linux/drivers/net/netxen/netxen_nic_init.c
Dhananjay Phadke 13af7a6ea5 netxen: update copyright
o Add QLogic copyright, add linux-driver@qlogic.com to
  MAINTAINERS.
o Delete old contact information.

Signed-off-by: Dhananjay Phadke <dhananjay@netxen.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-09-11 16:58:51 -07:00

1569 lines
38 KiB
C

/*
* Copyright (C) 2003 - 2009 NetXen, Inc.
* Copyright (C) 2009 - QLogic Corporation.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.
*
*/
#include <linux/netdevice.h>
#include <linux/delay.h>
#include "netxen_nic.h"
#include "netxen_nic_hw.h"
struct crb_addr_pair {
u32 addr;
u32 data;
};
#define NETXEN_MAX_CRB_XFORM 60
static unsigned int crb_addr_xform[NETXEN_MAX_CRB_XFORM];
#define NETXEN_ADDR_ERROR (0xffffffff)
#define crb_addr_transform(name) \
crb_addr_xform[NETXEN_HW_PX_MAP_CRB_##name] = \
NETXEN_HW_CRB_HUB_AGT_ADR_##name << 20
#define NETXEN_NIC_XDMA_RESET 0x8000ff
static void
netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter,
struct nx_host_rds_ring *rds_ring);
static void crb_addr_transform_setup(void)
{
crb_addr_transform(XDMA);
crb_addr_transform(TIMR);
crb_addr_transform(SRE);
crb_addr_transform(SQN3);
crb_addr_transform(SQN2);
crb_addr_transform(SQN1);
crb_addr_transform(SQN0);
crb_addr_transform(SQS3);
crb_addr_transform(SQS2);
crb_addr_transform(SQS1);
crb_addr_transform(SQS0);
crb_addr_transform(RPMX7);
crb_addr_transform(RPMX6);
crb_addr_transform(RPMX5);
crb_addr_transform(RPMX4);
crb_addr_transform(RPMX3);
crb_addr_transform(RPMX2);
crb_addr_transform(RPMX1);
crb_addr_transform(RPMX0);
crb_addr_transform(ROMUSB);
crb_addr_transform(SN);
crb_addr_transform(QMN);
crb_addr_transform(QMS);
crb_addr_transform(PGNI);
crb_addr_transform(PGND);
crb_addr_transform(PGN3);
crb_addr_transform(PGN2);
crb_addr_transform(PGN1);
crb_addr_transform(PGN0);
crb_addr_transform(PGSI);
crb_addr_transform(PGSD);
crb_addr_transform(PGS3);
crb_addr_transform(PGS2);
crb_addr_transform(PGS1);
crb_addr_transform(PGS0);
crb_addr_transform(PS);
crb_addr_transform(PH);
crb_addr_transform(NIU);
crb_addr_transform(I2Q);
crb_addr_transform(EG);
crb_addr_transform(MN);
crb_addr_transform(MS);
crb_addr_transform(CAS2);
crb_addr_transform(CAS1);
crb_addr_transform(CAS0);
crb_addr_transform(CAM);
crb_addr_transform(C2C1);
crb_addr_transform(C2C0);
crb_addr_transform(SMB);
crb_addr_transform(OCM0);
crb_addr_transform(I2C0);
}
void netxen_release_rx_buffers(struct netxen_adapter *adapter)
{
struct netxen_recv_context *recv_ctx;
struct nx_host_rds_ring *rds_ring;
struct netxen_rx_buffer *rx_buf;
int i, ring;
recv_ctx = &adapter->recv_ctx;
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rds_ring = &recv_ctx->rds_rings[ring];
for (i = 0; i < rds_ring->num_desc; ++i) {
rx_buf = &(rds_ring->rx_buf_arr[i]);
if (rx_buf->state == NETXEN_BUFFER_FREE)
continue;
pci_unmap_single(adapter->pdev,
rx_buf->dma,
rds_ring->dma_size,
PCI_DMA_FROMDEVICE);
if (rx_buf->skb != NULL)
dev_kfree_skb_any(rx_buf->skb);
}
}
}
void netxen_release_tx_buffers(struct netxen_adapter *adapter)
{
struct netxen_cmd_buffer *cmd_buf;
struct netxen_skb_frag *buffrag;
int i, j;
struct nx_host_tx_ring *tx_ring = adapter->tx_ring;
cmd_buf = tx_ring->cmd_buf_arr;
for (i = 0; i < tx_ring->num_desc; i++) {
buffrag = cmd_buf->frag_array;
if (buffrag->dma) {
pci_unmap_single(adapter->pdev, buffrag->dma,
buffrag->length, PCI_DMA_TODEVICE);
buffrag->dma = 0ULL;
}
for (j = 0; j < cmd_buf->frag_count; j++) {
buffrag++;
if (buffrag->dma) {
pci_unmap_page(adapter->pdev, buffrag->dma,
buffrag->length,
PCI_DMA_TODEVICE);
buffrag->dma = 0ULL;
}
}
if (cmd_buf->skb) {
dev_kfree_skb_any(cmd_buf->skb);
cmd_buf->skb = NULL;
}
cmd_buf++;
}
}
void netxen_free_sw_resources(struct netxen_adapter *adapter)
{
struct netxen_recv_context *recv_ctx;
struct nx_host_rds_ring *rds_ring;
