linux/drivers/dma/ste_dma40_ll.c
Per Forlin d49278e335 dmaengine: dma40: Add support to split up large elements
The maximum transfer size of the stedma40 is (64k-1) x data-width.
If the transfer size of one element exceeds this limit
the job is split up and sent as linked transfer.

Signed-off-by: Per Forlin <per.forlin@linaro.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2011-01-04 17:20:43 -08:00

500 lines
12 KiB
C

/*
* Copyright (C) ST-Ericsson SA 2007-2010
* Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
* Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
* License terms: GNU General Public License (GPL) version 2
*/
#include <linux/kernel.h>
#include <plat/ste_dma40.h>
#include "ste_dma40_ll.h"
/* Sets up proper LCSP1 and LCSP3 register for a logical channel */
void d40_log_cfg(struct stedma40_chan_cfg *cfg,
u32 *lcsp1, u32 *lcsp3)
{
u32 l3 = 0; /* dst */
u32 l1 = 0; /* src */
/* src is mem? -> increase address pos */
if (cfg->dir == STEDMA40_MEM_TO_PERIPH ||
cfg->dir == STEDMA40_MEM_TO_MEM)
l1 |= 1 << D40_MEM_LCSP1_SCFG_INCR_POS;
/* dst is mem? -> increase address pos */
if (cfg->dir == STEDMA40_PERIPH_TO_MEM ||
cfg->dir == STEDMA40_MEM_TO_MEM)
l3 |= 1 << D40_MEM_LCSP3_DCFG_INCR_POS;
/* src is hw? -> master port 1 */
if (cfg->dir == STEDMA40_PERIPH_TO_MEM ||
cfg->dir == STEDMA40_PERIPH_TO_PERIPH)
l1 |= 1 << D40_MEM_LCSP1_SCFG_MST_POS;
/* dst is hw? -> master port 1 */
if (cfg->dir == STEDMA40_MEM_TO_PERIPH ||
cfg->dir == STEDMA40_PERIPH_TO_PERIPH)
l3 |= 1 << D40_MEM_LCSP3_DCFG_MST_POS;
l3 |= 1 << D40_MEM_LCSP3_DCFG_EIM_POS;
l3 |= cfg->dst_info.psize << D40_MEM_LCSP3_DCFG_PSIZE_POS;
l3 |= cfg->dst_info.data_width << D40_MEM_LCSP3_DCFG_ESIZE_POS;
l1 |= 1 << D40_MEM_LCSP1_SCFG_EIM_POS;
l1 |= cfg->src_info.psize << D40_MEM_LCSP1_SCFG_PSIZE_POS;
l1 |= cfg->src_info.data_width << D40_MEM_LCSP1_SCFG_ESIZE_POS;
*lcsp1 = l1;
*lcsp3 = l3;
}
/* Sets up SRC and DST CFG register for both logical and physical channels */
void d40_phy_cfg(struct stedma40_chan_cfg *cfg,
u32 *src_cfg, u32 *dst_cfg, bool is_log)
{
u32 src = 0;
u32 dst = 0;
if (!is_log) {
/* Physical channel */
if ((cfg->dir == STEDMA40_PERIPH_TO_MEM) ||
(cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
/* Set master port to 1 */
src |= 1 << D40_SREG_CFG_MST_POS;
src |= D40_TYPE_TO_EVENT(cfg->src_dev_type);
if (cfg->src_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
src |= 1 << D40_SREG_CFG_PHY_TM_POS;
else
src |= 3 << D40_SREG_CFG_PHY_TM_POS;
}
if ((cfg->dir == STEDMA40_MEM_TO_PERIPH) ||
(cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
/* Set master port to 1 */
dst |= 1 << D40_SREG_CFG_MST_POS;
dst |= D40_TYPE_TO_EVENT(cfg->dst_dev_type);
if (cfg->dst_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
dst |= 1 << D40_SREG_CFG_PHY_TM_POS;
else
dst |= 3 << D40_SREG_CFG_PHY_TM_POS;
}
/* Interrupt on end of transfer for destination */
