linux/drivers/media/dvb/frontends/cx24123.c
Vadim Catana a74b51fca9 V4L/DVB (3795): Fix for CX24123 & low symbol rates
- fixed the reception of channels with low symbol rates.
  ( The VGA1 and VGA2 offsets recommended by cx24109 docs for
  symbol rates from 1 to 5 MSps do not work. I changed them
  to values found experimentally. The charge pump current
  and FILTUNE voltage are now set to values recommended in
  the docs. This improves reception for symbol rates < 15 MSps.
  The values written in the SYSSymbolRate registers are calculated
  with better precision. )
		     
- fixed the cx24123_get_fec() function. It was returning the values
  for DCII mode.
- removed some unused variables

Signed-off-by: Vadim Catana <skystar at moldova.cc>
Signed-off-by: Andrew de Quincey <adq_dvb@lidskialf.net>
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2006-05-12 19:55:02 -03:00

989 lines
25 KiB
C

/*
Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver
Copyright (C) 2005 Steven Toth <stoth@hauppauge.com>
Support for KWorld DVB-S 100 by Vadim Catana <skystar@moldova.cc>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include "dvb_frontend.h"
#include "cx24123.h"
#define XTAL 10111000
static int debug;
#define dprintk(args...) \
do { \
if (debug) printk (KERN_DEBUG "cx24123: " args); \
} while (0)
struct cx24123_state
{
struct i2c_adapter* i2c;
struct dvb_frontend_ops ops;
const struct cx24123_config* config;
struct dvb_frontend frontend;
u32 lastber;
u16 snr;
u8 lnbreg;
/* Some PLL specifics for tuning */
u32 VCAarg;
u32 VGAarg;
u32 bandselectarg;
u32 pllarg;
u32 FILTune;
/* The Demod/Tuner can't easily provide these, we cache them */
u32 currentfreq;
u32 currentsymbolrate;
};
/* Various tuner defaults need to be established for a given symbol rate Sps */
static struct
{
u32 symbolrate_low;
u32 symbolrate_high;
u32 VCAprogdata;
u32 VGAprogdata;
u32 FILTune;
} cx24123_AGC_vals[] =
{
{
.symbolrate_low = 1000000,
.symbolrate_high = 4999999,
/* the specs recommend other values for VGA offsets,
but tests show they are wrong */
.VGAprogdata = (2 << 18) | (0x180 << 9) | 0x1e0,
.VCAprogdata = (4 << 18) | (0x07 << 9) | 0x07,
.FILTune = 0x280 /* 0.41 V */
},
{
.symbolrate_low = 5000000,
.symbolrate_high = 14999999,
.VGAprogdata = (2 << 18) | (0x180 << 9) | 0x1e0,
.VCAprogdata = (4 << 18) | (0x07 << 9) | 0x1f,
.FILTune = 0x317 /* 0.90 V */
},
{
.symbolrate_low = 15000000,
.symbolrate_high = 45000000,
.VGAprogdata = (2 << 18) | (0x100 << 9) | 0x180,
.VCAprogdata = (4 << 18) | (0x07 << 9) | 0x3f,
.FILTune = 0x146 /* 2.70 V */
},
};
/*
* Various tuner defaults need to be established for a given frequency kHz.
* fixme: The bounds on the bands do not match the doc in real life.
* fixme: Some of them have been moved, other might need adjustment.