struct nx_host_tx_ring *tx_ring;
int ring;
recv_ctx = &adapter->recv_ctx;
if (recv_ctx->rds_rings == NULL)
goto skip_rds;
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rds_ring = &recv_ctx->rds_rings[ring];
vfree(rds_ring->rx_buf_arr);
rds_ring->rx_buf_arr = NULL;
}
kfree(recv_ctx->rds_rings);
skip_rds:
if (adapter->tx_ring == NULL)
return;
tx_ring = adapter->tx_ring;
vfree(tx_ring->cmd_buf_arr);
}
int netxen_alloc_sw_resources(struct netxen_adapter *adapter)
{
struct netxen_recv_context *recv_ctx;
struct nx_host_rds_ring *rds_ring;
struct nx_host_sds_ring *sds_ring;
struct nx_host_tx_ring *tx_ring;
struct netxen_rx_buffer *rx_buf;
int ring, i, size;
struct netxen_cmd_buffer *cmd_buf_arr;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
size = sizeof(struct nx_host_tx_ring);
tx_ring = kzalloc(size, GFP_KERNEL);
if (tx_ring == NULL) {
dev_err(&pdev->dev, "%s: failed to allocate tx ring struct\n",
netdev->name);
return -ENOMEM;
}
adapter->tx_ring = tx_ring;
tx_ring->num_desc = adapter->num_txd;
tx_ring->txq = netdev_get_tx_queue(netdev, 0);
cmd_buf_arr = vmalloc(TX_BUFF_RINGSIZE(tx_ring));
if (cmd_buf_arr == NULL) {
dev_err(&pdev->dev, "%s: failed to allocate cmd buffer ring\n",
netdev->name);
return -ENOMEM;
}
memset(cmd_buf_arr, 0, TX_BUFF_RINGSIZE(tx_ring));
tx_ring->cmd_buf_arr = cmd_buf_arr;
recv_ctx = &adapter->recv_ctx;
size = adapter->max_rds_rings * sizeof (struct nx_host_rds_ring);
rds_ring = kzalloc(size, GFP_KERNEL);
if (rds_ring == NULL) {
dev_err(&pdev->dev, "%s: failed to allocate rds ring struct\n",
netdev->name);
return -ENOMEM;
}
recv_ctx->rds_rings = rds_ring;
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rds_ring = &recv_ctx->rds_rings[ring];
switch (ring) {
case RCV_RING_NORMAL:
rds_ring->num_desc = adapter->num_rxd;
if (adapter->ahw.cut_through) {
rds_ring->dma_size =
NX_CT_DEFAULT_RX_BUF_LEN;
rds_ring->skb_size =
NX_CT_DEFAULT_RX_BUF_LEN;
} else {
if (NX_IS_REVISION_P3(adapter->ahw.revision_id))
rds_ring->dma_size =
NX_P3_RX_BUF_MAX_LEN;
else
rds_ring->dma_size =
NX_P2_RX_BUF_MAX_LEN;
rds_ring->skb_size =
rds_ring->dma_size + NET_IP_ALIGN;
}
break;
case RCV_RING_JUMBO:
rds_ring->num_desc = adapter->num_jumbo_rxd;
if (NX_IS_REVISION_P3(adapter->ahw.revision_id))
rds_ring->dma_size =
NX_P3_RX_JUMBO_BUF_MAX_LEN;
else
rds_ring->dma_size =
NX_P2_RX_JUMBO_BUF_MAX_LEN;
if (adapter->capabilities & NX_CAP0_HW_LRO)
rds_ring->dma_size += NX_LRO_BUFFER_EXTRA;
rds_ring->skb_size =
rds_ring->dma_size + NET_IP_ALIGN;
break;
case RCV_RING_LRO:
rds_ring->num_desc = adapter->num_lro_rxd;
rds_ring->dma_size = NX_RX_LRO_BUFFER_LENGTH;
rds_ring->skb_size = rds_ring->dma_size + NET_IP_ALIGN;
break;
}
rds_ring->rx_buf_arr = (struct netxen_rx_buffer *)
vmalloc(RCV_BUFF_RINGSIZE(rds_ring));
if (rds_ring->rx_buf_arr == NULL) {
printk(KERN_ERR "%s: Failed to allocate "
"rx buffer ring %d\n",
netdev->name, ring);
/* free whatever was already allocated */
goto err_out;
}
memset(rds_ring->rx_buf_arr, 0, RCV_BUFF_RINGSIZE(rds_ring));
INIT_LIST_HEAD(&rds_ring->free_list);
/*
* Now go through all of them, set reference handles
* and put them in the queues.
*/
rx_buf = rds_ring->rx_buf_arr;
for (i = 0; i < rds_ring->num_desc; i++) {
list_add_tail(&rx_buf->list,
&rds_ring->free_list);
rx_buf->ref_handle = i;
rx_buf->state = NETXEN_BUFFER_FREE;
rx_buf++;
}
spin_lock_init(&rds_ring->lock);
}
for (ring = 0; ring < adapter->max_sds_rings; ring++) {
sds_ring = &recv_ctx->sds_rings[ring];
sds_ring->irq = adapter->msix_entries[ring].vector;
sds_ring->adapter = adapter;
sds_ring->num_desc = adapter->num_rxd;
for (i = 0; i < NUM_RCV_DESC_RINGS; i++)
INIT_LIST_HEAD(&sds_ring->free_list[i]);
}
return 0;
err_out:
netxen_free_sw_resources(adapter);
return -ENOMEM;
}
/*
* netxen_decode_crb_addr(0 - utility to translate from internal Phantom CRB
* address to external PCI CRB address.
