bb7e6984ec
This reverts commit fa38dfcc56
.
It wasn't really a regression and David and Alan are still working
through the issues reported.
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
1164 lines
32 KiB
C
1164 lines
32 KiB
C
/*
|
|
* Copyright (C) 2001-2004 by David Brownell
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
/* this file is part of ehci-hcd.c */
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
|
|
*
|
|
* Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
|
|
* entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
|
|
* buffers needed for the larger number). We use one QH per endpoint, queue
|
|
* multiple urbs (all three types) per endpoint. URBs may need several qtds.
|
|
*
|
|
* ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
|
|
* interrupts) needs careful scheduling. Performance improvements can be
|
|
* an ongoing challenge. That's in "ehci-sched.c".
|
|
*
|
|
* USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
|
|
* or otherwise through transaction translators (TTs) in USB 2.0 hubs using
|
|
* (b) special fields in qh entries or (c) split iso entries. TTs will
|
|
* buffer low/full speed data so the host collects it at high speed.
|
|
*/
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* fill a qtd, returning how much of the buffer we were able to queue up */
|
|
|
|
static int
|
|
qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
|
|
size_t len, int token, int maxpacket)
|
|
{
|
|
int i, count;
|
|
u64 addr = buf;
|
|
|
|
/* one buffer entry per 4K ... first might be short or unaligned */
|
|
qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
|
|
qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
|
|
count = 0x1000 - (buf & 0x0fff); /* rest of that page */
|
|
if (likely (len < count)) /* ... iff needed */
|
|
count = len;
|
|
else {
|
|
buf += 0x1000;
|
|
buf &= ~0x0fff;
|
|
|
|
/* per-qtd limit: from 16K to 20K (best alignment) */
|
|
for (i = 1; count < len && i < 5; i++) {
|
|
addr = buf;
|
|
qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
|
|
qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
|
|
(u32)(addr >> 32));
|
|
buf += 0x1000;
|
|
if ((count + 0x1000) < len)
|
|
count += 0x1000;
|
|
else
|
|
count = len;
|
|
}
|
|
|
|
/* short packets may only terminate transfers */
|
|
if (count != len)
|
|
count -= (count % maxpacket);
|
|
}
|
|
qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
|
|
qtd->length = count;
|
|
|
|
return count;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static inline void
|
|
qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
|
|
{
|
|
/* writes to an active overlay are unsafe */
|
|
BUG_ON(qh->qh_state != QH_STATE_IDLE);
|
|
|
|
qh->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
|
|
qh->hw_alt_next = EHCI_LIST_END(ehci);
|
|
|
|
/* Except for control endpoints, we make hardware maintain data
|
|
* toggle (like OHCI) ... here (re)initialize the toggle in the QH,
|
|
* and set the pseudo-toggle in udev. Only usb_clear_halt() will
|
|
* ever clear it.
|
|
*/
|
|
if (!(qh->hw_info1 & cpu_to_hc32(ehci, 1 << 14))) {
|
|
unsigned is_out, epnum;
|
|
|
|
is_out = !(qtd->hw_token & cpu_to_hc32(ehci, 1 << 8));
|
|
epnum = (hc32_to_cpup(ehci, &qh->hw_info1) >> 8) & 0x0f;
|
|
if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) {
|
|
qh->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
|
|
usb_settoggle (qh->dev, epnum, is_out, 1);
|
|
}
|
|
}
|
|
|
|
/* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
|
|
wmb ();
|
|
qh->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
|
|
}
|
|
|
|
/* if it weren't for a common silicon quirk (writing the dummy into the qh
|
|
* overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
|
|
* recovery (including urb dequeue) would need software changes to a QH...