*/
static struct
{
u32 freq_low;
u32 freq_high;
u32 VCOdivider;
u32 progdata;
} cx24123_bandselect_vals[] =
{
{
.freq_low = 950000,
.freq_high = 1018999,
.VCOdivider = 4,
.progdata = (0 << 18) | (0 << 9) | 0x40,
},
{
.freq_low = 1019000,
.freq_high = 1074999,
.VCOdivider = 4,
.progdata = (0 << 18) | (0 << 9) | 0x80,
},
{
.freq_low = 1075000,
.freq_high = 1227999,
.VCOdivider = 2,
.progdata = (0 << 18) | (1 << 9) | 0x01,
},
{
.freq_low = 1228000,
.freq_high = 1349999,
.VCOdivider = 2,
.progdata = (0 << 18) | (1 << 9) | 0x02,
},
{
.freq_low = 1350000,
.freq_high = 1481999,
.VCOdivider = 2,
.progdata = (0 << 18) | (1 << 9) | 0x04,
},
{
.freq_low = 1482000,
.freq_high = 1595999,
.VCOdivider = 2,
.progdata = (0 << 18) | (1 << 9) | 0x08,
},
{
.freq_low = 1596000,
.freq_high = 1717999,
.VCOdivider = 2,
.progdata = (0 << 18) | (1 << 9) | 0x10,
},
{
.freq_low = 1718000,
.freq_high = 1855999,
.VCOdivider = 2,
.progdata = (0 << 18) | (1 << 9) | 0x20,
},
{
.freq_low = 1856000,
.freq_high = 2035999,
.VCOdivider = 2,
.progdata = (0 << 18) | (1 << 9) | 0x40,
},
{
.freq_low = 2036000,
.freq_high = 2149999,
.VCOdivider = 2,
.progdata = (0 << 18) | (1 << 9) | 0x80,
},
};
static struct {
u8 reg;
u8 data;
} cx24123_regdata[] =
{
{0x00, 0x03}, /* Reset system */
{0x00, 0x00}, /* Clear reset */
{0x03, 0x07},
{0x04, 0x10},
{0x05, 0x04},
{0x06, 0x31},
{0x0d, 0x02},
{0x0e, 0x03},
{0x0f, 0xfe},
{0x10, 0x01},
{0x14, 0x01},
{0x16, 0x00},
{0x17, 0x01},
{0x1b, 0x05},
{0x1c, 0x80},
{0x1d, 0x00},
{0x1e, 0x00},
{0x20, 0x41},
{0x21, 0x15},
{0x29, 0x00},
{0x2a, 0xb0},
{0x2b, 0x73},
{0x2c, 0x00},
{0x2d, 0x00},
{0x2e, 0x00},
{0x2f, 0x00},
{0x30, 0x00},
{0x31, 0x00},
{0x32, 0x8c},
{0x33, 0x00},
{0x34, 0x00},
{0x35, 0x03},
{0x36, 0x02},
{0x37, 0x3a},
{0x3a, 0x00}, /* Enable AGC accumulator */
{0x44, 0x00},
{0x45, 0x00},
{0x46, 0x05},
{0x56, 0x41},
{0x57, 0xff},
{0x67, 0x83},
};
static int cx24123_writereg(struct cx24123_state* state, int reg, int data)
{
u8 buf[] = { reg, data };
struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
int err;
if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) {
printk("%s: writereg error(err == %i, reg == 0x%02x,"
" data == 0x%02x)\n", __FUNCTION__, err, reg, data);
return -EREMOTEIO;
}
return 0;
}
static int cx24123_writelnbreg(struct cx24123_state* state, int reg, int data)
{
u8 buf[] = { reg, data };
/* fixme: put the intersil addr int the config */
struct i2c_msg msg = { .addr = 0x08, .flags = 0, .buf = buf, .len = 2 };
int err;
if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) {
printk("%s: writelnbreg error (err == %i, reg == 0x%02x,"
" data == 0x%02x)\n", __FUNCTION__, err, reg, data);
return -EREMOTEIO;
}
/* cache the write, no way to read back */
state->lnbreg = data;
return 0;
}
static int cx24123_readreg(struct cx24123_state* state, u8 reg)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = {
{ .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 }
};
ret = i2c_transfer(state->i2c, msg, 2);
if (ret != 2) {