*/
static u32 netxen_decode_crb_addr(u32 addr)
{
int i;
u32 base_addr, offset, pci_base;
crb_addr_transform_setup();
pci_base = NETXEN_ADDR_ERROR;
base_addr = addr & 0xfff00000;
offset = addr & 0x000fffff;
for (i = 0; i < NETXEN_MAX_CRB_XFORM; i++) {
if (crb_addr_xform[i] == base_addr) {
pci_base = i << 20;
break;
}
}
if (pci_base == NETXEN_ADDR_ERROR)
return pci_base;
else
return (pci_base + offset);
}
#define NETXEN_MAX_ROM_WAIT_USEC 100
static int netxen_wait_rom_done(struct netxen_adapter *adapter)
{
long timeout = 0;
long done = 0;
cond_resched();
while (done == 0) {
done = NXRD32(adapter, NETXEN_ROMUSB_GLB_STATUS);
done &= 2;
if (++timeout >= NETXEN_MAX_ROM_WAIT_USEC) {
dev_err(&adapter->pdev->dev,
"Timeout reached waiting for rom done");
return -EIO;
}
udelay(1);
}
return 0;
}
static int do_rom_fast_read(struct netxen_adapter *adapter,
int addr, int *valp)
{
NXWR32(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
NXWR32(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
NXWR32(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
NXWR32(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE, 0xb);
if (netxen_wait_rom_done(adapter)) {
printk("Error waiting for rom done\n");
return -EIO;
}
/* reset abyte_cnt and dummy_byte_cnt */
NXWR32(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
udelay(10);
NXWR32(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
*valp = NXRD32(adapter, NETXEN_ROMUSB_ROM_RDATA);
return 0;
}
static int do_rom_fast_read_words(struct netxen_adapter *adapter, int addr,
u8 *bytes, size_t size)
{
int addridx;
int ret = 0;
for (addridx = addr; addridx < (addr + size); addridx += 4) {
int v;
ret = do_rom_fast_read(adapter, addridx, &v);
if (ret != 0)
break;
*(__le32 *)bytes = cpu_to_le32(v);
bytes += 4;
}
return ret;
}
int
netxen_rom_fast_read_words(struct netxen_adapter *adapter, int addr,
u8 *bytes, size_t size)
{
int ret;
ret = netxen_rom_lock(adapter);
if (ret < 0)
return ret;
ret = do_rom_fast_read_words(adapter, addr, bytes, size);
netxen_rom_unlock(adapter);
return ret;
}
int netxen_rom_fast_read(struct netxen_adapter *adapter, int addr, int *valp)
{
int ret;
if (netxen_rom_lock(adapter) != 0)
return -EIO;
ret = do_rom_fast_read(adapter, addr, valp);
netxen_rom_unlock(adapter);
return ret;
}
#define NETXEN_BOARDTYPE 0x4008
#define NETXEN_BOARDNUM 0x400c
#define NETXEN_CHIPNUM 0x4010
int netxen_pinit_from_rom(struct netxen_adapter *adapter, int verbose)
{
int addr, val;
int i, n, init_delay = 0;
struct crb_addr_pair *buf;
unsigned offset;
u32 off;
/* resetall */
netxen_rom_lock(adapter);
NXWR32(adapter, NETXEN_ROMUSB_GLB_SW_RESET, 0xffffffff);
netxen_rom_unlock(adapter);
if (verbose) {
if (netxen_rom_fast_read(adapter, NETXEN_BOARDTYPE, &val) == 0)
printk("P2 ROM board type: 0x%08x\n", val);
else
printk("Could not read board type\n");
if (netxen_rom_fast_read(adapter, NETXEN_BOARDNUM, &val) == 0)
printk("P2 ROM board num: 0x%08x\n", val);
else
printk("Could not read board number\n");
if (netxen_rom_fast_read(adapter, NETXEN_CHIPNUM, &val) == 0)
printk("P2 ROM chip num: 0x%08x\n", val);
else
printk("Could not read chip number\n");
}
if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) {
if (netxen_rom_fast_read(adapter, 0, &n) != 0 ||
(n != 0xcafecafe) ||
netxen_rom_fast_read(adapter, 4, &n) != 0) {
printk(KERN_ERR "%s: ERROR Reading crb_init area: "
"n: %08x\n", netxen_nic_driver_name, n);
return -EIO;
}
offset = n & 0xffffU;
n = (n >> 16) & 0xffffU;
} else {
if (netxen_rom_fast_read(adapter, 0, &n) != 0 ||
!(n & 0x80000000)) {
printk(KERN_ERR "%s: ERROR Reading crb_init area: "
"n: %08x\n", netxen_nic_driver_name, n);
return -EIO;
}
offset = 1;
n &= ~0x80000000;
}
if (n < 1024) {
if (verbose)
printk(KERN_DEBUG "%s: %d CRB init values found"
" in ROM.\n", netxen_nic_driver_name, n);
} else {
printk(KERN_ERR "%s:n=0x%x Error! NetXen card flash not"
" initialized.\n", __func__, n);
return -EIO;
}
buf = kcalloc(n, sizeof(struct crb_addr_pair), GFP_KERNEL);
if (buf == NULL) {
printk("%s: netxen_pinit_from_rom: Unable to calloc memory.\n",
netxen_nic_driver_name);
return -ENOMEM;
}
for (i = 0; i < n; i++) {
if (netxen_rom_fast_read(adapter, 8*i + 4*offset, &val) != 0 ||
netxen_rom_fast_read(adapter, 8*i + 4*offset + 4, &addr) != 0) {
kfree(buf);
return -EIO;
}
buf[i].addr = addr;
buf[i].data = val;
if (verbose)
printk(KERN_DEBUG "%s: PCI: 0x%08x == 0x%08x\n",
netxen_nic_driver_name,
(u32)netxen_decode_crb_addr(addr), val);
}
for (i = 0; i < n; i++) {
off = netxen_decode_crb_addr(buf[i].addr);
if (off == NETXEN_ADDR_ERROR) {
printk(KERN_ERR"CRB init value out of range %x\n",
buf[i].addr);
continue;
}
off += NETXEN_PCI_CRBSPACE;
/* skipping cold reboot MAGIC */
if (off == NETXEN_CAM_RAM(0x1fc))
continue;