|
|
*/
|
|
static void
|
|
qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
|
|
{
|
|
struct ehci_qtd *qtd;
|
|
|
|
if (list_empty (&qh->qtd_list))
|
|
qtd = qh->dummy;
|
|
else {
|
|
qtd = list_entry (qh->qtd_list.next,
|
|
struct ehci_qtd, qtd_list);
|
|
/* first qtd may already be partially processed */
|
|
if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw_current)
|
|
qtd = NULL;
|
|
}
|
|
|
|
if (qtd)
|
|
qh_update (ehci, qh, qtd);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static int qtd_copy_status (
|
|
struct ehci_hcd *ehci,
|
|
struct urb *urb,
|
|
size_t length,
|
|
u32 token
|
|
)
|
|
{
|
|
int status = -EINPROGRESS;
|
|
|
|
/* count IN/OUT bytes, not SETUP (even short packets) */
|
|
if (likely (QTD_PID (token) != 2))
|
|
urb->actual_length += length - QTD_LENGTH (token);
|
|
|
|
/* don't modify error codes */
|
|
if (unlikely(urb->unlinked))
|
|
return status;
|
|
|
|
/* force cleanup after short read; not always an error */
|
|
if (unlikely (IS_SHORT_READ (token)))
|
|
status = -EREMOTEIO;
|
|
|
|
/* serious "can't proceed" faults reported by the hardware */
|
|
if (token & QTD_STS_HALT) {
|
|
if (token & QTD_STS_BABBLE) {
|
|
/* FIXME "must" disable babbling device's port too */
|
|
status = -EOVERFLOW;
|
|
} else if (token & QTD_STS_MMF) {
|
|
/* fs/ls interrupt xfer missed the complete-split */
|
|
status = -EPROTO;
|
|
} else if (token & QTD_STS_DBE) {
|
|
status = (QTD_PID (token) == 1) /* IN ? */
|
|
? -ENOSR /* hc couldn't read data */
|
|
: -ECOMM; /* hc couldn't write data */
|
|
} else if (token & QTD_STS_XACT) {
|
|
/* timeout, bad crc, wrong PID, etc; retried */
|
|
if (QTD_CERR (token))
|
|
status = -EPIPE;
|
|
else {
|
|
ehci_dbg (ehci, "devpath %s ep%d%s 3strikes\n",
|
|
urb->dev->devpath,
|
|
usb_pipeendpoint (urb->pipe),
|
|
usb_pipein (urb->pipe) ? "in" : "out");
|
|
status = -EPROTO;
|
|
}
|
|
/* CERR nonzero + no errors + halt --> stall */
|
|
} else if (QTD_CERR (token))
|
|
status = -EPIPE;
|
|
else /* unknown */
|
|
status = -EPROTO;
|
|
|
|
ehci_vdbg (ehci,
|
|
"dev%d ep%d%s qtd token %08x --> status %d\n",
|
|
usb_pipedevice (urb->pipe),
|
|
usb_pipeendpoint (urb->pipe),
|
|
usb_pipein (urb->pipe) ? "in" : "out",
|
|
token, status);
|
|
|
|
/* if async CSPLIT failed, try cleaning out the TT buffer */
|
|
if (status != -EPIPE
|
|
&& urb->dev->tt
|
|
&& !usb_pipeint(urb->pipe)
|
|
&& ((token & QTD_STS_MMF) != 0
|
|
|| QTD_CERR(token) == 0)
|
|
&& (!ehci_is_TDI(ehci)
|
|
|| urb->dev->tt->hub !=
|
|
ehci_to_hcd(ehci)->self.root_hub)) {
|
|
#ifdef DEBUG
|
|
struct usb_device *tt = urb->dev->tt->hub;
|
|
dev_dbg (&tt->dev,
|
|
"clear tt buffer port %d, a%d ep%d t%08x\n",
|
|
urb->dev->ttport, urb->dev->devnum,
|
|
usb_pipeendpoint (urb->pipe), token);
|
|
#endif /* DEBUG */
|
|
/* REVISIT ARC-derived cores don't clear the root
|
|
* hub TT buffer in this way...
