63d6e1d80a
Several small fixes around negative test case of the insertion of a IXGBE_ERR_NOT_SUPPORTED module. - mdio45_probe call was always failing due to mdio.prtad not being set. The function set to mdio.mdio_read was still working as we just happen to always be at prtad == 0. This will allow us to set the phy_id and phy.type correctly now. - There was timing issue with i2c calls when initiated from a tasklet. A small delay was added to allow the electrical oscillation to calm down. - Logic change in ixgbe_sfp_task that allows NOT_SUPPORTED condition to be recognized. Signed-off-by: Don Skidmore <donald.c.skidmore@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1321 lines
34 KiB
C
1321 lines
34 KiB
C
/*******************************************************************************
|
|
|
|
Intel 10 Gigabit PCI Express Linux driver
|
|
Copyright(c) 1999 - 2009 Intel Corporation.
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms and conditions of the GNU General Public License,
|
|
version 2, as published by the Free Software Foundation.
|
|
|
|
This program is distributed in the hope it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
The full GNU General Public License is included in this distribution in
|
|
the file called "COPYING".
|
|
|
|
Contact Information:
|
|
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
|
|
*******************************************************************************/
|
|
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include "ixgbe_common.h"
|
|
#include "ixgbe_phy.h"
|
|
|
|
static void ixgbe_i2c_start(struct ixgbe_hw *hw);
|
|
static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
|
|
static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
|
|
static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
|
|
static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
|
|
static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
|
|
static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
|
|
static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
|
|
static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
|
|
static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
|
|
static bool ixgbe_get_i2c_data(u32 *i2cctl);
|
|
static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
|
|
static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
|
|
static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
|
|
|
|
/**
|
|
* ixgbe_identify_phy_generic - Get physical layer module
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Determines the physical layer module found on the current adapter.
|
|
**/
|
|
s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
|
|
{
|
|
s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
|
|
u32 phy_addr;
|
|
|
|
if (hw->phy.type == ixgbe_phy_unknown) {
|
|
for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
|
|
hw->phy.mdio.prtad = phy_addr;
|
|
if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
|
|
ixgbe_get_phy_id(hw);
|
|
hw->phy.type =
|
|
ixgbe_get_phy_type_from_id(hw->phy.id);
|
|
status = 0;
|
|
break;
|
|
}
|
|
}
|
|
/* clear value if nothing found */
|
|
hw->phy.mdio.prtad = 0;
|
|
} else {
|
|
status = 0;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_get_phy_id - Get the phy type
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
**/
|
|
static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
|
|
{
|
|
u32 status;
|
|
u16 phy_id_high = 0;
|
|
u16 phy_id_low = 0;
|
|
|
|
status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
|
|
&phy_id_high);
|
|
|
|
if (status == 0) {
|
|
hw->phy.id = (u32)(phy_id_high << 16);
|
|
status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
|
|
&phy_id_low);
|
|
hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
|
|
hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_get_phy_type_from_id - Get the phy type
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
**/
|
|
static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
|
|
{
|
|
enum ixgbe_phy_type phy_type;
|
|
|
|
switch (phy_id) {
|
|
case TN1010_PHY_ID:
|
|
phy_type = ixgbe_phy_tn;
|
|
break;
|
|
case QT2022_PHY_ID:
|
|
phy_type = ixgbe_phy_qt;
|
|
break;
|
|
case ATH_PHY_ID:
|
|
phy_type = ixgbe_phy_nl;
|
|
break;
|
|
default:
|
|
phy_type = ixgbe_phy_unknown;
|
|
break;
|
|
}
|
|
|
|
return phy_type;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_reset_phy_generic - Performs a PHY reset
|
|
* @hw: pointer to hardware structure
|
|
**/
|
|
s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
|
|
{
|
|
/*
|
|
* Perform soft PHY reset to the PHY_XS.
|
|
* This will cause a soft reset to the PHY
|
|
*/
|
|
return hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
|
|
MDIO_CTRL1_RESET);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
|
|
* @hw: pointer to hardware structure
|
|
* @reg_addr: 32 bit address of PHY register to read
|
|
* @phy_data: Pointer to read data from PHY register
|
|
**/
|
|
s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
|
|
u32 device_type, u16 *phy_data)
|
|
{
|
|
u32 command;
|
|
u32 i;
|
|
u32 data;
|
|
s32 status = 0;
|
|
u16 gssr;
|
|
|
|
if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
|
|
gssr = IXGBE_GSSR_PHY1_SM;
|
|
else
|
|
gssr = IXGBE_GSSR_PHY0_SM;
|
|
|
|
if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
|
|
status = IXGBE_ERR_SWFW_SYNC;
|
|
|
|
if (status == 0) {
|
|
/* Setup and write the address cycle command */
|
|
command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
|
|
(device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
|
|
(hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
|
|
(IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
|
|
|
|
/*
|
|
* Check every 10 usec to see if the address cycle completed.