if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) {
/* do not reset PCI */
if (off == (ROMUSB_GLB + 0xbc))
continue;
if (off == (ROMUSB_GLB + 0xa8))
continue;
if (off == (ROMUSB_GLB + 0xc8)) /* core clock */
continue;
if (off == (ROMUSB_GLB + 0x24)) /* MN clock */
continue;
if (off == (ROMUSB_GLB + 0x1c)) /* MS clock */
continue;
if (off == (NETXEN_CRB_PEG_NET_1 + 0x18))
buf[i].data = 0x1020;
/* skip the function enable register */
if (off == NETXEN_PCIE_REG(PCIE_SETUP_FUNCTION))
continue;
if (off == NETXEN_PCIE_REG(PCIE_SETUP_FUNCTION2))
continue;
if ((off & 0x0ff00000) == NETXEN_CRB_SMB)
continue;
}
if (off == NETXEN_ADDR_ERROR) {
printk(KERN_ERR "%s: Err: Unknown addr: 0x%08x\n",
netxen_nic_driver_name, buf[i].addr);
continue;
}
init_delay = 1;
/* After writing this register, HW needs time for CRB */
/* to quiet down (else crb_window returns 0xffffffff) */
if (off == NETXEN_ROMUSB_GLB_SW_RESET) {
init_delay = 1000;
if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) {
/* hold xdma in reset also */
buf[i].data = NETXEN_NIC_XDMA_RESET;
buf[i].data = 0x8000ff;
}
}
NXWR32(adapter, off, buf[i].data);
msleep(init_delay);
}
kfree(buf);
/* disable_peg_cache_all */
/* unreset_net_cache */
if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) {
val = NXRD32(adapter, NETXEN_ROMUSB_GLB_SW_RESET);
NXWR32(adapter, NETXEN_ROMUSB_GLB_SW_RESET, (val & 0xffffff0f));
}
/* p2dn replyCount */
NXWR32(adapter, NETXEN_CRB_PEG_NET_D + 0xec, 0x1e);
/* disable_peg_cache 0 */
NXWR32(adapter, NETXEN_CRB_PEG_NET_D + 0x4c, 8);
/* disable_peg_cache 1 */
NXWR32(adapter, NETXEN_CRB_PEG_NET_I + 0x4c, 8);
/* peg_clr_all */
/* peg_clr 0 */
NXWR32(adapter, NETXEN_CRB_PEG_NET_0 + 0x8, 0);
NXWR32(adapter, NETXEN_CRB_PEG_NET_0 + 0xc, 0);
/* peg_clr 1 */
NXWR32(adapter, NETXEN_CRB_PEG_NET_1 + 0x8, 0);
NXWR32(adapter, NETXEN_CRB_PEG_NET_1 + 0xc, 0);
/* peg_clr 2 */
NXWR32(adapter, NETXEN_CRB_PEG_NET_2 + 0x8, 0);
NXWR32(adapter, NETXEN_CRB_PEG_NET_2 + 0xc, 0);
/* peg_clr 3 */
NXWR32(adapter, NETXEN_CRB_PEG_NET_3 + 0x8, 0);
NXWR32(adapter, NETXEN_CRB_PEG_NET_3 + 0xc, 0);
return 0;
}
int
netxen_need_fw_reset(struct netxen_adapter *adapter)
{
u32 count, old_count;
u32 val, version, major, minor, build;
int i, timeout;
u8 fw_type;
/* NX2031 firmware doesn't support heartbit */
if (NX_IS_REVISION_P2(adapter->ahw.revision_id))
return 1;
/* last attempt had failed */
if (NXRD32(adapter, CRB_CMDPEG_STATE) == PHAN_INITIALIZE_FAILED)
return 1;
old_count = count = NXRD32(adapter, NETXEN_PEG_ALIVE_COUNTER);
for (i = 0; i < 10; i++) {
timeout = msleep_interruptible(200);
if (timeout) {
NXWR32(adapter, CRB_CMDPEG_STATE,
PHAN_INITIALIZE_FAILED);
return -EINTR;
}
count = NXRD32(adapter, NETXEN_PEG_ALIVE_COUNTER);
if (count != old_count)
break;
}
/* firmware is dead */
if (count == old_count)
return 1;
/* check if we have got newer or different file firmware */
if (adapter->fw) {
const struct firmware *fw = adapter->fw;
val = cpu_to_le32(*(u32 *)&fw->data[NX_FW_VERSION_OFFSET]);
version = NETXEN_DECODE_VERSION(val);
major = NXRD32(adapter, NETXEN_FW_VERSION_MAJOR);
minor = NXRD32(adapter, NETXEN_FW_VERSION_MINOR);
build = NXRD32(adapter, NETXEN_FW_VERSION_SUB);
if (version > NETXEN_VERSION_CODE(major, minor, build))
return 1;
if (version == NETXEN_VERSION_CODE(major, minor, build)) {
val = NXRD32(adapter, NETXEN_MIU_MN_CONTROL);
fw_type = (val & 0x4) ?
NX_P3_CT_ROMIMAGE : NX_P3_MN_ROMIMAGE;
if (adapter->fw_type != fw_type)
return 1;
}
}
return 0;
}
static char *fw_name[] = {
"nxromimg.bin", "nx3fwct.bin", "nx3fwmn.bin", "flash",
};
int
netxen_load_firmware(struct netxen_adapter *adapter)
{
u64 *ptr64;
u32 i, flashaddr, size;
const struct firmware *fw = adapter->fw;
struct pci_dev *pdev = adapter->pdev;
dev_info(&pdev->dev, "loading firmware from %s\n",
fw_name[adapter->fw_type]);
if (NX_IS_REVISION_P2(adapter->ahw.revision_id))
NXWR32(adapter, NETXEN_ROMUSB_GLB_CAS_RST, 1);
if (fw) {
__le64 data;
size = (NETXEN_IMAGE_START - NETXEN_BOOTLD_START) / 8;
ptr64 = (u64 *)&fw->data[NETXEN_BOOTLD_START];
flashaddr = NETXEN_BOOTLD_START;
for (i = 0; i < size; i++) {
data = cpu_to_le64(ptr64[i]);
adapter->pci_mem_write(adapter, flashaddr, &data, 8);
flashaddr += 8;
}
size = *(u32 *)&fw->data[NX_FW_SIZE_OFFSET];
size = (__force u32)cpu_to_le32(size) / 8;
ptr64 = (u64 *)&fw->data[NETXEN_IMAGE_START];
flashaddr = NETXEN_IMAGE_START;
for (i = 0; i < size; i++) {
data = cpu_to_le64(ptr64[i]);
if (adapter->pci_mem_write(adapter,
flashaddr, &data, 8))
return -EIO;
flashaddr += 8;
}
} else {
u64 data;
u32 hi, lo;
size = (NETXEN_IMAGE_START - NETXEN_BOOTLD_START) / 8;
flashaddr = NETXEN_BOOTLD_START;
for (i = 0; i < size; i++) {
if (netxen_rom_fast_read(adapter,
flashaddr, &lo) != 0)
return -EIO;
if (netxen_rom_fast_read(adapter,