printk("%s: reg=0x%x (error=%d)\n", __FUNCTION__, reg, ret);
return ret;
}
return b1[0];
}
static int cx24123_readlnbreg(struct cx24123_state* state, u8 reg)
{
return state->lnbreg;
}
static int cx24123_set_inversion(struct cx24123_state* state, fe_spectral_inversion_t inversion)
{
switch (inversion) {
case INVERSION_OFF:
cx24123_writereg(state, 0x0e, cx24123_readreg(state, 0x0e) & 0x7f);
cx24123_writereg(state, 0x10, cx24123_readreg(state, 0x10) | 0x80);
break;
case INVERSION_ON:
cx24123_writereg(state, 0x0e, cx24123_readreg(state, 0x0e) | 0x80);
cx24123_writereg(state, 0x10, cx24123_readreg(state, 0x10) | 0x80);
break;
case INVERSION_AUTO:
cx24123_writereg(state, 0x10, cx24123_readreg(state, 0x10) & 0x7f);
break;
default:
return -EINVAL;
}
return 0;
}
static int cx24123_get_inversion(struct cx24123_state* state, fe_spectral_inversion_t *inversion)
{
u8 val;
val = cx24123_readreg(state, 0x1b) >> 7;
if (val == 0)
*inversion = INVERSION_OFF;
else
*inversion = INVERSION_ON;
return 0;
}
static int cx24123_set_fec(struct cx24123_state* state, fe_code_rate_t fec)
{
if ( (fec < FEC_NONE) || (fec > FEC_AUTO) )
fec = FEC_AUTO;
/* Hardware has 5/11 and 3/5 but are never unused */
switch (fec) {
case FEC_NONE:
return cx24123_writereg(state, 0x0f, 0x01);
case FEC_1_2:
return cx24123_writereg(state, 0x0f, 0x02);
case FEC_2_3:
return cx24123_writereg(state, 0x0f, 0x04);
case FEC_3_4:
return cx24123_writereg(state, 0x0f, 0x08);
case FEC_5_6:
return cx24123_writereg(state, 0x0f, 0x20);
case FEC_7_8:
return cx24123_writereg(state, 0x0f, 0x80);
case FEC_AUTO:
return cx24123_writereg(state, 0x0f, 0xae);
default:
return -EOPNOTSUPP;
}
}
static int cx24123_get_fec(struct cx24123_state* state, fe_code_rate_t *fec)
{
int ret;
ret = cx24123_readreg (state, 0x1b);
if (ret < 0)
return ret;
ret = ret & 0x07;
switch (ret) {
case 1:
*fec = FEC_1_2;
break;
case 2:
*fec = FEC_2_3;
break;
case 3:
*fec = FEC_3_4;
break;
case 4:
*fec = FEC_4_5;
break;
case 5:
*fec = FEC_5_6;
break;
case 6:
*fec = FEC_6_7;
break;
case 7:
*fec = FEC_7_8;
break;
default:
*fec = FEC_NONE; // can't happen
printk("FEC_NONE ?\n");
}
return 0;
}
static int cx24123_set_symbolrate(struct cx24123_state* state, u32 srate)
{
u32 tmp, sample_rate, ratio;
u8 pll_mult;
/* check if symbol rate is within limits */
if ((srate > state->ops.info.symbol_rate_max) ||
(srate < state->ops.info.symbol_rate_min))
return -EOPNOTSUPP;;
/* choose the sampling rate high enough for the required operation,
while optimizing the power consumed by the demodulator */
if (srate < (XTAL*2)/2)
pll_mult = 2;
else if (srate < (XTAL*3)/2)
pll_mult = 3;
else if (srate < (XTAL*4)/2)
pll_mult = 4;
else if (srate < (XTAL*5)/2)
pll_mult = 5;
else if (srate < (XTAL*6)/2)
pll_mult = 6;
else if (srate < (XTAL*7)/2)
pll_mult = 7;
else if (srate < (XTAL*8)/2)
pll_mult = 8;
else
pll_mult = 9;
sample_rate = pll_mult * XTAL;
/*
SYSSymbolRate[21:0] = (srate << 23) / sample_rate
We have to use 32 bit unsigned arithmetic without precision loss.