|
|
*/
|
|
usb_hub_tt_clear_buffer (urb->dev, urb->pipe);
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static void
|
|
ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
|
|
__releases(ehci->lock)
|
|
__acquires(ehci->lock)
|
|
{
|
|
if (likely (urb->hcpriv != NULL)) {
|
|
struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
|
|
|
|
/* S-mask in a QH means it's an interrupt urb */
|
|
if ((qh->hw_info2 & cpu_to_hc32(ehci, QH_SMASK)) != 0) {
|
|
|
|
/* ... update hc-wide periodic stats (for usbfs) */
|
|
ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
|
|
}
|
|
qh_put (qh);
|
|
}
|
|
|
|
if (unlikely(urb->unlinked)) {
|
|
COUNT(ehci->stats.unlink);
|
|
} else {
|
|
/* report non-error and short read status as zero */
|
|
if (status == -EINPROGRESS || status == -EREMOTEIO)
|
|
status = 0;
|
|
COUNT(ehci->stats.complete);
|
|
}
|
|
|
|
#ifdef EHCI_URB_TRACE
|
|
ehci_dbg (ehci,
|
|
"%s %s urb %p ep%d%s status %d len %d/%d\n",
|
|
__func__, urb->dev->devpath, urb,
|
|
usb_pipeendpoint (urb->pipe),
|
|
usb_pipein (urb->pipe) ? "in" : "out",
|
|
status,
|
|
urb->actual_length, urb->transfer_buffer_length);
|
|
#endif
|
|
|
|
/* complete() can reenter this HCD */
|
|
usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
|
|
spin_unlock (&ehci->lock);
|
|
usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
|
|
spin_lock (&ehci->lock);
|
|
}
|
|
|
|
static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
|
|
static void unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
|
|
|
|
static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
|
|
static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
|
|
|
|
/*
|
|
* Process and free completed qtds for a qh, returning URBs to drivers.
|
|
* Chases up to qh->hw_current. Returns number of completions called,
|
|
* indicating how much "real" work we did.
|
|
*/
|
|
static unsigned
|
|
qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
|
|
{
|
|
struct ehci_qtd *last = NULL, *end = qh->dummy;
|
|
struct list_head *entry, *tmp;
|
|
int last_status = -EINPROGRESS;
|
|
int stopped;
|
|
unsigned count = 0;
|
|
u8 state;
|
|
__le32 halt = HALT_BIT(ehci);
|
|
|
|
if (unlikely (list_empty (&qh->qtd_list)))
|
|
return count;
|
|
|
|
/* completions (or tasks on other cpus) must never clobber HALT
|
|
* till we've gone through and cleaned everything up, even when
|
|
* they add urbs to this qh's queue or mark them for unlinking.
|
|
*
|
|
* NOTE: unlinking expects to be done in queue order.
|
|
*/
|
|
state = qh->qh_state;
|
|
qh->qh_state = QH_STATE_COMPLETING;
|
|
stopped = (state == QH_STATE_IDLE);
|
|
|
|
/* remove de-activated QTDs from front of queue.
|
|
* after faults (including short reads), cleanup this urb
|
|
* then let the queue advance.
|
|
* if queue is stopped, handles unlinks.
|
|
*/
|
|
list_for_each_safe (entry, tmp, &qh->qtd_list) {
|
|
struct ehci_qtd *qtd;
|
|
struct urb *urb;
|
|
u32 token = 0;
|
|
|
|
qtd = list_entry (entry, struct ehci_qtd, qtd_list);
|
|
urb = qtd->urb;
|
|
|
|
/* clean up any state from previous QTD ...*/
|
|
if (last) {
|
|
if (likely (last->urb != urb)) {
|
|
ehci_urb_done(ehci, last->urb, last_status);
|
|
count++;
|
|
last_status = -EINPROGRESS;
|
|
}
|
|
ehci_qtd_free (ehci, last);
|
|
last = NULL;
|
|
}
|
|
|
|
/* ignore urbs submitted during completions we reported */
|
|
if (qtd == end)
|
|
break;
|
|
|
|
/* hardware copies qtd out of qh overlay */
|
|
rmb ();
|
|
token = hc32_to_cpu(ehci, qtd->hw_token);
|
|
|
|
/* always clean up qtds the hc de-activated */
|
|
if ((token & QTD_STS_ACTIVE) == 0) {
|
|
|
|
/* on STALL, error, and short reads this urb must
|
|
* complete and all its qtds must be recycled.
