linux/drivers/net/chelsio/vsc8244.c
Stephen Hemminger 352c417ddb [PATCH] chelsio: add 1G swcixw aupport
Add support for 1G versions of Chelsio devices.

Signed-off-by: Stephen Hemminger <shemminger@osdl.org>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2006-12-02 00:24:49 -05:00

368 lines
9.2 KiB
C

/*
* This file is part of the Chelsio T2 Ethernet driver.
*
* Copyright (C) 2005 Chelsio Communications. All rights reserved.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this
* release for licensing terms and conditions.
*/
#include "common.h"
#include "cphy.h"
#include "elmer0.h"
#ifndef ADVERTISE_PAUSE_CAP
# define ADVERTISE_PAUSE_CAP 0x400
#endif
#ifndef ADVERTISE_PAUSE_ASYM
# define ADVERTISE_PAUSE_ASYM 0x800
#endif
/* Gigabit MII registers */
#ifndef MII_CTRL1000
# define MII_CTRL1000 9
#endif
#ifndef ADVERTISE_1000FULL
# define ADVERTISE_1000FULL 0x200
# define ADVERTISE_1000HALF 0x100
#endif
/* VSC8244 PHY specific registers. */
enum {
VSC8244_INTR_ENABLE = 25,
VSC8244_INTR_STATUS = 26,
VSC8244_AUX_CTRL_STAT = 28,
};
enum {
VSC_INTR_RX_ERR = 1 << 0,
VSC_INTR_MS_ERR = 1 << 1, /* master/slave resolution error */
VSC_INTR_CABLE = 1 << 2, /* cable impairment */
VSC_INTR_FALSE_CARR = 1 << 3, /* false carrier */
VSC_INTR_MEDIA_CHG = 1 << 4, /* AMS media change */
VSC_INTR_RX_FIFO = 1 << 5, /* Rx FIFO over/underflow */
VSC_INTR_TX_FIFO = 1 << 6, /* Tx FIFO over/underflow */
VSC_INTR_DESCRAMBL = 1 << 7, /* descrambler lock-lost */
VSC_INTR_SYMBOL_ERR = 1 << 8, /* symbol error */
VSC_INTR_NEG_DONE = 1 << 10, /* autoneg done */
VSC_INTR_NEG_ERR = 1 << 11, /* autoneg error */
VSC_INTR_LINK_CHG = 1 << 13, /* link change */
VSC_INTR_ENABLE = 1 << 15, /* interrupt enable */
};
#define CFG_CHG_INTR_MASK (VSC_INTR_LINK_CHG | VSC_INTR_NEG_ERR | \
VSC_INTR_NEG_DONE)
#define INTR_MASK (CFG_CHG_INTR_MASK | VSC_INTR_TX_FIFO | VSC_INTR_RX_FIFO | \
VSC_INTR_ENABLE)
/* PHY specific auxiliary control & status register fields */
#define S_ACSR_ACTIPHY_TMR 0
#define M_ACSR_ACTIPHY_TMR 0x3
#define V_ACSR_ACTIPHY_TMR(x) ((x) << S_ACSR_ACTIPHY_TMR)
#define S_ACSR_SPEED 3
#define M_ACSR_SPEED 0x3
#define G_ACSR_SPEED(x) (((x) >> S_ACSR_SPEED) & M_ACSR_SPEED)
#define S_ACSR_DUPLEX 5
#define F_ACSR_DUPLEX (1 << S_ACSR_DUPLEX)
#define S_ACSR_ACTIPHY 6
#define F_ACSR_ACTIPHY (1 << S_ACSR_ACTIPHY)
/*
* Reset the PHY. This PHY completes reset immediately so we never wait.