The maximum srate is 45000000 or 0x02AEA540. This number has
only 6 clear bits on top, hence we can shift it left only 6 bits
at a time. Borrowed from cx24110.c
*/
tmp = srate << 6;
ratio = tmp / sample_rate;
tmp = (tmp % sample_rate) << 6;
ratio = (ratio << 6) + (tmp / sample_rate);
tmp = (tmp % sample_rate) << 6;
ratio = (ratio << 6) + (tmp / sample_rate);
tmp = (tmp % sample_rate) << 5;
ratio = (ratio << 5) + (tmp / sample_rate);
cx24123_writereg(state, 0x01, pll_mult * 6);
cx24123_writereg(state, 0x08, (ratio >> 16) & 0x3f );
cx24123_writereg(state, 0x09, (ratio >> 8) & 0xff );
cx24123_writereg(state, 0x0a, (ratio ) & 0xff );
dprintk("%s: srate=%d, ratio=0x%08x, sample_rate=%i\n", __FUNCTION__, srate, ratio, sample_rate);
return 0;
}
/*
* Based on the required frequency and symbolrate, the tuner AGC has to be configured
* and the correct band selected. Calculate those values
*/
static int cx24123_pll_calculate(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
struct cx24123_state *state = fe->demodulator_priv;
u32 ndiv = 0, adiv = 0, vco_div = 0;
int i = 0;
int pump = 2;
/* Defaults for low freq, low rate */
state->VCAarg = cx24123_AGC_vals[0].VCAprogdata;
state->VGAarg = cx24123_AGC_vals[0].VGAprogdata;
state->bandselectarg = cx24123_bandselect_vals[0].progdata;
vco_div = cx24123_bandselect_vals[0].VCOdivider;
/* For the given symbol rate, determine the VCA, VGA and FILTUNE programming bits */
for (i = 0; i < sizeof(cx24123_AGC_vals) / sizeof(cx24123_AGC_vals[0]); i++)
{
if ((cx24123_AGC_vals[i].symbolrate_low <= p->u.qpsk.symbol_rate) &&
(cx24123_AGC_vals[i].symbolrate_high >= p->u.qpsk.symbol_rate) ) {
state->VCAarg = cx24123_AGC_vals[i].VCAprogdata;
state->VGAarg = cx24123_AGC_vals[i].VGAprogdata;
state->FILTune = cx24123_AGC_vals[i].FILTune;
}
}
/* For the given frequency, determine the bandselect programming bits */
for (i = 0; i < sizeof(cx24123_bandselect_vals) / sizeof(cx24123_bandselect_vals[0]); i++)
{
if ((cx24123_bandselect_vals[i].freq_low <= p->frequency) &&
(cx24123_bandselect_vals[i].freq_high >= p->frequency) ) {
state->bandselectarg = cx24123_bandselect_vals[i].progdata;
vco_div = cx24123_bandselect_vals[i].VCOdivider;
/* determine the charge pump current */
if ( p->frequency < (cx24123_bandselect_vals[i].freq_low + cx24123_bandselect_vals[i].freq_high)/2 )
pump = 0x01;
else
pump = 0x02;
}
}
/* Determine the N/A dividers for the requested lband freq (in kHz). */
/* Note: the reference divider R=10, frequency is in KHz, XTAL is in Hz */
ndiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) / 32) & 0x1ff;
adiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) % 32) & 0x1f;
if (adiv == 0)
ndiv++;
/* control bits 11, refdiv 11, charge pump polarity 1, charge pump current, ndiv, adiv */
state->pllarg = (3 << 19) | (3 << 17) | (1 << 16) | (pump << 14) | (ndiv << 5) | adiv;
return 0;
}
/*
* Tuner data is 21 bits long, must be left-aligned in data.
* Tuner cx24109 is written through a dedicated 3wire interface on the demod chip.
*/
static int cx24123_pll_writereg(struct dvb_frontend* fe, struct dvb_frontend_parameters *p, u32 data)
{
struct cx24123_state *state = fe->demodulator_priv;
unsigned long timeout;
/* align the 21 bytes into to bit23 boundary */
data = data << 3;
/* Reset the demod pll word length to 0x15 bits */
cx24123_writereg(state, 0x21, 0x15);
/* write the msb 8 bits, wait for the send to be completed */
timeout = jiffies + msecs_to_jiffies(40);
cx24123_writereg(state, 0x22, (data >> 16) & 0xff);
while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
if (time_after(jiffies, timeout)) {
printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
return -EREMOTEIO;
}
msleep(10);
}
/* send another 8 bytes, wait for the send to be completed */
timeout = jiffies + msecs_to_jiffies(40);