|
|
*/
|
|
if ((token & QTD_STS_HALT) != 0) {
|
|
stopped = 1;
|
|
|
|
/* magic dummy for some short reads; qh won't advance.
|
|
* that silicon quirk can kick in with this dummy too.
|
|
*
|
|
* other short reads won't stop the queue, including
|
|
* control transfers (status stage handles that) or
|
|
* most other single-qtd reads ... the queue stops if
|
|
* URB_SHORT_NOT_OK was set so the driver submitting
|
|
* the urbs could clean it up.
|
|
*/
|
|
} else if (IS_SHORT_READ (token)
|
|
&& !(qtd->hw_alt_next
|
|
& EHCI_LIST_END(ehci))) {
|
|
stopped = 1;
|
|
goto halt;
|
|
}
|
|
|
|
/* stop scanning when we reach qtds the hc is using */
|
|
} else if (likely (!stopped
|
|
&& HC_IS_RUNNING (ehci_to_hcd(ehci)->state))) {
|
|
break;
|
|
|
|
/* scan the whole queue for unlinks whenever it stops */
|
|
} else {
|
|
stopped = 1;
|
|
|
|
/* cancel everything if we halt, suspend, etc */
|
|
if (!HC_IS_RUNNING(ehci_to_hcd(ehci)->state))
|
|
last_status = -ESHUTDOWN;
|
|
|
|
/* this qtd is active; skip it unless a previous qtd
|
|
* for its urb faulted, or its urb was canceled.
|
|
*/
|
|
else if (last_status == -EINPROGRESS && !urb->unlinked)
|
|
continue;
|
|
|
|
/* qh unlinked; token in overlay may be most current */
|
|
if (state == QH_STATE_IDLE
|
|
&& cpu_to_hc32(ehci, qtd->qtd_dma)
|
|
== qh->hw_current)
|
|
token = hc32_to_cpu(ehci, qh->hw_token);
|
|
|
|
/* force halt for unlinked or blocked qh, so we'll
|
|
* patch the qh later and so that completions can't
|
|
* activate it while we "know" it's stopped.
|
|
*/
|
|
if ((halt & qh->hw_token) == 0) {
|
|
halt:
|
|
qh->hw_token |= halt;
|
|
wmb ();
|
|
}
|
|
}
|
|
|
|
/* unless we already know the urb's status, collect qtd status
|
|
* and update count of bytes transferred. in common short read
|
|
* cases with only one data qtd (including control transfers),
|
|
* queue processing won't halt. but with two or more qtds (for
|
|
* example, with a 32 KB transfer), when the first qtd gets a
|
|
* short read the second must be removed by hand.
|
|
*/
|
|
if (last_status == -EINPROGRESS) {
|
|
last_status = qtd_copy_status(ehci, urb,
|
|
qtd->length, token);
|
|
if (last_status == -EREMOTEIO
|
|
&& (qtd->hw_alt_next
|
|
& EHCI_LIST_END(ehci)))
|
|
last_status = -EINPROGRESS;
|
|
}
|
|
|
|
/* if we're removing something not at the queue head,
|
|
* patch the hardware queue pointer.