flashaddr + 4, &hi) != 0)
return -EIO;
/* hi, lo are already in host endian byteorder */
data = (((u64)hi << 32) | lo);
if (adapter->pci_mem_write(adapter,
flashaddr, &data, 8))
return -EIO;
flashaddr += 8;
}
}
msleep(1);
if (NX_IS_REVISION_P3(adapter->ahw.revision_id))
NXWR32(adapter, NETXEN_ROMUSB_GLB_SW_RESET, 0x80001d);
else {
NXWR32(adapter, NETXEN_ROMUSB_GLB_CHIP_CLK_CTRL, 0x3fff);
NXWR32(adapter, NETXEN_ROMUSB_GLB_CAS_RST, 0);
}
return 0;
}
static int
netxen_validate_firmware(struct netxen_adapter *adapter, const char *fwname)
{
__le32 val;
u32 ver, min_ver, bios;
struct pci_dev *pdev = adapter->pdev;
const struct firmware *fw = adapter->fw;
if (fw->size < NX_FW_MIN_SIZE)
return -EINVAL;
val = cpu_to_le32(*(u32 *)&fw->data[NX_FW_MAGIC_OFFSET]);
if ((__force u32)val != NETXEN_BDINFO_MAGIC)
return -EINVAL;
val = cpu_to_le32(*(u32 *)&fw->data[NX_FW_VERSION_OFFSET]);
if (NX_IS_REVISION_P3(adapter->ahw.revision_id))
min_ver = NETXEN_VERSION_CODE(4, 0, 216);
else
min_ver = NETXEN_VERSION_CODE(3, 4, 216);
ver = NETXEN_DECODE_VERSION(val);
if ((_major(ver) > _NETXEN_NIC_LINUX_MAJOR) || (ver < min_ver)) {
dev_err(&pdev->dev,
"%s: firmware version %d.%d.%d unsupported\n",
fwname, _major(ver), _minor(ver), _build(ver));
return -EINVAL;
}
val = cpu_to_le32(*(u32 *)&fw->data[NX_BIOS_VERSION_OFFSET]);
netxen_rom_fast_read(adapter, NX_BIOS_VERSION_OFFSET, (int *)&bios);
if ((__force u32)val != bios) {
dev_err(&pdev->dev, "%s: firmware bios is incompatible\n",
fwname);
return -EINVAL;
}
/* check if flashed firmware is newer */
if (netxen_rom_fast_read(adapter,
NX_FW_VERSION_OFFSET, (int *)&val))
return -EIO;
val = NETXEN_DECODE_VERSION(val);
if (val > ver) {
dev_info(&pdev->dev, "%s: firmware is older than flash\n",
fwname);
return -EINVAL;
}
NXWR32(adapter, NETXEN_CAM_RAM(0x1fc), NETXEN_BDINFO_MAGIC);
return 0;
}
static int
netxen_p3_has_mn(struct netxen_adapter *adapter)
{
u32 capability, flashed_ver;
capability = 0;
netxen_rom_fast_read(adapter,
NX_FW_VERSION_OFFSET, (int *)&flashed_ver);
flashed_ver = NETXEN_DECODE_VERSION(flashed_ver);
if (flashed_ver >= NETXEN_VERSION_CODE(4, 0, 220)) {
capability = NXRD32(adapter, NX_PEG_TUNE_CAPABILITY);
if (capability & NX_PEG_TUNE_MN_PRESENT)
return 1;
}
return 0;
}
void netxen_request_firmware(struct netxen_adapter *adapter)
{
u8 fw_type;
struct pci_dev *pdev = adapter->pdev;
int rc = 0;
if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) {
fw_type = NX_P2_MN_ROMIMAGE;
goto request_fw;
}
fw_type = netxen_p3_has_mn(adapter) ?
NX_P3_MN_ROMIMAGE : NX_P3_CT_ROMIMAGE;
request_fw:
rc = request_firmware(&adapter->fw, fw_name[fw_type], &pdev->dev);
if (rc != 0) {
if (fw_type == NX_P3_MN_ROMIMAGE) {
msleep(1);
fw_type = NX_P3_CT_ROMIMAGE;
goto request_fw;
}
fw_type = NX_FLASH_ROMIMAGE;
adapter->fw = NULL;
goto done;
}
rc = netxen_validate_firmware(adapter, fw_name[fw_type]);
if (rc != 0) {
release_firmware(adapter->fw);
if (fw_type == NX_P3_MN_ROMIMAGE) {
msleep(1);
fw_type = NX_P3_CT_ROMIMAGE;
goto request_fw;
}
fw_type = NX_FLASH_ROMIMAGE;
adapter->fw = NULL;
goto done;
}
done:
adapter->fw_type = fw_type;
}
void
netxen_release_firmware(struct netxen_adapter *adapter)
{
if (adapter->fw)
release_firmware(adapter->fw);
adapter->fw = NULL;
}
int netxen_init_dummy_dma(struct netxen_adapter *adapter)
{
u64 addr;
u32 hi, lo;
if (!NX_IS_REVISION_P2(adapter->ahw.revision_id))
return 0;
adapter->dummy_dma.addr = pci_alloc_consistent(adapter->pdev,
NETXEN_HOST_DUMMY_DMA_SIZE,
&adapter->dummy_dma.phys_addr);
if (adapter->dummy_dma.addr == NULL) {
dev_err(&adapter->pdev->dev,
"ERROR: Could not allocate dummy DMA memory\n");
return -ENOMEM;
}
addr = (uint64_t) adapter->dummy_dma.phys_addr;
hi = (addr >> 32) & 0xffffffff;
lo = addr & 0xffffffff;
NXWR32(adapter, CRB_HOST_DUMMY_BUF_ADDR_HI, hi);
NXWR32(adapter, CRB_HOST_DUMMY_BUF_ADDR_LO, lo);
return 0;
}
/*
* NetXen DMA watchdog control:
*
* Bit 0 : enabled => R/O: 1 watchdog active, 0 inactive
* Bit 1 : disable_request => 1 req disable dma watchdog
* Bit 2 : enable_request => 1 req enable dma watchdog
* Bit 3-31 : unused
*/
void netxen_free_dummy_dma(struct netxen_adapter *adapter)
{
int i = 100;
u32 ctrl;
if (!NX_IS_REVISION_P2(adapter->ahw.revision_id))
return;
if (!adapter->dummy_dma.addr)
return;
ctrl = NXRD32(adapter, NETXEN_DMA_WATCHDOG_CTRL);
if ((ctrl & 0x1) != 0) {
NXWR32(adapter, NETXEN_DMA_WATCHDOG_CTRL, (ctrl | 0x2));
while ((ctrl & 0x1) != 0) {
msleep(50);
ctrl = NXRD32(adapter, NETXEN_DMA_WATCHDOG_CTRL);
if (--i == 0)
break;
};
}
if (i) {
pci_free_consistent(adapter->pdev,
NETXEN_HOST_DUMMY_DMA_SIZE,
adapter->dummy_dma.addr,
adapter->dummy_dma.phys_addr);
adapter->dummy_dma.addr = NULL;
} else
dev_err(&adapter->pdev->dev, "dma_watchdog_shutdown failed\n");
}