*/
static int vsc8244_reset(struct cphy *cphy, int wait)
{
int err;
unsigned int ctl;
err = simple_mdio_read(cphy, MII_BMCR, &ctl);
if (err)
return err;
ctl &= ~BMCR_PDOWN;
ctl |= BMCR_RESET;
return simple_mdio_write(cphy, MII_BMCR, ctl);
}
static int vsc8244_intr_enable(struct cphy *cphy)
{
simple_mdio_write(cphy, VSC8244_INTR_ENABLE, INTR_MASK);
/* Enable interrupts through Elmer */
if (t1_is_asic(cphy->adapter)) {
u32 elmer;
t1_tpi_read(cphy->adapter, A_ELMER0_INT_ENABLE, &elmer);
elmer |= ELMER0_GP_BIT1;
if (is_T2(cphy->adapter)) {
elmer |= ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4;
}
t1_tpi_write(cphy->adapter, A_ELMER0_INT_ENABLE, elmer);
}
return 0;
}
static int vsc8244_intr_disable(struct cphy *cphy)
{
simple_mdio_write(cphy, VSC8244_INTR_ENABLE, 0);
if (t1_is_asic(cphy->adapter)) {
u32 elmer;
t1_tpi_read(cphy->adapter, A_ELMER0_INT_ENABLE, &elmer);
elmer &= ~ELMER0_GP_BIT1;
if (is_T2(cphy->adapter)) {
elmer &= ~(ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4);
}
t1_tpi_write(cphy->adapter, A_ELMER0_INT_ENABLE, elmer);
}
return 0;
}
static int vsc8244_intr_clear(struct cphy *cphy)
{
u32 val;
u32 elmer;
/* Clear PHY interrupts by reading the register. */
simple_mdio_read(cphy, VSC8244_INTR_ENABLE, &val);
if (t1_is_asic(cphy->adapter)) {
t1_tpi_read(cphy->adapter, A_ELMER0_INT_CAUSE, &elmer);
elmer |= ELMER0_GP_BIT1;
if (is_T2(cphy->adapter)) {
elmer |= ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4;
}
t1_tpi_write(cphy->adapter, A_ELMER0_INT_CAUSE, elmer);
}
return 0;
}
/*
* Force the PHY speed and duplex. This also disables auto-negotiation, except
* for 1Gb/s, where auto-negotiation is mandatory.
*/
static int vsc8244_set_speed_duplex(struct cphy *phy, int speed, int duplex)
{
int err;
unsigned int ctl;
err = simple_mdio_read(phy, MII_BMCR, &ctl);
if (err)
return err;
if (speed >= 0) {
ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
if (speed == SPEED_100)
ctl |= BMCR_SPEED100;
else if (speed == SPEED_1000)
ctl |= BMCR_SPEED1000;
}
if (duplex >= 0) {
ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
if (duplex == DUPLEX_FULL)
ctl |= BMCR_FULLDPLX;
}
if (ctl & BMCR_SPEED1000) /* auto-negotiation required for 1Gb/s */
ctl |= BMCR_ANENABLE;
return simple_mdio_write(phy, MII_BMCR, ctl);
}
int t1_mdio_set_bits(struct cphy *phy, int mmd, int reg, unsigned int bits)
{
int ret;
unsigned int val;
ret = mdio_read(phy, mmd, reg, &val);
if (!ret)
ret = mdio_write(phy, mmd, reg, val | bits);
return ret;
}
static int vsc8244_autoneg_enable(struct cphy *cphy)
{
return t1_mdio_set_bits(cphy, 0, MII_BMCR,
BMCR_ANENABLE | BMCR_ANRESTART);
}
static int vsc8244_autoneg_restart(struct cphy *cphy)
{
return t1_mdio_set_bits(cphy, 0, MII_BMCR, BMCR_ANRESTART);
}
static int vsc8244_advertise(struct cphy *phy, unsigned int advertise_map)
{
int err;
unsigned int val = 0;
err = simple_mdio_read(phy, MII_CTRL1000, &val);
if (err)
return err;
val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
if (advertise_map & ADVERTISED_1000baseT_Half)
val |= ADVERTISE_1000HALF;
if (advertise_map & ADVERTISED_1000baseT_Full)
val |= ADVERTISE_1000FULL;
err = simple_mdio_write(phy, MII_CTRL1000, val);
if (err)
return err;
val = 1;
if (advertise_map & ADVERTISED_10baseT_Half)
val |= ADVERTISE_10HALF;
if (advertise_map & ADVERTISED_10baseT_Full)
val |= ADVERTISE_10FULL;
if (advertise_map & ADVERTISED_100baseT_Half)
val |= ADVERTISE_100HALF;
if (advertise_map & ADVERTISED_100baseT_Full)
val |= ADVERTISE_100FULL;
if (advertise_map & ADVERTISED_PAUSE)
val |= ADVERTISE_PAUSE_CAP;
if (advertise_map & ADVERTISED_ASYM_PAUSE)
val |= ADVERTISE_PAUSE_ASYM;
return simple_mdio_write(phy, MII_ADVERTISE, val);
}
static int vsc8244_get_link_status(struct cphy *cphy, int *link_ok,
int *speed, int *duplex, int *fc)
{
unsigned int bmcr, status, lpa, adv;
int err, sp = -1, dplx = -1, pause = 0;
err = simple_mdio_read(cphy, MII_BMCR, &bmcr);
if (!err)
err = simple_mdio_read(cphy, MII_BMSR, &status);
if (err)
return err;
if (link_ok) {
/*
* BMSR_LSTATUS is latch-low, so if it is 0 we need to read it
* once more to get the current link state.