|
|
*/
|
|
if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
|
|
last = list_entry (qtd->qtd_list.prev,
|
|
struct ehci_qtd, qtd_list);
|
|
last->hw_next = qtd->hw_next;
|
|
}
|
|
|
|
/* remove qtd; it's recycled after possible urb completion */
|
|
list_del (&qtd->qtd_list);
|
|
last = qtd;
|
|
}
|
|
|
|
/* last urb's completion might still need calling */
|
|
if (likely (last != NULL)) {
|
|
ehci_urb_done(ehci, last->urb, last_status);
|
|
count++;
|
|
ehci_qtd_free (ehci, last);
|
|
}
|
|
|
|
/* restore original state; caller must unlink or relink */
|
|
qh->qh_state = state;
|
|
|
|
/* be sure the hardware's done with the qh before refreshing
|
|
* it after fault cleanup, or recovering from silicon wrongly
|
|
* overlaying the dummy qtd (which reduces DMA chatter).
|
|
*/
|
|
if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END(ehci)) {
|
|
switch (state) {
|
|
case QH_STATE_IDLE:
|
|
qh_refresh(ehci, qh);
|
|
break;
|
|
case QH_STATE_LINKED:
|
|
/* We won't refresh a QH that's linked (after the HC
|
|
* stopped the queue). That avoids a race:
|
|
* - HC reads first part of QH;
|
|
* - CPU updates that first part and the token;
|
|
* - HC reads rest of that QH, including token
|
|
* Result: HC gets an inconsistent image, and then
|
|
* DMAs to/from the wrong memory (corrupting it).
|
|
*
|
|
* That should be rare for interrupt transfers,
|
|
* except maybe high bandwidth ...
|
|
*/
|
|
if ((cpu_to_hc32(ehci, QH_SMASK)
|
|
& qh->hw_info2) != 0) {
|
|
intr_deschedule (ehci, qh);
|
|
(void) qh_schedule (ehci, qh);
|
|
} else
|
|
unlink_async (ehci, qh);
|
|
break;
|
|
/* otherwise, unlink already started */
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
// high bandwidth multiplier, as encoded in highspeed endpoint descriptors
|
|
#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
|
|
// ... and packet size, for any kind of endpoint descriptor
|
|
#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
|
|
|
|
/*
|
|
* reverse of qh_urb_transaction: free a list of TDs.
|
|
* used for cleanup after errors, before HC sees an URB's TDs.
|
|
*/
|
|
static void qtd_list_free (
|
|
struct ehci_hcd *ehci,
|
|
struct urb *urb,
|
|
struct list_head *qtd_list
|
|
) {
|
|
struct list_head *entry, *temp;
|
|
|
|
list_for_each_safe (entry, temp, qtd_list) {
|
|
struct ehci_qtd *qtd;
|
|
|
|
qtd = list_entry (entry, struct ehci_qtd, qtd_list);
|
|
list_del (&qtd->qtd_list);
|
|
ehci_qtd_free (ehci, qtd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* create a list of filled qtds for this URB; won't link into qh.
|
|
*/
|
|
static struct list_head *
|
|
qh_urb_transaction (
|
|
struct ehci_hcd *ehci,
|
|
struct urb *urb,
|
|
struct list_head *head,
|
|
gfp_t flags
|
|
) {
|
|
struct ehci_qtd *qtd, *qtd_prev;
|
|
dma_addr_t buf;
|
|
int len, maxpacket;
|
|
int is_input;
|
|
u32 token;
|
|
|
|
/*
|
|
* URBs map to sequences of QTDs: one logical transaction
|
|
*/
|
|
qtd = ehci_qtd_alloc (ehci, flags);
|
|
if (unlikely (!qtd))
|
|
return NULL;
|
|
list_add_tail (&qtd->qtd_list, head);
|
|
qtd->urb = urb;
|
|
|
|
token = QTD_STS_ACTIVE;
|
|
token |= (EHCI_TUNE_CERR << 10);
|
|
/* for split transactions, SplitXState initialized to zero */
|
|
|
|
len = urb->transfer_buffer_length;
|
|
is_input = usb_pipein (urb->pipe);
|
|
if (usb_pipecontrol (urb->pipe)) {
|
|
/* SETUP pid */
|
|
qtd_fill(ehci, qtd, urb->setup_dma,
|
|
sizeof (struct usb_ctrlrequest),
|
|
token | (2 /* "setup" */ << 8), 8);
|
|
|
|