cx24123_writereg(state, 0x22, (data>>8) & 0xff );
while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
if (time_after(jiffies, timeout)) {
printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
return -EREMOTEIO;
}
msleep(10);
}
/* send the lower 5 bits of this byte, padded with 3 LBB, wait for the send to be completed */
timeout = jiffies + msecs_to_jiffies(40);
cx24123_writereg(state, 0x22, (data) & 0xff );
while ((cx24123_readreg(state, 0x20) & 0x80)) {
if (time_after(jiffies, timeout)) {
printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
return -EREMOTEIO;
}
msleep(10);
}
/* Trigger the demod to configure the tuner */
cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) | 2);
cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) & 0xfd);
return 0;
}
static int cx24123_pll_tune(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
struct cx24123_state *state = fe->demodulator_priv;
u8 val;
dprintk("frequency=%i\n", p->frequency);
if (cx24123_pll_calculate(fe, p) != 0) {
printk("%s: cx24123_pll_calcutate failed\n",__FUNCTION__);
return -EINVAL;
}
/* Write the new VCO/VGA */
cx24123_pll_writereg(fe, p, state->VCAarg);
cx24123_pll_writereg(fe, p, state->VGAarg);
/* Write the new bandselect and pll args */
cx24123_pll_writereg(fe, p, state->bandselectarg);
cx24123_pll_writereg(fe, p, state->pllarg);
/* set the FILTUNE voltage */
val = cx24123_readreg(state, 0x28) & ~0x3;
cx24123_writereg(state, 0x27, state->FILTune >> 2);
cx24123_writereg(state, 0x28, val | (state->FILTune & 0x3));
return 0;
}
static int cx24123_initfe(struct dvb_frontend* fe)
{
struct cx24123_state *state = fe->demodulator_priv;
int i;
/* Configure the demod to a good set of defaults */
for (i = 0; i < sizeof(cx24123_regdata) / sizeof(cx24123_regdata[0]); i++)
cx24123_writereg(state, cx24123_regdata[i].reg, cx24123_regdata[i].data);
if (state->config->pll_init)
state->config->pll_init(fe);
/* Configure the LNB for 14V */
if (state->config->use_isl6421)
cx24123_writelnbreg(state, 0x0, 0x2a);
return 0;
}
static int cx24123_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage)
{
struct cx24123_state *state = fe->demodulator_priv;
u8 val;
switch (state->config->use_isl6421) {
case 1:
val = cx24123_readlnbreg(state, 0x0);
switch (voltage) {
case SEC_VOLTAGE_13:
return cx24123_writelnbreg(state, 0x0, val & 0x32); /* V 13v */
case SEC_VOLTAGE_18:
return cx24123_writelnbreg(state, 0x0, val | 0x04); /* H 18v */
case SEC_VOLTAGE_OFF:
return cx24123_writelnbreg(state, 0x0, val & 0x30);
default:
return -EINVAL;
};
case 0:
val = cx24123_readreg(state, 0x29);
switch (voltage) {
case SEC_VOLTAGE_13:
dprintk("%s: setting voltage 13V\n", __FUNCTION__);
if (state->config->enable_lnb_voltage)
state->config->enable_lnb_voltage(fe, 1);
return cx24123_writereg(state, 0x29, val | 0x80);
case SEC_VOLTAGE_18:
dprintk("%s: setting voltage 18V\n", __FUNCTION__);
if (state->config->enable_lnb_voltage)
state->config->enable_lnb_voltage(fe, 1);
return cx24123_writereg(state, 0x29, val & 0x7f);
case SEC_VOLTAGE_OFF:
dprintk("%s: setting voltage off\n", __FUNCTION__);
if (state->config->enable_lnb_voltage)
state->config->enable_lnb_voltage(fe, 0);
return 0;
default:
return -EINVAL;
};
}
return 0;
}
static int cx24123_send_diseqc_msg(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd *cmd)
{
struct cx24123_state *state = fe->demodulator_priv;
int i, val;
unsigned long timeout;
dprintk("%s:\n",__FUNCTION__);
/* check if continuous tone has been stoped */
if (state->config->use_isl6421)
val = cx24123_readlnbreg(state, 0x00) & 0x10;
else
val = cx24123_readreg(state, 0x29) & 0x10;
if (val) {
printk("%s: ERROR: attempt to send diseqc command before tone is off\n", __FUNCTION__);
return -ENOTSUPP;
}
/* select tone mode */
cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xf8);