*/
if (!(status & BMSR_LSTATUS))
err = simple_mdio_read(cphy, MII_BMSR, &status);
if (err)
return err;
*link_ok = (status & BMSR_LSTATUS) != 0;
}
if (!(bmcr & BMCR_ANENABLE)) {
dplx = (bmcr & BMCR_FULLDPLX) ? DUPLEX_FULL : DUPLEX_HALF;
if (bmcr & BMCR_SPEED1000)
sp = SPEED_1000;
else if (bmcr & BMCR_SPEED100)
sp = SPEED_100;
else
sp = SPEED_10;
} else if (status & BMSR_ANEGCOMPLETE) {
err = simple_mdio_read(cphy, VSC8244_AUX_CTRL_STAT, &status);
if (err)
return err;
dplx = (status & F_ACSR_DUPLEX) ? DUPLEX_FULL : DUPLEX_HALF;
sp = G_ACSR_SPEED(status);
if (sp == 0)
sp = SPEED_10;
else if (sp == 1)
sp = SPEED_100;
else
sp = SPEED_1000;
if (fc && dplx == DUPLEX_FULL) {
err = simple_mdio_read(cphy, MII_LPA, &lpa);
if (!err)
err = simple_mdio_read(cphy, MII_ADVERTISE,
&adv);
if (err)
return err;
if (lpa & adv & ADVERTISE_PAUSE_CAP)
pause = PAUSE_RX | PAUSE_TX;
else if ((lpa & ADVERTISE_PAUSE_CAP) &&
(lpa & ADVERTISE_PAUSE_ASYM) &&
(adv & ADVERTISE_PAUSE_ASYM))
pause = PAUSE_TX;
else if ((lpa & ADVERTISE_PAUSE_ASYM) &&
(adv & ADVERTISE_PAUSE_CAP))
pause = PAUSE_RX;
}
}
if (speed)
*speed = sp;
if (duplex)
*duplex = dplx;
if (fc)
*fc = pause;
return 0;
}
static int vsc8244_intr_handler(struct cphy *cphy)
{
unsigned int cause;
int err, cphy_cause = 0;
err = simple_mdio_read(cphy, VSC8244_INTR_STATUS, &cause);
if (err)
return err;
cause &= INTR_MASK;
if (cause & CFG_CHG_INTR_MASK)
cphy_cause |= cphy_cause_link_change;
if (cause & (VSC_INTR_RX_FIFO | VSC_INTR_TX_FIFO))
cphy_cause |= cphy_cause_fifo_error;
return cphy_cause;
}
static void vsc8244_destroy(struct cphy *cphy)
{
kfree(cphy);
}
static struct cphy_ops vsc8244_ops = {
.destroy = vsc8244_destroy,
.reset = vsc8244_reset,
.interrupt_enable = vsc8244_intr_enable,
.interrupt_disable = vsc8244_intr_disable,
.interrupt_clear = vsc8244_intr_clear,
.interrupt_handler = vsc8244_intr_handler,
.autoneg_enable = vsc8244_autoneg_enable,
.autoneg_restart = vsc8244_autoneg_restart,
.advertise = vsc8244_advertise,
.set_speed_duplex = vsc8244_set_speed_duplex,
.get_link_status = vsc8244_get_link_status
};
static struct cphy* vsc8244_phy_create(adapter_t *adapter, int phy_addr, struct mdio_ops *mdio_ops)
{
struct cphy *cphy = kzalloc(sizeof(*cphy), GFP_KERNEL);
if (!cphy) return NULL;
cphy_init(cphy, adapter, phy_addr, &vsc8244_ops, mdio_ops);
return cphy;
}
static int vsc8244_phy_reset(adapter_t* adapter)
{
return 0;
}
struct gphy t1_vsc8244_ops = {
vsc8244_phy_create,
vsc8244_phy_reset
};