/* ... and always at least one more pid */
|
|
token ^= QTD_TOGGLE;
|
|
qtd_prev = qtd;
|
|
qtd = ehci_qtd_alloc (ehci, flags);
|
|
if (unlikely (!qtd))
|
|
goto cleanup;
|
|
qtd->urb = urb;
|
|
qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
|
|
list_add_tail (&qtd->qtd_list, head);
|
|
|
|
/* for zero length DATA stages, STATUS is always IN */
|
|
if (len == 0)
|
|
token |= (1 /* "in" */ << 8);
|
|
}
|
|
|
|
/*
|
|
* data transfer stage: buffer setup
|
|
*/
|
|
buf = urb->transfer_dma;
|
|
|
|
if (is_input)
|
|
token |= (1 /* "in" */ << 8);
|
|
/* else it's already initted to "out" pid (0 << 8) */
|
|
|
|
maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
|
|
|
|
/*
|
|
* buffer gets wrapped in one or more qtds;
|
|
* last one may be "short" (including zero len)
|
|
* and may serve as a control status ack
|
|
*/
|
|
for (;;) {
|
|
int this_qtd_len;
|
|
|
|
this_qtd_len = qtd_fill(ehci, qtd, buf, len, token, maxpacket);
|
|
len -= this_qtd_len;
|
|
buf += this_qtd_len;
|
|
|
|
/*
|
|
* short reads advance to a "magic" dummy instead of the next
|
|
* qtd ... that forces the queue to stop, for manual cleanup.
|
|
* (this will usually be overridden later.)
|
|
*/
|
|
if (is_input)
|
|
qtd->hw_alt_next = ehci->async->hw_alt_next;
|
|
|
|
/* qh makes control packets use qtd toggle; maybe switch it */
|
|
if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
|
|
token ^= QTD_TOGGLE;
|
|
|
|
if (likely (len <= 0))
|
|
break;
|
|
|
|
qtd_prev = qtd;
|
|
qtd = ehci_qtd_alloc (ehci, flags);
|
|
if (unlikely (!qtd))
|
|
goto cleanup;
|
|
qtd->urb = urb;
|
|
qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
|
|
list_add_tail (&qtd->qtd_list, head);
|
|
}
|
|
|
|
/*
|
|
* unless the caller requires manual cleanup after short reads,
|
|
* have the alt_next mechanism keep the queue running after the
|
|
* last data qtd (the only one, for control and most other cases).
|
|
*/
|
|
if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
|
|
|| usb_pipecontrol (urb->pipe)))
|
|
qtd->hw_alt_next = EHCI_LIST_END(ehci);
|
|
|
|
/*
|
|
* control requests may need a terminating data "status" ack;
|
|
* bulk ones may need a terminating short packet (zero length).
|
|
*/
|
|
if (likely (urb->transfer_buffer_length != 0)) {
|
|
int one_more = 0;
|
|
|
|
if (usb_pipecontrol (urb->pipe)) {
|
|
one_more = 1;
|
|
token ^= 0x0100; /* "in" <--> "out" */
|
|
token |= QTD_TOGGLE; /* force DATA1 */
|
|
} else if (usb_pipebulk (urb->pipe)
|
|
&& (urb->transfer_flags & URB_ZERO_PACKET)
|
|
&& !(urb->transfer_buffer_length % maxpacket)) {
|
|
one_more = 1;
|
|
}
|
|
if (one_more) {
|
|
qtd_prev = qtd;
|
|
qtd = ehci_qtd_alloc (ehci, flags);
|
|
if (unlikely (!qtd))
|
|
goto cleanup;
|
|
qtd->urb = urb;
|
|
qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
|
|
list_add_tail (&qtd->qtd_list, head);
|
|
|
|
/* never any data in such packets */
|
|
qtd_fill(ehci, qtd, 0, 0, token, 0);
|
|
}
|
|
}
|
|
|
|
/* by default, enable interrupt on urb completion */
|
|
if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
|
|
qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
|
|
return head;
|
|
|
|
cleanup:
|
|
qtd_list_free (ehci, urb, head);
|
|
return NULL;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
// Would be best to create all qh's from config descriptors,
|
|
// when each interface/altsetting is established. Unlink
|
|
// any previous qh and cancel its urbs first; endpoints are
|
|
// implicitly reset then (data toggle too).