|
|
* The MDI Command bit will clear when the operation is
|
|
* complete
|
|
*/
|
|
for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
|
|
udelay(10);
|
|
|
|
command = IXGBE_READ_REG(hw, IXGBE_MSCA);
|
|
|
|
if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
|
|
break;
|
|
}
|
|
|
|
if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
|
|
hw_dbg(hw, "PHY address command did not complete.\n");
|
|
status = IXGBE_ERR_PHY;
|
|
}
|
|
|
|
if (status == 0) {
|
|
/*
|
|
* Address cycle complete, setup and write the read
|
|
* command
|
|
*/
|
|
command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
|
|
(device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
|
|
(hw->phy.mdio.prtad <<
|
|
IXGBE_MSCA_PHY_ADDR_SHIFT) |
|
|
(IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
|
|
|
|
/*
|
|
* Check every 10 usec to see if the address cycle
|
|
* completed. The MDI Command bit will clear when the
|
|
* operation is complete
|
|
*/
|
|
for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
|
|
udelay(10);
|
|
|
|
command = IXGBE_READ_REG(hw, IXGBE_MSCA);
|
|
|
|
if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
|
|
break;
|
|
}
|
|
|
|
if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
|
|
hw_dbg(hw, "PHY read command didn't complete\n");
|
|
status = IXGBE_ERR_PHY;
|
|
} else {
|
|
/*
|
|
* Read operation is complete. Get the data
|
|
* from MSRWD
|
|
*/
|
|
data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
|
|
data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
|
|
*phy_data = (u16)(data);
|
|
}
|
|
}
|
|
|
|
ixgbe_release_swfw_sync(hw, gssr);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
|
|
* @hw: pointer to hardware structure
|
|
* @reg_addr: 32 bit PHY register to write
|
|
* @device_type: 5 bit device type
|
|
* @phy_data: Data to write to the PHY register
|
|
**/
|
|
s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
|
|
u32 device_type, u16 phy_data)
|
|
{
|
|
u32 command;
|
|
u32 i;
|
|
s32 status = 0;
|
|
u16 gssr;
|
|
|
|
if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
|
|
gssr = IXGBE_GSSR_PHY1_SM;
|
|
else
|
|
gssr = IXGBE_GSSR_PHY0_SM;
|
|
|
|
if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
|
|
status = IXGBE_ERR_SWFW_SYNC;
|
|
|
|
if (status == 0) {
|
|
/* Put the data in the MDI single read and write data register*/
|
|
IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
|
|
|
|
/* Setup and write the address cycle command */
|
|
command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
|
|
(device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
|
|
(hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
|
|
(IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
|
|
|
|
/*
|
|
* Check every 10 usec to see if the address cycle completed.
|
|
* The MDI Command bit will clear when the operation is
|
|
* complete
|
|
*/
|
|
for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
|
|
udelay(10);
|
|
|
|
command = IXGBE_READ_REG(hw, IXGBE_MSCA);
|
|
|
|
if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
|
|
break;
|
|
}
|
|
|
|
if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
|
|
hw_dbg(hw, "PHY address cmd didn't complete\n");
|
|
status = IXGBE_ERR_PHY;
|
|
}
|
|
|
|
if (status == 0) {
|
|
/*
|
|
* Address cycle complete, setup and write the write
|
|
* command
|
|
*/
|
|
command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
|
|
(device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
|
|
(hw->phy.mdio.prtad <<
|
|
IXGBE_MSCA_PHY_ADDR_SHIFT) |
|
|
(IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
|
|
|
|
/*
|
|
* Check every 10 usec to see if the address cycle
|
|
* completed. The MDI Command bit will clear when the
|
|
* operation is complete
|
|
*/
|
|
for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
|
|
udelay(10);
|
|
|
|
command = IXGBE_READ_REG(hw, IXGBE_MSCA);
|
|
|
|
if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
|
|
break;
|
|
}
|
|
|
|
if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
|
|
hw_dbg(hw, "PHY address cmd didn't complete\n");
|
|
status = IXGBE_ERR_PHY;
|
|
}
|
|
}
|
|
|
|
ixgbe_release_swfw_sync(hw, gssr);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_setup_phy_link_generic - Set and restart autoneg
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Restart autonegotiation and PHY and waits for completion.
|
|
**/
|
|
s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
|
|
{
|
|
s32 status = IXGBE_NOT_IMPLEMENTED;
|
|
u32 time_out;
|
|
u32 max_time_out = 10;
|
|
u16 autoneg_reg;
|
|
|
|
/*
|
|
* Set advertisement settings in PHY based on autoneg_advertised
|
|
* settings. If autoneg_advertised = 0, then advertise default values
|
|
* tnx devices cannot be "forced" to a autoneg 10G and fail. But can
|
|
* for a 1G.
