode |= (1 << 0);
else {
disable_dev_on_err = 0;
printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
}
} else
legacy_mode |= (1 << 0);
if (!request_region(0x170, 8, "libata")) {
struct resource *conflict, res;
res.start = 0x170;
res.end = 0x170 + 8 - 1;
conflict = ____request_resource(&ioport_resource, &res);
if (!strcmp(conflict->name, "libata"))
legacy_mode |= (1 << 1);
else {
disable_dev_on_err = 0;
printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
}
} else
legacy_mode |= (1 << 1);
}
/* we have legacy mode, but all ports are unavailable */
if (legacy_mode == (1 << 3)) {
rc = -EBUSY;
goto err_out_regions;
}
rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
if (rc)
goto err_out_regions;
rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
if (rc)
goto err_out_regions;
if (legacy_mode) {
if (legacy_mode & (1 << 0))
probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0);
if (legacy_mode & (1 << 1))
probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1);
} else {
if (n_ports == 2)
probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
else
probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
}
if (!probe_ent && !probe_ent2) {
rc = -ENOMEM;
goto err_out_regions;
}
pci_set_master(pdev);
/* FIXME: check ata_device_add return */
if (legacy_mode) {
if (legacy_mode & (1 << 0))
ata_device_add(probe_ent);
if (legacy_mode & (1 << 1))
ata_device_add(probe_ent2);
} else
ata_device_add(probe_ent);
kfree(probe_ent);
kfree(probe_ent2);
return 0;
err_out_regions:
if (legacy_mode & (1 << 0))
release_region(0x1f0, 8);
if (legacy_mode & (1 << 1))
release_region(0x170, 8);
pci_release_regions(pdev);
err_out:
if (disable_dev_on_err)
pci_disable_device(pdev);
return rc;
}
/**
* ata_pci_remove_one - PCI layer callback for device removal
* @pdev: PCI device that was removed
*
* PCI layer indicates to libata via this hook that
* hot-unplug or module unload event has occurred.
* Handle this by unregistering all objects associated
* with this PCI device. Free those objects. Then finally
* release PCI resources and disable device.
*
* LOCKING:
* Inherited from PCI layer (may sleep).
*/
void ata_pci_remove_one (struct pci_dev *pdev)
{
struct device *dev = pci_dev_to_dev(pdev);
struct ata_host_set *host_set = dev_get_drvdata(dev);
ata_host_set_remove(host_set);
pci_release_regions(pdev);
pci_disable_device(pdev);
dev_set_drvdata(dev, NULL);
}
/* move to PCI subsystem */
int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
{
unsigned long tmp = 0;
switch (bits->width) {
case 1: {
u8 tmp8 = 0;
pci_read_config_byte(pdev, bits->reg, &tmp8);
tmp = tmp8;
break;
}
case 2: {
u16 tmp16 = 0;
pci_read_config_word(pdev, bits->reg, &tmp16);
tmp = tmp16;
break;
}
case 4: {
u32 tmp32 = 0;
pci_read_config_dword(pdev, bits->reg, &tmp32);
tmp = tmp32;
break;
}
default:
return -EINVAL;
}
tmp &= bits->mask;
return (tmp == bits->val) ? 1 : 0;
}
int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
{
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
int ata_pci_device_resume(struct pci_dev *pdev)
{
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_enable_device(pdev);
pci_set_master(pdev);
return 0;
}
#endif /* CONFIG_PCI */
static int __init ata_init(void)
{
ata_wq = create_workqueue("ata");
if (!ata_wq)
return -ENOMEM;
printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
return 0;
}
static void __exit ata_exit(void)
{
destroy_workqueue(ata_wq);
}
module_init(ata_init);
module_exit(ata_exit);
static unsigned long ratelimit_time;
static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
int ata_ratelimit(void)
{
int rc;
unsigned long flags;
spin_lock_irqsave(&ata_ratelimit_lock, flags);
if (time_after(jiffies, ratelimit_time)) {
rc = 1;
ratelimit_time = jiffies + (HZ/5);
} else
rc = 0;
spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
return rc;
}
/*
* libata is essentially a library of internal helper functions for
* low-level ATA host controller drivers. As such, the API/ABI is
* likely to change as new drivers are added and updated.