dst |= 1 << D40_SREG_CFG_TIM_POS;
/* Generate interrupt on error */
src |= 1 << D40_SREG_CFG_EIM_POS;
dst |= 1 << D40_SREG_CFG_EIM_POS;
/* PSIZE */
if (cfg->src_info.psize != STEDMA40_PSIZE_PHY_1) {
src |= 1 << D40_SREG_CFG_PHY_PEN_POS;
src |= cfg->src_info.psize << D40_SREG_CFG_PSIZE_POS;
}
if (cfg->dst_info.psize != STEDMA40_PSIZE_PHY_1) {
dst |= 1 << D40_SREG_CFG_PHY_PEN_POS;
dst |= cfg->dst_info.psize << D40_SREG_CFG_PSIZE_POS;
}
/* Element size */
src |= cfg->src_info.data_width << D40_SREG_CFG_ESIZE_POS;
dst |= cfg->dst_info.data_width << D40_SREG_CFG_ESIZE_POS;
} else {
/* Logical channel */
dst |= 1 << D40_SREG_CFG_LOG_GIM_POS;
src |= 1 << D40_SREG_CFG_LOG_GIM_POS;
}
if (cfg->high_priority) {
src |= 1 << D40_SREG_CFG_PRI_POS;
dst |= 1 << D40_SREG_CFG_PRI_POS;
}
if (cfg->src_info.big_endian)
src |= 1 << D40_SREG_CFG_LBE_POS;
if (cfg->dst_info.big_endian)
dst |= 1 << D40_SREG_CFG_LBE_POS;
*src_cfg = src;
*dst_cfg = dst;
}
static int d40_phy_fill_lli(struct d40_phy_lli *lli,
dma_addr_t data,
u32 data_size,
int psize,
dma_addr_t next_lli,
u32 reg_cfg,
bool term_int,
u32 data_width,
bool is_device)
{
int num_elems;
if (psize == STEDMA40_PSIZE_PHY_1)
num_elems = 1;
else
num_elems = 2 << psize;
/* Must be aligned */
if (!IS_ALIGNED(data, 0x1 << data_width))
return -EINVAL;
/* Transfer size can't be smaller than (num_elms * elem_size) */
if (data_size < num_elems * (0x1 << data_width))
return -EINVAL;
/* The number of elements. IE now many chunks */
lli->reg_elt = (data_size >> data_width) << D40_SREG_ELEM_PHY_ECNT_POS;
/*
* Distance to next element sized entry.
* Usually the size of the element unless you want gaps.
*/
if (!is_device)
lli->reg_elt |= (0x1 << data_width) <<
D40_SREG_ELEM_PHY_EIDX_POS;
/* Where the data is */
lli->reg_ptr = data;
lli->reg_cfg = reg_cfg;
/* If this scatter list entry is the last one, no next link */
if (next_lli == 0)
lli->reg_lnk = 0x1 << D40_SREG_LNK_PHY_TCP_POS;
else
lli->reg_lnk = next_lli;
/* Set/clear interrupt generation on this link item.*/
if (term_int)
lli->reg_cfg |= 0x1 << D40_SREG_CFG_TIM_POS;
else
lli->reg_cfg &= ~(0x1 << D40_SREG_CFG_TIM_POS);
/* Post link */
lli->reg_lnk |= 0 << D40_SREG_LNK_PHY_PRE_POS;
return 0;
}
static int d40_seg_size(int size, int data_width1, int data_width2)
{
u32 max_w = max(data_width1, data_width2);
u32 min_w = min(data_width1, data_width2);
u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
if (seg_max > STEDMA40_MAX_SEG_SIZE)
seg_max -= (1 << max_w);
if (size <= seg_max)
return size;
if (size <= 2 * seg_max)
return ALIGN(size / 2, 1 << max_w);
return seg_max;
}
struct d40_phy_lli *d40_phy_buf_to_lli(struct d40_phy_lli *lli,
dma_addr_t addr,
u32 size,
int psize,
dma_addr_t lli_phys,
u32 reg_cfg,
bool term_int,
u32 data_width1,
u32 data_width2,
bool is_device)
{
int err;
dma_addr_t next = lli_phys;
int size_rest = size;