|
|
*/
|
|
hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
|
|
|
|
if (hw->phy.autoneg_advertised == IXGBE_LINK_SPEED_1GB_FULL)
|
|
autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
|
|
else
|
|
autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
|
|
|
|
hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
|
|
|
|
/* Restart PHY autonegotiation and wait for completion */
|
|
hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, &autoneg_reg);
|
|
|
|
autoneg_reg |= MDIO_AN_CTRL1_RESTART;
|
|
|
|
hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, autoneg_reg);
|
|
|
|
/* Wait for autonegotiation to finish */
|
|
for (time_out = 0; time_out < max_time_out; time_out++) {
|
|
udelay(10);
|
|
/* Restart PHY autonegotiation and wait for completion */
|
|
status = hw->phy.ops.read_reg(hw, MDIO_STAT1, MDIO_MMD_AN,
|
|
&autoneg_reg);
|
|
|
|
autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
|
|
if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
|
|
status = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (time_out == max_time_out)
|
|
status = IXGBE_ERR_LINK_SETUP;
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
|
|
* @hw: pointer to hardware structure
|
|
* @speed: new link speed
|
|
* @autoneg: true if autonegotiation enabled
|
|
**/
|
|
s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
|
|
ixgbe_link_speed speed,
|
|
bool autoneg,
|
|
bool autoneg_wait_to_complete)
|
|
{
|
|
|
|
/*
|
|
* Clear autoneg_advertised and set new values based on input link
|
|
* speed.
|
|
*/
|
|
hw->phy.autoneg_advertised = 0;
|
|
|
|
if (speed & IXGBE_LINK_SPEED_10GB_FULL)
|
|
hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
|
|
|
|
if (speed & IXGBE_LINK_SPEED_1GB_FULL)
|
|
hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
|
|
|
|
/* Setup link based on the new speed settings */
|
|
hw->phy.ops.setup_link(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_reset_phy_nl - Performs a PHY reset
|
|
* @hw: pointer to hardware structure
|
|
**/
|
|
s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
|
|
{
|
|
u16 phy_offset, control, eword, edata, block_crc;
|
|
bool end_data = false;
|
|
u16 list_offset, data_offset;
|
|
u16 phy_data = 0;
|
|
s32 ret_val = 0;
|
|
u32 i;
|
|
|
|
hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
|
|
|
|
/* reset the PHY and poll for completion */
|
|
hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
|
|
(phy_data | MDIO_CTRL1_RESET));
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
|
|
&phy_data);
|
|
if ((phy_data & MDIO_CTRL1_RESET) == 0)
|
|
break;
|
|
msleep(10);
|
|
}
|
|
|
|
if ((phy_data & MDIO_CTRL1_RESET) != 0) {
|
|
hw_dbg(hw, "PHY reset did not complete.\n");
|
|
ret_val = IXGBE_ERR_PHY;
|
|
goto out;
|
|
}
|
|
|
|
/* Get init offsets */
|
|
ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
|
|
&data_offset);
|
|
if (ret_val != 0)
|
|
goto out;
|
|
|
|
ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
|
|
data_offset++;
|
|
while (!end_data) {
|
|
/*
|
|
* Read control word from PHY init contents offset
|
|
*/
|
|
ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
|
|
control = (eword & IXGBE_CONTROL_MASK_NL) >>
|
|
IXGBE_CONTROL_SHIFT_NL;
|
|
edata = eword & IXGBE_DATA_MASK_NL;
|
|
switch (control) {
|
|
case IXGBE_DELAY_NL:
|
|
data_offset++;
|
|
hw_dbg(hw, "DELAY: %d MS\n", edata);
|
|
msleep(edata);
|
|
break;
|
|
case IXGBE_DATA_NL:
|
|
hw_dbg(hw, "DATA: \n");
|
|
data_offset++;
|
|
hw->eeprom.ops.read(hw, data_offset++,
|
|
&phy_offset);
|
|
for (i = 0; i < edata; i++) {
|
|
hw->eeprom.ops.read(hw, data_offset, &eword);
|
|
hw->phy.ops.write_reg(hw, phy_offset,
|
|
MDIO_MMD_PMAPMD, eword);
|
|
hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
|
|
phy_offset);
|
|
data_offset++;
|
|
phy_offset++;
|
|
}
|
|
break;
|
|
case IXGBE_CONTROL_NL:
|
|
data_offset++;
|
|
hw_dbg(hw, "CONTROL: \n");
|
|
if (edata == IXGBE_CONTROL_EOL_NL) {
|
|
hw_dbg(hw, "EOL\n");
|
|
end_data = true;
|
|
} else if (edata == IXGBE_CONTROL_SOL_NL) {
|
|
hw_dbg(hw, "SOL\n");
|
|
} else {
|
|
hw_dbg(hw, "Bad control value\n");
|
|
ret_val = IXGBE_ERR_PHY;
|
|
goto out;
|
|
}
|
|
break;
|
|
default:
|
|
hw_dbg(hw, "Bad control type\n");
|
|
ret_val = IXGBE_ERR_PHY;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_identify_sfp_module_generic - Identifies SFP module and assigns
|
|
* the PHY type.