for (i = 0; i < cmd->msg_len; i++)
cx24123_writereg(state, 0x2C + i, cmd->msg[i]);
val = cx24123_readreg(state, 0x29);
cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40) | ((cmd->msg_len-3) & 3));
timeout = jiffies + msecs_to_jiffies(100);
while (!time_after(jiffies, timeout) && !(cx24123_readreg(state, 0x29) & 0x40))
; // wait for LNB ready
return 0;
}
static int cx24123_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t burst)
{
struct cx24123_state *state = fe->demodulator_priv;
int val;
unsigned long timeout;
dprintk("%s:\n", __FUNCTION__);
/* check if continuous tone has been stoped */
if (state->config->use_isl6421)
val = cx24123_readlnbreg(state, 0x00) & 0x10;
else
val = cx24123_readreg(state, 0x29) & 0x10;
if (val) {
printk("%s: ERROR: attempt to send diseqc command before tone is off\n", __FUNCTION__);
return -ENOTSUPP;
}
/* select tone mode */
val = cx24123_readreg(state, 0x2a) & 0xf8;
cx24123_writereg(state, 0x2a, val | 0x04);
val = cx24123_readreg(state, 0x29);
if (burst == SEC_MINI_A)
cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x00));
else if (burst == SEC_MINI_B)
cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x08));
else
return -EINVAL;
timeout = jiffies + msecs_to_jiffies(100);
while (!time_after(jiffies, timeout) && !(cx24123_readreg(state, 0x29) & 0x40))
; // wait for LNB ready
return 0;
}
static int cx24123_read_status(struct dvb_frontend* fe, fe_status_t* status)
{
struct cx24123_state *state = fe->demodulator_priv;
int sync = cx24123_readreg(state, 0x14);
int lock = cx24123_readreg(state, 0x20);
*status = 0;
if (lock & 0x01)
*status |= FE_HAS_SIGNAL;
if (sync & 0x02)
*status |= FE_HAS_CARRIER;
if (sync & 0x04)
*status |= FE_HAS_VITERBI;
if (sync & 0x08)
*status |= FE_HAS_SYNC;
if (sync & 0x80)
*status |= FE_HAS_LOCK;
return 0;
}
/*
* Configured to return the measurement of errors in blocks, because no UCBLOCKS value
* is available, so this value doubles up to satisfy both measurements
*/
static int cx24123_read_ber(struct dvb_frontend* fe, u32* ber)
{
struct cx24123_state *state = fe->demodulator_priv;
state->lastber =
((cx24123_readreg(state, 0x1c) & 0x3f) << 16) |
(cx24123_readreg(state, 0x1d) << 8 |
cx24123_readreg(state, 0x1e));
/* Do the signal quality processing here, it's derived from the BER. */
/* Scale the BER from a 24bit to a SNR 16 bit where higher = better */
if (state->lastber < 5000)
state->snr = 655*100;
else if ( (state->lastber >= 5000) && (state->lastber < 55000) )
state->snr = 655*90;
else if ( (state->lastber >= 55000) && (state->lastber < 150000) )
state->snr = 655*80;
else if ( (state->lastber >= 150000) && (state->lastber < 250000) )
state->snr = 655*70;
else if ( (state->lastber >= 250000) && (state->lastber < 450000) )
state->snr = 655*65;
else
state->snr = 0;
*ber = state->lastber;
return 0;
}
static int cx24123_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
{
struct cx24123_state *state = fe->demodulator_priv;
*signal_strength = cx24123_readreg(state, 0x3b) << 8; /* larger = better */
return 0;
}
static int cx24123_read_snr(struct dvb_frontend* fe, u16* snr)
{
struct cx24123_state *state = fe->demodulator_priv;
*snr = state->snr;
return 0;
}
static int cx24123_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
struct cx24123_state *state = fe->demodulator_priv;
*ucblocks = state->lastber;
return 0;
}
static int cx24123_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
struct cx24123_state *state = fe->demodulator_priv;
if (state->config->set_ts_params)
state->config->set_ts_params(fe, 0);
state->currentfreq=p->frequency;
state->currentsymbolrate = p->u.qpsk.symbol_rate;
cx24123_set_inversion(state, p->inversion);
cx24123_set_fec(state, p->u.qpsk.fec_inner);
cx24123_set_symbolrate(state, p->u.qpsk.symbol_rate);
cx24123_pll_tune(fe, p);
/* Enable automatic aquisition and reset cycle */