int size_seg = 0;
do {
size_seg = d40_seg_size(size_rest, data_width1, data_width2);
size_rest -= size_seg;
if (term_int && size_rest == 0)
next = 0;
else
next = ALIGN(next + sizeof(struct d40_phy_lli),
D40_LLI_ALIGN);
err = d40_phy_fill_lli(lli,
addr,
size_seg,
psize,
next,
reg_cfg,
!next,
data_width1,
is_device);
if (err)
goto err;
lli++;
if (!is_device)
addr += size_seg;
} while (size_rest);
return lli;
err:
return NULL;
}
int d40_phy_sg_to_lli(struct scatterlist *sg,
int sg_len,
dma_addr_t target,
struct d40_phy_lli *lli_sg,
dma_addr_t lli_phys,
u32 reg_cfg,
u32 data_width1,
u32 data_width2,
int psize)
{
int total_size = 0;
int i;
struct scatterlist *current_sg = sg;
dma_addr_t dst;
struct d40_phy_lli *lli = lli_sg;
dma_addr_t l_phys = lli_phys;
for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg);
if (target)
dst = target;
else
dst = sg_phys(current_sg);
l_phys = ALIGN(lli_phys + (lli - lli_sg) *
sizeof(struct d40_phy_lli), D40_LLI_ALIGN);
lli = d40_phy_buf_to_lli(lli,
dst,
sg_dma_len(current_sg),
psize,
l_phys,
reg_cfg,
sg_len - 1 == i,
data_width1,
data_width2,
target == dst);
if (lli == NULL)
return -EINVAL;
}
return total_size;
}
void d40_phy_lli_write(void __iomem *virtbase,
u32 phy_chan_num,
struct d40_phy_lli *lli_dst,
struct d40_phy_lli *lli_src)
{
writel(lli_src->reg_cfg, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSCFG);
writel(lli_src->reg_elt, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
writel(lli_src->reg_ptr, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSPTR);
writel(lli_src->reg_lnk, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSLNK);
writel(lli_dst->reg_cfg, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDCFG);
writel(lli_dst->reg_elt, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
writel(lli_dst->reg_ptr, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDPTR);
writel(lli_dst->reg_lnk, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDLNK);
}
/* DMA logical lli operations */
static void d40_log_lli_link(struct d40_log_lli *lli_dst,
struct d40_log_lli *lli_src,
int next)
{
u32 slos = 0;
u32 dlos = 0;
if (next != -EINVAL) {
slos = next * 2;
dlos = next * 2 + 1;
} else {
lli_dst->lcsp13 |= D40_MEM_LCSP1_SCFG_TIM_MASK;
lli_dst->lcsp13 |= D40_MEM_LCSP3_DTCP_MASK;
}
lli_src->lcsp13 = (lli_src->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) |
(slos << D40_MEM_LCSP1_SLOS_POS);
lli_dst->lcsp13 = (lli_dst->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) |
(dlos << D40_MEM_LCSP1_SLOS_POS);
}
void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa,
struct d40_log_lli *lli_dst,
struct d40_log_lli *lli_src,
int next)
{
d40_log_lli_link(lli_dst, lli_src, next);
writel(lli_src->lcsp02, &lcpa[0].lcsp0);
writel(lli_src->lcsp13, &lcpa[0].lcsp1);
writel(lli_dst->lcsp02, &lcpa[0].lcsp2);
writel(lli_dst->lcsp13, &lcpa[0].lcsp3);
}