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Searches for and indentifies the SFP module. Assings appropriate PHY type.
|
|
**/
|
|
s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
|
|
{
|
|
s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
|
|
u32 vendor_oui = 0;
|
|
enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
|
|
u8 identifier = 0;
|
|
u8 comp_codes_1g = 0;
|
|
u8 comp_codes_10g = 0;
|
|
u8 oui_bytes[3] = {0, 0, 0};
|
|
u8 cable_tech = 0;
|
|
u16 enforce_sfp = 0;
|
|
|
|
if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
|
|
hw->phy.sfp_type = ixgbe_sfp_type_not_present;
|
|
status = IXGBE_ERR_SFP_NOT_PRESENT;
|
|
goto out;
|
|
}
|
|
|
|
status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
|
|
&identifier);
|
|
|
|
if (status == IXGBE_ERR_SFP_NOT_PRESENT || status == IXGBE_ERR_I2C) {
|
|
status = IXGBE_ERR_SFP_NOT_PRESENT;
|
|
hw->phy.sfp_type = ixgbe_sfp_type_not_present;
|
|
if (hw->phy.type != ixgbe_phy_nl) {
|
|
hw->phy.id = 0;
|
|
hw->phy.type = ixgbe_phy_unknown;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
if (identifier == IXGBE_SFF_IDENTIFIER_SFP) {
|
|
hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES,
|
|
&comp_codes_1g);
|
|
hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES,
|
|
&comp_codes_10g);
|
|
hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_CABLE_TECHNOLOGY,
|
|
&cable_tech);
|
|
|
|
/* ID Module
|
|
* =========
|
|
* 0 SFP_DA_CU
|
|
* 1 SFP_SR
|
|
* 2 SFP_LR
|
|
* 3 SFP_DA_CORE0 - 82599-specific
|
|
* 4 SFP_DA_CORE1 - 82599-specific
|
|
* 5 SFP_SR/LR_CORE0 - 82599-specific
|
|
* 6 SFP_SR/LR_CORE1 - 82599-specific
|
|
*/
|
|
if (hw->mac.type == ixgbe_mac_82598EB) {
|
|
if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
|
|
hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
|
|
else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
|
|
hw->phy.sfp_type = ixgbe_sfp_type_sr;
|
|
else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
|
|
hw->phy.sfp_type = ixgbe_sfp_type_lr;
|
|
else
|
|
hw->phy.sfp_type = ixgbe_sfp_type_unknown;
|
|
} else if (hw->mac.type == ixgbe_mac_82599EB) {
|
|
if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
|
|
if (hw->bus.lan_id == 0)
|
|
hw->phy.sfp_type =
|
|
ixgbe_sfp_type_da_cu_core0;
|
|
else
|
|
hw->phy.sfp_type =
|
|
ixgbe_sfp_type_da_cu_core1;
|
|
else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
|
|
if (hw->bus.lan_id == 0)
|
|
hw->phy.sfp_type =
|
|
ixgbe_sfp_type_srlr_core0;
|
|
else
|
|
hw->phy.sfp_type =
|
|
ixgbe_sfp_type_srlr_core1;
|
|
else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
|
|
if (hw->bus.lan_id == 0)
|
|
hw->phy.sfp_type =
|
|
ixgbe_sfp_type_srlr_core0;
|
|
else
|
|
hw->phy.sfp_type =
|
|
ixgbe_sfp_type_srlr_core1;
|
|
else
|
|
hw->phy.sfp_type = ixgbe_sfp_type_unknown;
|
|
}
|
|
|
|
if (hw->phy.sfp_type != stored_sfp_type)
|
|
hw->phy.sfp_setup_needed = true;
|
|
|
|
/* Determine if the SFP+ PHY is dual speed or not. */
|
|
hw->phy.multispeed_fiber = false;
|
|
if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
|
|
(comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
|
|
((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
|
|
(comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
|
|
hw->phy.multispeed_fiber = true;
|
|
|
|
/* Determine PHY vendor */
|
|
if (hw->phy.type != ixgbe_phy_nl) {
|
|
hw->phy.id = identifier;
|
|
hw->phy.ops.read_i2c_eeprom(hw,
|
|
IXGBE_SFF_VENDOR_OUI_BYTE0,
|
|
&oui_bytes[0]);
|
|
hw->phy.ops.read_i2c_eeprom(hw,
|
|
IXGBE_SFF_VENDOR_OUI_BYTE1,
|
|
&oui_bytes[1]);
|
|
hw->phy.ops.read_i2c_eeprom(hw,
|
|
IXGBE_SFF_VENDOR_OUI_BYTE2,
|
|
&oui_bytes[2]);
|
|
|
|
vendor_oui =
|
|
((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
|
|
(oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
|
|
(oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
|
|
|
|
switch (vendor_oui) {
|
|
case IXGBE_SFF_VENDOR_OUI_TYCO:
|
|
if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
|
|
hw->phy.type = ixgbe_phy_tw_tyco;
|
|
break;
|
|
case IXGBE_SFF_VENDOR_OUI_FTL:
|
|