int netxen_phantom_init(struct netxen_adapter *adapter, int pegtune_val)
{
u32 val = 0;
int retries = 60;
if (pegtune_val)
return 0;
do {
val = NXRD32(adapter, CRB_CMDPEG_STATE);
switch (val) {
case PHAN_INITIALIZE_COMPLETE:
case PHAN_INITIALIZE_ACK:
return 0;
case PHAN_INITIALIZE_FAILED:
goto out_err;
default:
break;
}
msleep(500);
} while (--retries);
NXWR32(adapter, CRB_CMDPEG_STATE, PHAN_INITIALIZE_FAILED);
out_err:
dev_warn(&adapter->pdev->dev, "firmware init failed\n");
return -EIO;
}
static int
netxen_receive_peg_ready(struct netxen_adapter *adapter)
{
u32 val = 0;
int retries = 2000;
do {
val = NXRD32(adapter, CRB_RCVPEG_STATE);
if (val == PHAN_PEG_RCV_INITIALIZED)
return 0;
msleep(10);
} while (--retries);
if (!retries) {
printk(KERN_ERR "Receive Peg initialization not "
"complete, state: 0x%x.\n", val);
return -EIO;
}
return 0;
}
int netxen_init_firmware(struct netxen_adapter *adapter)
{
int err;
err = netxen_receive_peg_ready(adapter);
if (err)
return err;
NXWR32(adapter, CRB_NIC_CAPABILITIES_HOST, INTR_SCHEME_PERPORT);
NXWR32(adapter, CRB_NIC_MSI_MODE_HOST, MSI_MODE_MULTIFUNC);
NXWR32(adapter, CRB_MPORT_MODE, MPORT_MULTI_FUNCTION_MODE);
NXWR32(adapter, CRB_CMDPEG_STATE, PHAN_INITIALIZE_ACK);
return err;
}
static void
netxen_handle_linkevent(struct netxen_adapter *adapter, nx_fw_msg_t *msg)
{
u32 cable_OUI;
u16 cable_len;
u16 link_speed;
u8 link_status, module, duplex, autoneg;
struct net_device *netdev = adapter->netdev;
adapter->has_link_events = 1;
cable_OUI = msg->body[1] & 0xffffffff;
cable_len = (msg->body[1] >> 32) & 0xffff;
link_speed = (msg->body[1] >> 48) & 0xffff;
link_status = msg->body[2] & 0xff;
duplex = (msg->body[2] >> 16) & 0xff;
autoneg = (msg->body[2] >> 24) & 0xff;
module = (msg->body[2] >> 8) & 0xff;
if (module == LINKEVENT_MODULE_TWINAX_UNSUPPORTED_CABLE) {
printk(KERN_INFO "%s: unsupported cable: OUI 0x%x, length %d\n",
netdev->name, cable_OUI, cable_len);
} else if (module == LINKEVENT_MODULE_TWINAX_UNSUPPORTED_CABLELEN) {
printk(KERN_INFO "%s: unsupported cable length %d\n",
netdev->name, cable_len);
}
netxen_advert_link_change(adapter, link_status);
/* update link parameters */
if (duplex == LINKEVENT_FULL_DUPLEX)
adapter->link_duplex = DUPLEX_FULL;
else
adapter->link_duplex = DUPLEX_HALF;
adapter->module_type = module;
adapter->link_autoneg = autoneg;
adapter->link_speed = link_speed;
}
static void
netxen_handle_fw_message(int desc_cnt, int index,
struct nx_host_sds_ring *sds_ring)
{
nx_fw_msg_t msg;
struct status_desc *desc;
int i = 0, opcode;
while (desc_cnt > 0 && i < 8) {
desc = &sds_ring->desc_head[index];
msg.words[i++] = le64_to_cpu(desc->status_desc_data[0]);
msg.words[i++] = le64_to_cpu(desc->status_desc_data[1]);
index = get_next_index(index, sds_ring->num_desc);
desc_cnt--;
}
opcode = netxen_get_nic_msg_opcode(msg.body[0]);
switch (opcode) {
case NX_NIC_C2H_OPCODE_GET_LINKEVENT_RESPONSE:
netxen_handle_linkevent(sds_ring->adapter, &msg);
break;
default:
break;
}
}
static int
netxen_alloc_rx_skb(struct netxen_adapter *adapter,
struct nx_host_rds_ring *rds_ring,
struct netxen_rx_buffer *buffer)
{
struct sk_buff *skb;
dma_addr_t dma;
struct pci_dev *pdev = adapter->pdev;
buffer->skb = dev_alloc_skb(rds_ring->skb_size);
if (!buffer->skb)
return 1;
skb = buffer->skb;
if (!adapter->ahw.cut_through)
skb_reserve(skb, 2);
dma = pci_map_single(pdev, skb->data,
rds_ring->dma_size, PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(pdev, dma)) {
dev_kfree_skb_any(skb);
buffer->skb = NULL;
return 1;
}
buffer->skb = skb;
buffer->dma = dma;
buffer->state = NETXEN_BUFFER_BUSY;
return 0;
}
static struct sk_buff *netxen_process_rxbuf(struct netxen_adapter *adapter,
struct nx_host_rds_ring *rds_ring, u16 index, u16 cksum)
{
struct netxen_rx_buffer *buffer;
struct sk_buff *skb;
buffer = &rds_ring->rx_buf_arr[index];
pci_unmap_single(adapter->pdev, buffer->dma, rds_ring->dma_size,
PCI_DMA_FROMDEVICE);
skb = buffer->skb;
if (!skb)
goto no_skb;
if (likely(adapter->rx_csum && cksum == STATUS_CKSUM_OK)) {
adapter->stats.csummed++;
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else
skb->ip_summed = CHECKSUM_NONE;
skb->dev = adapter->netdev;
buffer->skb = NULL;
no_skb:
buffer->state = NETXEN_BUFFER_FREE;
return skb;
}
static struct netxen_rx_buffer *
netxen_process_rcv(struct netxen_adapter *adapter,
struct nx_host_sds_ring *sds_ring,
int ring, u64 sts_data0)
{
struct net_device *netdev = adapter->netdev;
struct netxen_recv_context *recv_ctx = &adapter->recv_ctx;
struct netxen_rx_buffer *buffer;
struct sk_buff *skb;
struct nx_host_rds_ring *rds_ring;
int index, length, cksum, pkt_offset;
if (unlikely(ring >= adapter->max_rds_rings))
return NULL;
rds_ring = &recv_ctx->rds_rings[ring];
index = netxen_get_sts_refhandle(sts_data0);
