linux/include/asm-avr32/cacheflush.h
Haavard Skinnemoen 5f97f7f940 [PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.

AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density.  The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.

The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from

http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf

The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture.  It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit.  It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.

Full data sheet is available from

http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf

while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from

http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf

Information about the AT32STK1000 development board can be found at

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918

including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.

Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.

This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.

[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:54 -07:00

129 lines
3.9 KiB
C

/*
* Copyright (C) 2004-2006 Atmel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __ASM_AVR32_CACHEFLUSH_H
#define __ASM_AVR32_CACHEFLUSH_H
/* Keep includes the same across arches. */
#include <linux/mm.h>
#define CACHE_OP_ICACHE_INVALIDATE 0x01
#define CACHE_OP_DCACHE_INVALIDATE 0x0b
#define CACHE_OP_DCACHE_CLEAN 0x0c
#define CACHE_OP_DCACHE_CLEAN_INVAL 0x0d
/*
* Invalidate any cacheline containing virtual address vaddr without
* writing anything back to memory.
*
* Note that this function may corrupt unrelated data structures when
* applied on buffers that are not cacheline aligned in both ends.
*/
static inline void invalidate_dcache_line(void *vaddr)
{
asm volatile("cache %0[0], %1"
:
: "r"(vaddr), "n"(CACHE_OP_DCACHE_INVALIDATE)
: "memory");
}
/*
* Make sure any cacheline containing virtual address vaddr is written
* to memory.
*/
static inline void clean_dcache_line(void *vaddr)
{
asm volatile("cache %0[0], %1"
:
: "r"(vaddr), "n"(CACHE_OP_DCACHE_CLEAN)
: "memory");
}
/*
* Make sure any cacheline containing virtual address vaddr is written
* to memory and then invalidate it.
*/
static inline void flush_dcache_line(void *vaddr)
{
asm volatile("cache %0[0], %1"
:
: "r"(vaddr), "n"(CACHE_OP_DCACHE_CLEAN_INVAL)
: "memory");
}
/*
* Invalidate any instruction cacheline containing virtual address
* vaddr.
*/
static inline void invalidate_icache_line(void *vaddr)
{
asm volatile("cache %0[0], %1"
:
: "r"(vaddr), "n"(CACHE_OP_ICACHE_INVALIDATE)
: "memory");
}
/*
* Applies the above functions on all lines that are touched by the
* specified virtual address range.
*/
void invalidate_dcache_region(void *start, size_t len);
void clean_dcache_region(void *start, size_t len);
void flush_dcache_region(void *start, size_t len);
void invalidate_icache_region(void *start, size_t len);
/*
* Make sure any pending writes are completed before continuing.
*/
#define flush_write_buffer() asm volatile("sync 0" : : : "memory")
/*
* The following functions are called when a virtual mapping changes.
* We do not need to flush anything in this case.
*/
#define flush_cache_all() do { } while (0)
#define flush_cache_mm(mm) do { } while (0)
#define flush_cache_range(vma, start, end) do { } while (0)
#define flush_cache_page(vma, vmaddr, pfn) do { } while (0)
#define flush_cache_vmap(start, end) do { } while (0)
#define flush_cache_vunmap(start, end) do { } while (0)
/*
* I think we need to implement this one to be able to reliably
* execute pages from RAMDISK. However, if we implement the
* flush_dcache_*() functions, it might not be needed anymore.
*
* #define flush_icache_page(vma, page) do { } while (0)
*/
extern void flush_icache_page(struct vm_area_struct *vma, struct page *page);
/*
* These are (I think) related to D-cache aliasing. We might need to
* do something here, but only for certain configurations. No such
* configurations exist at this time.
*/
#define flush_dcache_page(page) do { } while (0)
#define flush_dcache_mmap_lock(page) do { } while (0)
#define flush_dcache_mmap_unlock(page) do { } while (0)
/*
* These are for I/D cache coherency. In this case, we do need to
* flush with all configurations.
*/
extern void flush_icache_range(unsigned long start, unsigned long end);
extern void flush_icache_user_range(struct vm_area_struct *vma,
struct page *page,
unsigned long addr, int len);
#define copy_to_user_page(vma, page, vaddr, dst, src, len) do { \
memcpy(dst, src, len); \
flush_icache_user_range(vma, page, vaddr, len); \
} while(0)
#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
memcpy(dst, src, len)
#endif /* __ASM_AVR32_CACHEFLUSH_H */