hw->phy.type = ixgbe_phy_sfp_ftl;
|
|
break;
|
|
case IXGBE_SFF_VENDOR_OUI_AVAGO:
|
|
hw->phy.type = ixgbe_phy_sfp_avago;
|
|
break;
|
|
case IXGBE_SFF_VENDOR_OUI_INTEL:
|
|
hw->phy.type = ixgbe_phy_sfp_intel;
|
|
break;
|
|
default:
|
|
if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
|
|
hw->phy.type = ixgbe_phy_tw_unknown;
|
|
else
|
|
hw->phy.type = ixgbe_phy_sfp_unknown;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* All passive DA cables are supported */
|
|
if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
|
|
status = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* 1G SFP modules are not supported */
|
|
if (comp_codes_10g == 0) {
|
|
hw->phy.type = ixgbe_phy_sfp_unsupported;
|
|
status = IXGBE_ERR_SFP_NOT_SUPPORTED;
|
|
goto out;
|
|
}
|
|
|
|
/* Anything else 82598-based is supported */
|
|
if (hw->mac.type == ixgbe_mac_82598EB) {
|
|
status = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* This is guaranteed to be 82599, no need to check for NULL */
|
|
hw->mac.ops.get_device_caps(hw, &enforce_sfp);
|
|
if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
|
|
/* Make sure we're a supported PHY type */
|
|
if (hw->phy.type == ixgbe_phy_sfp_intel) {
|
|
status = 0;
|
|
} else {
|
|
hw_dbg(hw, "SFP+ module not supported\n");
|
|
hw->phy.type = ixgbe_phy_sfp_unsupported;
|
|
status = IXGBE_ERR_SFP_NOT_SUPPORTED;
|
|
}
|
|
} else {
|
|
status = 0;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_get_sfp_init_sequence_offsets - Checks the MAC's EEPROM to see
|
|
* if it supports a given SFP+ module type, if so it returns the offsets to the
|
|
* phy init sequence block.
|
|
* @hw: pointer to hardware structure
|
|
* @list_offset: offset to the SFP ID list
|
|
* @data_offset: offset to the SFP data block
|
|
**/
|
|
s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
|
|
u16 *list_offset,
|
|
u16 *data_offset)
|
|
{
|
|
u16 sfp_id;
|
|
|
|
if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
|
|
return IXGBE_ERR_SFP_NOT_SUPPORTED;
|
|
|
|
if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
|
|
return IXGBE_ERR_SFP_NOT_PRESENT;
|
|
|
|
if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
|
|
(hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
|
|
return IXGBE_ERR_SFP_NOT_SUPPORTED;
|
|
|
|
/* Read offset to PHY init contents */
|
|
hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
|
|
|
|
if ((!*list_offset) || (*list_offset == 0xFFFF))
|
|
return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
|
|
|
|
/* Shift offset to first ID word */
|
|
(*list_offset)++;
|
|
|
|
/*
|
|
* Find the matching SFP ID in the EEPROM
|
|
* and program the init sequence
|
|
*/
|
|
hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
|
|
|
|
while (sfp_id != IXGBE_PHY_INIT_END_NL) {
|
|
if (sfp_id == hw->phy.sfp_type) {
|
|
(*list_offset)++;
|
|
hw->eeprom.ops.read(hw, *list_offset, data_offset);
|
|
if ((!*data_offset) || (*data_offset == 0xFFFF)) {
|
|
hw_dbg(hw, "SFP+ module not supported\n");
|
|
return IXGBE_ERR_SFP_NOT_SUPPORTED;
|
|
} else {
|
|
break;
|
|
}
|
|
} else {
|
|
(*list_offset) += 2;
|
|
if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
|
|
return IXGBE_ERR_PHY;
|
|
}
|
|
}
|
|
|
|
if (sfp_id == IXGBE_PHY_INIT_END_NL) {
|
|
hw_dbg(hw, "No matching SFP+ module found\n");
|
|
return IXGBE_ERR_SFP_NOT_SUPPORTED;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
|
|
* @hw: pointer to hardware structure
|
|
* @byte_offset: EEPROM byte offset to read
|
|
* @eeprom_data: value read
|
|
*
|
|
* Performs byte read operation to SFP module's EEPROM over I2C interface.
|
|
**/
|
|
s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
|
|
u8 *eeprom_data)
|
|
{
|
|
return hw->phy.ops.read_i2c_byte(hw, byte_offset,
|
|
IXGBE_I2C_EEPROM_DEV_ADDR,
|
|
eeprom_data);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
|
|
* @hw: pointer to hardware structure
|
|
* @byte_offset: EEPROM byte offset to write
|
|
* @eeprom_data: value to write
|
|
*
|
|
* Performs byte write operation to SFP module's EEPROM over I2C interface.