* Do not depend on ABI/API stability.
*/
EXPORT_SYMBOL_GPL(ata_std_bios_param);
EXPORT_SYMBOL_GPL(ata_std_ports);
EXPORT_SYMBOL_GPL(ata_device_add);
EXPORT_SYMBOL_GPL(ata_host_set_remove);
EXPORT_SYMBOL_GPL(ata_sg_init);
EXPORT_SYMBOL_GPL(ata_sg_init_one);
EXPORT_SYMBOL_GPL(ata_qc_complete);
EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
EXPORT_SYMBOL_GPL(ata_eng_timeout);
EXPORT_SYMBOL_GPL(ata_tf_load);
EXPORT_SYMBOL_GPL(ata_tf_read);
EXPORT_SYMBOL_GPL(ata_noop_dev_select);
EXPORT_SYMBOL_GPL(ata_std_dev_select);
EXPORT_SYMBOL_GPL(ata_tf_to_fis);
EXPORT_SYMBOL_GPL(ata_tf_from_fis);
EXPORT_SYMBOL_GPL(ata_check_status);
EXPORT_SYMBOL_GPL(ata_altstatus);
EXPORT_SYMBOL_GPL(ata_exec_command);
EXPORT_SYMBOL_GPL(ata_port_start);
EXPORT_SYMBOL_GPL(ata_port_stop);
EXPORT_SYMBOL_GPL(ata_host_stop);
EXPORT_SYMBOL_GPL(ata_interrupt);
EXPORT_SYMBOL_GPL(ata_qc_prep);
EXPORT_SYMBOL_GPL(ata_bmdma_setup);
EXPORT_SYMBOL_GPL(ata_bmdma_start);
EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
EXPORT_SYMBOL_GPL(ata_bmdma_status);
EXPORT_SYMBOL_GPL(ata_bmdma_stop);
EXPORT_SYMBOL_GPL(ata_port_probe);
EXPORT_SYMBOL_GPL(sata_phy_reset);
EXPORT_SYMBOL_GPL(__sata_phy_reset);
EXPORT_SYMBOL_GPL(ata_bus_reset);
EXPORT_SYMBOL_GPL(ata_port_disable);
EXPORT_SYMBOL_GPL(ata_ratelimit);
EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
EXPORT_SYMBOL_GPL(ata_scsi_error);
EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
EXPORT_SYMBOL_GPL(ata_scsi_release);
EXPORT_SYMBOL_GPL(ata_host_intr);
EXPORT_SYMBOL_GPL(ata_dev_classify);
EXPORT_SYMBOL_GPL(ata_dev_id_string);
EXPORT_SYMBOL_GPL(ata_dev_config);
EXPORT_SYMBOL_GPL(ata_scsi_simulate);
EXPORT_SYMBOL_GPL(ata_timing_compute);
EXPORT_SYMBOL_GPL(ata_timing_merge);
#ifdef CONFIG_PCI
EXPORT_SYMBOL_GPL(pci_test_config_bits);
EXPORT_SYMBOL_GPL(ata_pci_host_stop);
EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
EXPORT_SYMBOL_GPL(ata_pci_init_one);
EXPORT_SYMBOL_GPL(ata_pci_remove_one);
EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
EXPORT_SYMBOL_GPL(ata_pci_device_resume);
#endif /* CONFIG_PCI */
EXPORT_SYMBOL_GPL(ata_device_suspend);
EXPORT_SYMBOL_GPL(ata_device_resume);
EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
EXPORT_SYMBOL_GPL(ata_scsi_device_resume);