void d40_log_lli_lcla_write(struct d40_log_lli *lcla,
struct d40_log_lli *lli_dst,
struct d40_log_lli *lli_src,
int next)
{
d40_log_lli_link(lli_dst, lli_src, next);
writel(lli_src->lcsp02, &lcla[0].lcsp02);
writel(lli_src->lcsp13, &lcla[0].lcsp13);
writel(lli_dst->lcsp02, &lcla[1].lcsp02);
writel(lli_dst->lcsp13, &lcla[1].lcsp13);
}
static void d40_log_fill_lli(struct d40_log_lli *lli,
dma_addr_t data, u32 data_size,
u32 reg_cfg,
u32 data_width,
bool addr_inc)
{
lli->lcsp13 = reg_cfg;
/* The number of elements to transfer */
lli->lcsp02 = ((data_size >> data_width) <<
D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK;
BUG_ON((data_size >> data_width) > STEDMA40_MAX_SEG_SIZE);
/* 16 LSBs address of the current element */
lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK;
/* 16 MSBs address of the current element */
lli->lcsp13 |= data & D40_MEM_LCSP1_SPTR_MASK;
if (addr_inc)
lli->lcsp13 |= D40_MEM_LCSP1_SCFG_INCR_MASK;
}
int d40_log_sg_to_dev(struct scatterlist *sg,
int sg_len,
struct d40_log_lli_bidir *lli,
struct d40_def_lcsp *lcsp,
u32 src_data_width,
u32 dst_data_width,
enum dma_data_direction direction,
dma_addr_t dev_addr)
{
int total_size = 0;
struct scatterlist *current_sg = sg;
int i;
struct d40_log_lli *lli_src = lli->src;
struct d40_log_lli *lli_dst = lli->dst;
for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg);
if (direction == DMA_TO_DEVICE) {
lli_src =
d40_log_buf_to_lli(lli_src,
sg_phys(current_sg),
sg_dma_len(current_sg),
lcsp->lcsp1, src_data_width,
dst_data_width,
true);
lli_dst =
d40_log_buf_to_lli(lli_dst,
dev_addr,
sg_dma_len(current_sg),
lcsp->lcsp3, dst_data_width,
src_data_width,
false);
} else {
lli_dst =
d40_log_buf_to_lli(lli_dst,
sg_phys(current_sg),
sg_dma_len(current_sg),
lcsp->lcsp3, dst_data_width,
src_data_width,
true);
lli_src =
d40_log_buf_to_lli(lli_src,
dev_addr,
sg_dma_len(current_sg),
lcsp->lcsp1, src_data_width,
dst_data_width,
false);
}
}
return total_size;
}
struct d40_log_lli *d40_log_buf_to_lli(struct d40_log_lli *lli_sg,
dma_addr_t addr,
int size,
u32 lcsp13, /* src or dst*/
u32 data_width1,
u32 data_width2,
bool addr_inc)
{
struct d40_log_lli *lli = lli_sg;
int size_rest = size;
int size_seg = 0;
do {
size_seg = d40_seg_size(size_rest, data_width1, data_width2);
size_rest -= size_seg;
d40_log_fill_lli(lli,
addr,
size_seg,
lcsp13, data_width1,
addr_inc);
if (addr_inc)
addr += size_seg;
lli++;
} while (size_rest);
return lli;
}
int d40_log_sg_to_lli(struct scatterlist *sg,
int sg_len,
struct d40_log_lli *lli_sg,
u32 lcsp13, /* src or dst*/
u32 data_width1, u32 data_width2)
{
int total_size = 0;
struct scatterlist *current_sg = sg;
int i;
struct d40_log_lli *lli = lli_sg;
for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg);
lli = d40_log_buf_to_lli(lli,
sg_phys(current_sg),
sg_dma_len(current_sg),
lcsp13,
data_width1, data_width2, true);
}
return total_size;
}