|
|
**/
|
|
s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
|
|
u8 eeprom_data)
|
|
{
|
|
return hw->phy.ops.write_i2c_byte(hw, byte_offset,
|
|
IXGBE_I2C_EEPROM_DEV_ADDR,
|
|
eeprom_data);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
|
|
* @hw: pointer to hardware structure
|
|
* @byte_offset: byte offset to read
|
|
* @data: value read
|
|
*
|
|
* Performs byte read operation to SFP module's EEPROM over I2C interface at
|
|
* a specified deivce address.
|
|
**/
|
|
s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
|
|
u8 dev_addr, u8 *data)
|
|
{
|
|
s32 status = 0;
|
|
u32 max_retry = 1;
|
|
u32 retry = 0;
|
|
bool nack = 1;
|
|
|
|
do {
|
|
ixgbe_i2c_start(hw);
|
|
|
|
/* Device Address and write indication */
|
|
status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
|
|
if (status != 0)
|
|
goto fail;
|
|
|
|
status = ixgbe_get_i2c_ack(hw);
|
|
if (status != 0)
|
|
goto fail;
|
|
|
|
status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
|
|
if (status != 0)
|
|
goto fail;
|
|
|
|
status = ixgbe_get_i2c_ack(hw);
|
|
if (status != 0)
|
|
goto fail;
|
|
|
|
ixgbe_i2c_start(hw);
|
|
|
|
/* Device Address and read indication */
|
|
status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
|
|
if (status != 0)
|
|
goto fail;
|
|
|
|
status = ixgbe_get_i2c_ack(hw);
|
|
if (status != 0)
|
|
goto fail;
|
|
|
|
status = ixgbe_clock_in_i2c_byte(hw, data);
|
|
if (status != 0)
|
|
goto fail;
|
|
|
|
status = ixgbe_clock_out_i2c_bit(hw, nack);
|
|
if (status != 0)
|
|
goto fail;
|
|
|
|
ixgbe_i2c_stop(hw);
|
|
break;
|
|
|
|
fail:
|
|
ixgbe_i2c_bus_clear(hw);
|
|
retry++;
|
|
if (retry < max_retry)
|
|
hw_dbg(hw, "I2C byte read error - Retrying.\n");
|
|
else
|
|
hw_dbg(hw, "I2C byte read error.\n");
|
|
|
|
} while (retry < max_retry);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
|
|
* @hw: pointer to hardware structure
|
|
* @byte_offset: byte offset to write
|
|
* @data: value to write
|
|
*
|
|
* Performs byte write operation to SFP module's EEPROM over I2C interface at
|
|
* a specified device address.
|
|
**/
|
|
s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
|
|
u8 dev_addr, u8 data)
|
|
{
|
|
s32 status = 0;
|
|
u32 max_retry = 1;
|
|
u32 retry = 0;
|
|
|
|
do {
|
|
ixgbe_i2c_start(hw);
|
|
|
|
status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
|
|
if (status != 0)
|
|
goto fail;
|
|
|
|
status = ixgbe_get_i2c_ack(hw);
|
|
if (status != 0)
|
|
goto fail;
|
|
|
|
status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
|
|
if (status != 0)
|
|
goto fail;
|
|
|
|
status = ixgbe_get_i2c_ack(hw);
|
|
if (status != 0)
|
|
goto fail;
|
|
|
|
status = ixgbe_clock_out_i2c_byte(hw, data);
|
|
if (status != 0)
|
|
goto fail;
|
|
|
|
status = ixgbe_get_i2c_ack(hw);
|
|
if (status != 0)
|
|
goto fail;
|
|
|
|
ixgbe_i2c_stop(hw);
|
|
break;
|
|
|
|
fail:
|
|
ixgbe_i2c_bus_clear(hw);
|
|
retry++;
|
|
if (retry < max_retry)
|
|
hw_dbg(hw, "I2C byte write error - Retrying.\n");
|
|
else
|
|
hw_dbg(hw, "I2C byte write error.\n");
|
|
} while (retry < max_retry);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_i2c_start - Sets I2C start condition
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Sets I2C start condition (High -> Low on SDA while SCL is High)
|
|
**/
|
|
static void ixgbe_i2c_start(struct ixgbe_hw *hw)
|
|
{
|
|
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
|
|
|
|
/* Start condition must begin with data and clock high */
|
|
ixgbe_set_i2c_data(hw, &i2cctl, 1);
|
|
ixgbe_raise_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Setup time for start condition (4.7us) */
|
|
udelay(IXGBE_I2C_T_SU_STA);
|
|
|
|
ixgbe_set_i2c_data(hw, &i2cctl, 0);
|
|
|
|
/* Hold time for start condition (4us) */
|
|
udelay(IXGBE_I2C_T_HD_STA);
|
|
|
|
ixgbe_lower_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Minimum low period of clock is 4.7 us */
|
|
udelay(IXGBE_I2C_T_LOW);
|
|
|
|
}
|
|
|
|
/**
|
|
* ixgbe_i2c_stop - Sets I2C stop condition
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Sets I2C stop condition (Low -> High on SDA while SCL is High)
|
|
**/
|
|