cx24123_writereg(state, 0x03, (cx24123_readreg(state, 0x03) | 0x07));
cx24123_writereg(state, 0x00, 0x10);
cx24123_writereg(state, 0x00, 0);
return 0;
}
static int cx24123_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
struct cx24123_state *state = fe->demodulator_priv;
if (cx24123_get_inversion(state, &p->inversion) != 0) {
printk("%s: Failed to get inversion status\n",__FUNCTION__);
return -EREMOTEIO;
}
if (cx24123_get_fec(state, &p->u.qpsk.fec_inner) != 0) {
printk("%s: Failed to get fec status\n",__FUNCTION__);
return -EREMOTEIO;
}
p->frequency = state->currentfreq;
p->u.qpsk.symbol_rate = state->currentsymbolrate;
return 0;
}
static int cx24123_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
{
struct cx24123_state *state = fe->demodulator_priv;
u8 val;
switch (state->config->use_isl6421) {
case 1:
val = cx24123_readlnbreg(state, 0x0);
switch (tone) {
case SEC_TONE_ON:
return cx24123_writelnbreg(state, 0x0, val | 0x10);
case SEC_TONE_OFF:
return cx24123_writelnbreg(state, 0x0, val & 0x2f);
default:
printk("%s: CASE reached default with tone=%d\n", __FUNCTION__, tone);
return -EINVAL;
}
case 0:
val = cx24123_readreg(state, 0x29);
switch (tone) {
case SEC_TONE_ON:
dprintk("%s: setting tone on\n", __FUNCTION__);
return cx24123_writereg(state, 0x29, val | 0x10);
case SEC_TONE_OFF:
dprintk("%s: setting tone off\n",__FUNCTION__);
return cx24123_writereg(state, 0x29, val & 0xef);
default:
printk("%s: CASE reached default with tone=%d\n", __FUNCTION__, tone);
return -EINVAL;
}
}
return 0;
}
static void cx24123_release(struct dvb_frontend* fe)
{
struct cx24123_state* state = fe->demodulator_priv;
dprintk("%s\n",__FUNCTION__);
kfree(state);
}
static struct dvb_frontend_ops cx24123_ops;
struct dvb_frontend* cx24123_attach(const struct cx24123_config* config,
struct i2c_adapter* i2c)
{
struct cx24123_state* state = NULL;
int ret;
dprintk("%s\n",__FUNCTION__);
/* allocate memory for the internal state */
state = kmalloc(sizeof(struct cx24123_state), GFP_KERNEL);
if (state == NULL) {
printk("Unable to kmalloc\n");
goto error;
}
/* setup the state */
state->config = config;
state->i2c = i2c;
memcpy(&state->ops, &cx24123_ops, sizeof(struct dvb_frontend_ops));
state->lastber = 0;
state->snr = 0;
state->lnbreg = 0;
state->VCAarg = 0;
state->VGAarg = 0;
state->bandselectarg = 0;
state->pllarg = 0;
state->currentfreq = 0;
state->currentsymbolrate = 0;
/* check if the demod is there */
ret = cx24123_readreg(state, 0x00);
if ((ret != 0xd1) && (ret != 0xe1)) {
printk("Version != d1 or e1\n");
goto error;
}
/* create dvb_frontend */
state->frontend.ops = &state->ops;
state->frontend.demodulator_priv = state;
return &state->frontend;
error:
kfree(state);
return NULL;
}
static struct dvb_frontend_ops cx24123_ops = {
.info = {
.name = "Conexant CX24123/CX24109",
.type = FE_QPSK,
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_stepsize = 1011, /* kHz for QPSK frontends */
.frequency_tolerance = 29500,
.symbol_rate_min = 1000000,
.symbol_rate_max = 45000000,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_RECOVER
},
.release = cx24123_release,
.init = cx24123_initfe,
.set_frontend = cx24123_set_frontend,
.get_frontend = cx24123_get_frontend,
.read_status = cx24123_read_status,
.read_ber = cx24123_read_ber,
.read_signal_strength = cx24123_read_signal_strength,
.read_snr = cx24123_read_snr,
.read_ucblocks = cx24123_read_ucblocks,
.diseqc_send_master_cmd = cx24123_send_diseqc_msg,
.diseqc_send_burst = cx24123_diseqc_send_burst,
.set_tone = cx24123_set_tone,
.set_voltage = cx24123_set_voltage,
};
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
MODULE_DESCRIPTION("DVB Frontend module for Conexant cx24123/cx24109 hardware");
MODULE_AUTHOR("Steven Toth");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(cx24123_attach);