if (unlikely(index >= rds_ring->num_desc))
return NULL;
buffer = &rds_ring->rx_buf_arr[index];
length = netxen_get_sts_totallength(sts_data0);
cksum = netxen_get_sts_status(sts_data0);
pkt_offset = netxen_get_sts_pkt_offset(sts_data0);
skb = netxen_process_rxbuf(adapter, rds_ring, index, cksum);
if (!skb)
return buffer;
if (length > rds_ring->skb_size)
skb_put(skb, rds_ring->skb_size);
else
skb_put(skb, length);
if (pkt_offset)
skb_pull(skb, pkt_offset);
skb->truesize = skb->len + sizeof(struct sk_buff);
skb->protocol = eth_type_trans(skb, netdev);
napi_gro_receive(&sds_ring->napi, skb);
adapter->stats.rx_pkts++;
adapter->stats.rxbytes += length;
return buffer;
}
#define TCP_HDR_SIZE 20
#define TCP_TS_OPTION_SIZE 12
#define TCP_TS_HDR_SIZE (TCP_HDR_SIZE + TCP_TS_OPTION_SIZE)
static struct netxen_rx_buffer *
netxen_process_lro(struct netxen_adapter *adapter,
struct nx_host_sds_ring *sds_ring,
int ring, u64 sts_data0, u64 sts_data1)
{
struct net_device *netdev = adapter->netdev;
struct netxen_recv_context *recv_ctx = &adapter->recv_ctx;
struct netxen_rx_buffer *buffer;
struct sk_buff *skb;
struct nx_host_rds_ring *rds_ring;
struct iphdr *iph;
struct tcphdr *th;
bool push, timestamp;
int l2_hdr_offset, l4_hdr_offset;
int index;
u16 lro_length, length, data_offset;
u32 seq_number;
if (unlikely(ring > adapter->max_rds_rings))
return NULL;
rds_ring = &recv_ctx->rds_rings[ring];
index = netxen_get_lro_sts_refhandle(sts_data0);
if (unlikely(index > rds_ring->num_desc))
return NULL;
buffer = &rds_ring->rx_buf_arr[index];
timestamp = netxen_get_lro_sts_timestamp(sts_data0);
lro_length = netxen_get_lro_sts_length(sts_data0);
l2_hdr_offset = netxen_get_lro_sts_l2_hdr_offset(sts_data0);
l4_hdr_offset = netxen_get_lro_sts_l4_hdr_offset(sts_data0);
push = netxen_get_lro_sts_push_flag(sts_data0);
seq_number = netxen_get_lro_sts_seq_number(sts_data1);
skb = netxen_process_rxbuf(adapter, rds_ring, index, STATUS_CKSUM_OK);
if (!skb)
return buffer;
if (timestamp)
data_offset = l4_hdr_offset + TCP_TS_HDR_SIZE;
else
data_offset = l4_hdr_offset + TCP_HDR_SIZE;
skb_put(skb, lro_length + data_offset);
skb->truesize = skb->len + sizeof(struct sk_buff) + skb_headroom(skb);
skb_pull(skb, l2_hdr_offset);
skb->protocol = eth_type_trans(skb, netdev);
iph = (struct iphdr *)skb->data;
th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
length = (iph->ihl << 2) + (th->doff << 2) + lro_length;
iph->tot_len = htons(length);
iph->check = 0;
iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
th->psh = push;
th->seq = htonl(seq_number);
length = skb->len;
netif_receive_skb(skb);
adapter->stats.lro_pkts++;
adapter->stats.rxbytes += length;
return buffer;
}
#define netxen_merge_rx_buffers(list, head) \
do { list_splice_tail_init(list, head); } while (0);
int
netxen_process_rcv_ring(struct nx_host_sds_ring *sds_ring, int max)
{
struct netxen_adapter *adapter = sds_ring->adapter;
struct list_head *cur;
struct status_desc *desc;
struct netxen_rx_buffer *rxbuf;
u32 consumer = sds_ring->consumer;
int count = 0;
u64 sts_data0, sts_data1;
int opcode, ring = 0, desc_cnt;
while (count < max) {
desc = &sds_ring->desc_head[consumer];
sts_data0 = le64_to_cpu(desc->status_desc_data[0]);
if (!(sts_data0 & STATUS_OWNER_HOST))
break;
desc_cnt = netxen_get_sts_desc_cnt(sts_data0);
opcode = netxen_get_sts_opcode(sts_data0);
switch (opcode) {
case NETXEN_NIC_RXPKT_DESC:
case NETXEN_OLD_RXPKT_DESC:
case NETXEN_NIC_SYN_OFFLOAD:
ring = netxen_get_sts_type(sts_data0);
rxbuf = netxen_process_rcv(adapter, sds_ring,
ring, sts_data0);
break;
case NETXEN_NIC_LRO_DESC:
ring = netxen_get_lro_sts_type(sts_data0);
sts_data1 = le64_to_cpu(desc->status_desc_data[1]);
rxbuf = netxen_process_lro(adapter, sds_ring,
ring, sts_data0, sts_data1);
break;
case NETXEN_NIC_RESPONSE_DESC:
netxen_handle_fw_message(desc_cnt, consumer, sds_ring);
default:
goto skip;
}
WARN_ON(desc_cnt > 1);
if (rxbuf)
list_add_tail(&rxbuf->list, &sds_ring->free_list[ring]);
skip:
for (; desc_cnt > 0; desc_cnt--) {
desc = &sds_ring->desc_head[consumer];
desc->status_desc_data[0] =
cpu_to_le64(STATUS_OWNER_PHANTOM);
consumer = get_next_index(consumer, sds_ring->num_desc);
}
count++;
}
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
struct nx_host_rds_ring *rds_ring =
&adapter->recv_ctx.rds_rings[ring];
if (!list_empty(&sds_ring->free_list[ring])) {
list_for_each(cur, &sds_ring->free_list[ring]) {
rxbuf = list_entry(cur,
struct netxen_rx_buffer, list);
netxen_alloc_rx_skb(adapter, rds_ring, rxbuf);
}
spin_lock(&rds_ring->lock);
netxen_merge_rx_buffers(&sds_ring->free_list[ring],
&rds_ring->free_list);
spin_unlock(&rds_ring->lock);
}
netxen_post_rx_buffers_nodb(adapter, rds_ring);
}
if (count) {
sds_ring->consumer = consumer;
NXWRIO(adapter, sds_ring->crb_sts_consumer, consumer);