static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
|
|
{
|
|
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
|
|
|
|
/* Stop condition must begin with data low and clock high */
|
|
ixgbe_set_i2c_data(hw, &i2cctl, 0);
|
|
ixgbe_raise_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Setup time for stop condition (4us) */
|
|
udelay(IXGBE_I2C_T_SU_STO);
|
|
|
|
ixgbe_set_i2c_data(hw, &i2cctl, 1);
|
|
|
|
/* bus free time between stop and start (4.7us)*/
|
|
udelay(IXGBE_I2C_T_BUF);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
|
|
* @hw: pointer to hardware structure
|
|
* @data: data byte to clock in
|
|
*
|
|
* Clocks in one byte data via I2C data/clock
|
|
**/
|
|
static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
|
|
{
|
|
s32 status = 0;
|
|
s32 i;
|
|
bool bit = 0;
|
|
|
|
for (i = 7; i >= 0; i--) {
|
|
status = ixgbe_clock_in_i2c_bit(hw, &bit);
|
|
*data |= bit << i;
|
|
|
|
if (status != 0)
|
|
break;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
|
|
* @hw: pointer to hardware structure
|
|
* @data: data byte clocked out
|
|
*
|
|
* Clocks out one byte data via I2C data/clock
|
|
**/
|
|
static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
|
|
{
|
|
s32 status = 0;
|
|
s32 i;
|
|
u32 i2cctl;
|
|
bool bit = 0;
|
|
|
|
for (i = 7; i >= 0; i--) {
|
|
bit = (data >> i) & 0x1;
|
|
status = ixgbe_clock_out_i2c_bit(hw, bit);
|
|
|
|
if (status != 0)
|
|
break;
|
|
}
|
|
|
|
/* Release SDA line (set high) */
|
|
i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
|
|
i2cctl |= IXGBE_I2C_DATA_OUT;
|
|
IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_get_i2c_ack - Polls for I2C ACK
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Clocks in/out one bit via I2C data/clock
|
|
**/
|
|
static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
|
|
{
|
|
s32 status;
|
|
u32 i = 0;
|
|
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
|
|
u32 timeout = 10;
|
|
bool ack = 1;
|
|
|
|
status = ixgbe_raise_i2c_clk(hw, &i2cctl);
|
|
|
|
if (status != 0)
|
|
goto out;
|
|
|
|
/* Minimum high period of clock is 4us */
|
|
udelay(IXGBE_I2C_T_HIGH);
|
|
|
|
/* Poll for ACK. Note that ACK in I2C spec is
|
|
* transition from 1 to 0 */
|
|
for (i = 0; i < timeout; i++) {
|
|
i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
|
|
ack = ixgbe_get_i2c_data(&i2cctl);
|
|
|
|
udelay(1);
|
|
if (ack == 0)
|
|
break;
|
|
}
|
|
|
|
if (ack == 1) {
|
|
hw_dbg(hw, "I2C ack was not received.\n");
|
|
status = IXGBE_ERR_I2C;
|
|
}
|
|
|
|
ixgbe_lower_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Minimum low period of clock is 4.7 us */
|
|
udelay(IXGBE_I2C_T_LOW);
|
|
|
|
out:
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
|
|
* @hw: pointer to hardware structure
|
|
* @data: read data value
|
|
*
|
|
* Clocks in one bit via I2C data/clock
|
|
**/
|
|
static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
|
|
{
|
|
s32 status;
|
|
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
|
|
|
|
status = ixgbe_raise_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Minimum high period of clock is 4us */
|
|
udelay(IXGBE_I2C_T_HIGH);
|
|
|
|
i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
|
|
*data = ixgbe_get_i2c_data(&i2cctl);
|
|
|
|
ixgbe_lower_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Minimum low period of clock is 4.7 us */
|
|
udelay(IXGBE_I2C_T_LOW);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
|
|
* @hw: pointer to hardware structure
|
|
* @data: data value to write
|
|
*
|
|
* Clocks out one bit via I2C data/clock
|
|
**/
|
|
static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
|
|
{
|
|
s32 status;
|
|
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
|
|
|
|
status = ixgbe_set_i2c_data(hw, &i2cctl, data);
|
|
if (status == 0) {
|
|
status = ixgbe_raise_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Minimum high period of clock is 4us */
|
|
udelay(IXGBE_I2C_T_HIGH);
|
|
|
|
ixgbe_lower_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Minimum low period of clock is 4.7 us.
|
|
* This also takes care of the data hold time.
|
|
*/
|
|
udelay(IXGBE_I2C_T_LOW);
|
|
} else {
|
|
status = IXGBE_ERR_I2C;
|
|
hw_dbg(hw, "I2C data was not set to %X\n", data);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
/**
|
|
* ixgbe_raise_i2c_clk - Raises the I2C SCL clock
|
|
* @hw: pointer to hardware structure
|
|
* @i2cctl: Current value of I2CCTL register
|
|
*
|
|
* Raises the I2C clock line '0'->'1'
|
|
**/
|
|
static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
|
|
{
|
|
s32 status = 0;
|
|
|
|
*i2cctl |= IXGBE_I2C_CLK_OUT;
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
|
|
|
|
/* SCL rise time (1000ns) */
|
|
udelay(IXGBE_I2C_T_RISE);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
|
|
* @hw: pointer to hardware structure
|
|
* @i2cctl: Current value of I2CCTL register
|
|
*
|
|
* Lowers the I2C clock line '1'->'0'
|
|
**/
|
|
static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
|
|
{
|
|
|
|
*i2cctl &= ~IXGBE_I2C_CLK_OUT;
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
|
|
|
|
/* SCL fall time (300ns) */
|
|
udelay(IXGBE_I2C_T_FALL);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_set_i2c_data - Sets the I2C data bit
|
|
* @hw: pointer to hardware structure
|
|
* @i2cctl: Current value of I2CCTL register
|
|
* @data: I2C data value (0 or 1) to set
|
|
*
|
|
* Sets the I2C data bit
|
|
**/
|
|
static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
|
|
{
|
|
s32 status = 0;
|
|
|
|
if (data)
|
|
*i2cctl |= IXGBE_I2C_DATA_OUT;
|
|
else
|
|
*i2cctl &= ~IXGBE_I2C_DATA_OUT;
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
|
|
|
|
/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
|
|
udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
|
|
|
|
/* Verify data was set correctly */
|
|
*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
|
|
if (data != ixgbe_get_i2c_data(i2cctl)) {
|
|
status = IXGBE_ERR_I2C;
|
|
hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_get_i2c_data - Reads the I2C SDA data bit
|
|
* @hw: pointer to hardware structure
|
|
* @i2cctl: Current value of I2CCTL register
|
|
*
|
|
* Returns the I2C data bit value
|
|
**/
|
|
static bool ixgbe_get_i2c_data(u32 *i2cctl)
|
|
{
|
|
bool data;
|
|
|
|
if (*i2cctl & IXGBE_I2C_DATA_IN)
|
|
data = 1;
|
|
else
|
|
data = 0;
|
|
|
|
return data;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_i2c_bus_clear - Clears the I2C bus
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Clears the I2C bus by sending nine clock pulses.
|
|
* Used when data line is stuck low.
|
|
**/
|
|
static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
|
|
{
|
|
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
|
|
u32 i;
|
|
|
|
ixgbe_set_i2c_data(hw, &i2cctl, 1);
|
|
|
|
for (i = 0; i < 9; i++) {
|
|
ixgbe_raise_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Min high period of clock is 4us */
|
|
udelay(IXGBE_I2C_T_HIGH);
|
|
|
|
ixgbe_lower_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Min low period of clock is 4.7us*/
|
|
udelay(IXGBE_I2C_T_LOW);
|
|
}
|
|
|
|
/* Put the i2c bus back to default state */
|
|
ixgbe_i2c_stop(hw);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_check_phy_link_tnx - Determine link and speed status
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Reads the VS1 register to determine if link is up and the current speed for
|
|
* the PHY.
|
|
**/
|
|
s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
|
|
bool *link_up)
|
|
{
|
|
s32 status = 0;
|
|
u32 time_out;
|
|
u32 max_time_out = 10;
|
|
u16 phy_link = 0;
|
|
u16 phy_speed = 0;
|
|
u16 phy_data = 0;
|
|
|
|
/* Initialize speed and link to default case */
|
|
*link_up = false;
|
|
*speed = IXGBE_LINK_SPEED_10GB_FULL;
|
|
|
|
/*
|
|
* Check current speed and link status of the PHY register.
|
|
* This is a vendor specific register and may have to
|
|
* be changed for other copper PHYs.
|
|
*/
|
|
for (time_out = 0; time_out < max_time_out; time_out++) {
|
|
udelay(10);
|
|
status = hw->phy.ops.read_reg(hw,
|
|
IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
|
|
MDIO_MMD_VEND1,
|
|
&phy_data);
|
|
phy_link = phy_data &
|
|
IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
|
|
phy_speed = phy_data &
|
|
IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
|
|
if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
|
|
*link_up = true;
|
|
if (phy_speed ==
|
|
IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
|
|
*speed = IXGBE_LINK_SPEED_1GB_FULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
|
|
* @hw: pointer to hardware structure
|
|
* @firmware_version: pointer to the PHY Firmware Version
|
|
**/
|
|
s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
|
|
u16 *firmware_version)
|
|
{
|
|
s32 status = 0;
|
|
|
|
status = hw->phy.ops.read_reg(hw, TNX_FW_REV, MDIO_MMD_VEND1,
|
|
firmware_version);
|
|
|
|
return status;
|
|
}
|
|
|