}
return count;
}
/* Process Command status ring */
int netxen_process_cmd_ring(struct netxen_adapter *adapter)
{
u32 sw_consumer, hw_consumer;
int count = 0, i;
struct netxen_cmd_buffer *buffer;
struct pci_dev *pdev = adapter->pdev;
struct net_device *netdev = adapter->netdev;
struct netxen_skb_frag *frag;
int done = 0;
struct nx_host_tx_ring *tx_ring = adapter->tx_ring;
if (!spin_trylock(&adapter->tx_clean_lock))
return 1;
sw_consumer = tx_ring->sw_consumer;
hw_consumer = le32_to_cpu(*(tx_ring->hw_consumer));
while (sw_consumer != hw_consumer) {
buffer = &tx_ring->cmd_buf_arr[sw_consumer];
if (buffer->skb) {
frag = &buffer->frag_array[0];
pci_unmap_single(pdev, frag->dma, frag->length,
PCI_DMA_TODEVICE);
frag->dma = 0ULL;
for (i = 1; i < buffer->frag_count; i++) {
frag++; /* Get the next frag */
pci_unmap_page(pdev, frag->dma, frag->length,
PCI_DMA_TODEVICE);
frag->dma = 0ULL;
}
adapter->stats.xmitfinished++;
dev_kfree_skb_any(buffer->skb);
buffer->skb = NULL;
}
sw_consumer = get_next_index(sw_consumer, tx_ring->num_desc);
if (++count >= MAX_STATUS_HANDLE)
break;
}
if (count && netif_running(netdev)) {
tx_ring->sw_consumer = sw_consumer;
smp_mb();
if (netif_queue_stopped(netdev) && netif_carrier_ok(netdev)) {
__netif_tx_lock(tx_ring->txq, smp_processor_id());
if (netxen_tx_avail(tx_ring) > TX_STOP_THRESH) {
netif_wake_queue(netdev);
adapter->tx_timeo_cnt = 0;
}
__netif_tx_unlock(tx_ring->txq);
}
}
/*
* If everything is freed up to consumer then check if the ring is full
* If the ring is full then check if more needs to be freed and
* schedule the call back again.
*
* This happens when there are 2 CPUs. One could be freeing and the
* other filling it. If the ring is full when we get out of here and
* the card has already interrupted the host then the host can miss the
* interrupt.
*
* There is still a possible race condition and the host could miss an
* interrupt. The card has to take care of this.
*/
hw_consumer = le32_to_cpu(*(tx_ring->hw_consumer));
done = (sw_consumer == hw_consumer);
spin_unlock(&adapter->tx_clean_lock);
return (done);
}
void
netxen_post_rx_buffers(struct netxen_adapter *adapter, u32 ringid,
struct nx_host_rds_ring *rds_ring)
{
struct rcv_desc *pdesc;
struct netxen_rx_buffer *buffer;
int producer, count = 0;
netxen_ctx_msg msg = 0;
struct list_head *head;
producer = rds_ring->producer;
spin_lock(&rds_ring->lock);
head = &rds_ring->free_list;
while (!list_empty(head)) {
buffer = list_entry(head->next, struct netxen_rx_buffer, list);
if (!buffer->skb) {
if (netxen_alloc_rx_skb(adapter, rds_ring, buffer))
break;
}
count++;
list_del(&buffer->list);
/* make a rcv descriptor */
pdesc = &rds_ring->desc_head[producer];
pdesc->addr_buffer = cpu_to_le64(buffer->dma);
pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
pdesc->buffer_length = cpu_to_le32(rds_ring->dma_size);
producer = get_next_index(producer, rds_ring->num_desc);
}
spin_unlock(&rds_ring->lock);
if (count) {
rds_ring->producer = producer;
NXWRIO(adapter, rds_ring->crb_rcv_producer,
(producer-1) & (rds_ring->num_desc-1));
if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) {
/*
* Write a doorbell msg to tell phanmon of change in
* receive ring producer
* Only for firmware version < 4.0.0
*/
netxen_set_msg_peg_id(msg, NETXEN_RCV_PEG_DB_ID);
netxen_set_msg_privid(msg);
netxen_set_msg_count(msg,
((producer - 1) &
(rds_ring->num_desc - 1)));
netxen_set_msg_ctxid(msg, adapter->portnum);
netxen_set_msg_opcode(msg, NETXEN_RCV_PRODUCER(ringid));
read_lock(&adapter->adapter_lock);
writel(msg, DB_NORMALIZE(adapter,
NETXEN_RCV_PRODUCER_OFFSET));
read_unlock(&adapter->adapter_lock);
}
}
}
static void
netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter,
struct nx_host_rds_ring *rds_ring)
{
struct rcv_desc *pdesc;
struct netxen_rx_buffer *buffer;
int producer, count = 0;
struct list_head *head;
producer = rds_ring->producer;
if (!spin_trylock(&rds_ring->lock))
return;
head = &rds_ring->free_list;
while (!list_empty(head)) {
buffer = list_entry(head->next, struct netxen_rx_buffer, list);
if (!buffer->skb) {
if (netxen_alloc_rx_skb(adapter, rds_ring, buffer))
break;
}
count++;
list_del(&buffer->list);
/* make a rcv descriptor */
pdesc = &rds_ring->desc_head[producer];
pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
pdesc->buffer_length = cpu_to_le32(rds_ring->dma_size);
pdesc->addr_buffer = cpu_to_le64(buffer->dma);
producer = get_next_index(producer, rds_ring->num_desc);
}
if (count) {
rds_ring->producer = producer;
NXWRIO(adapter, rds_ring->crb_rcv_producer,
(producer - 1) & (rds_ring->num_desc - 1));
}
spin_unlock(&rds_ring->lock);
}
void netxen_nic_clear_stats(struct netxen_adapter *adapter)
{
memset(&adapter->stats, 0, sizeof(adapter->stats));
return;
}