|
|
// That'd mean updating how usbcore talks to HCDs. (2.7?)
|
|
|
|
|
|
/*
|
|
* Each QH holds a qtd list; a QH is used for everything except iso.
|
|
*
|
|
* For interrupt urbs, the scheduler must set the microframe scheduling
|
|
* mask(s) each time the QH gets scheduled. For highspeed, that's
|
|
* just one microframe in the s-mask. For split interrupt transactions
|
|
* there are additional complications: c-mask, maybe FSTNs.
|
|
*/
|
|
static struct ehci_qh *
|
|
qh_make (
|
|
struct ehci_hcd *ehci,
|
|
struct urb *urb,
|
|
gfp_t flags
|
|
) {
|
|
struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
|
|
u32 info1 = 0, info2 = 0;
|
|
int is_input, type;
|
|
int maxp = 0;
|
|
struct usb_tt *tt = urb->dev->tt;
|
|
|
|
if (!qh)
|
|
return qh;
|
|
|
|
/*
|
|
* init endpoint/device data for this QH
|
|
*/
|
|
info1 |= usb_pipeendpoint (urb->pipe) << 8;
|
|
info1 |= usb_pipedevice (urb->pipe) << 0;
|
|
|
|
is_input = usb_pipein (urb->pipe);
|
|
type = usb_pipetype (urb->pipe);
|
|
maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
|
|
|
|
/* 1024 byte maxpacket is a hardware ceiling. High bandwidth
|
|
* acts like up to 3KB, but is built from smaller packets.
|
|
*/
|
|
if (max_packet(maxp) > 1024) {
|
|
ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
|
|
goto done;
|
|
}
|
|
|
|
/* Compute interrupt scheduling parameters just once, and save.
|
|
* - allowing for high bandwidth, how many nsec/uframe are used?
|
|
* - split transactions need a second CSPLIT uframe; same question
|
|
* - splits also need a schedule gap (for full/low speed I/O)
|
|
* - qh has a polling interval
|
|
*
|
|
* For control/bulk requests, the HC or TT handles these.
|
|
*/
|
|
if (type == PIPE_INTERRUPT) {
|
|
qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
|
|
is_input, 0,
|
|
hb_mult(maxp) * max_packet(maxp)));
|
|
qh->start = NO_FRAME;
|
|
|
|
if (urb->dev->speed == USB_SPEED_HIGH) {
|
|
qh->c_usecs = 0;
|
|
qh->gap_uf = 0;
|
|
|
|
qh->period = urb->interval >> 3;
|
|
if (qh->period == 0 && urb->interval != 1) {
|
|
/* NOTE interval 2 or 4 uframes could work.
|
|
* But interval 1 scheduling is simpler, and
|
|
* includes high bandwidth.
|
|
*/
|
|
dbg ("intr period %d uframes, NYET!",
|
|
urb->interval);
|
|
goto done;
|
|
}
|
|
} else {
|
|
int think_time;
|
|
|
|
/* gap is f(FS/LS transfer times) */
|
|
qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
|
|
is_input, 0, maxp) / (125 * 1000);
|
|
|
|
/* FIXME this just approximates SPLIT/CSPLIT times */
|
|
if (is_input) { // SPLIT, gap, CSPLIT+DATA
|
|
qh->c_usecs = qh->usecs + HS_USECS (0);
|
|
qh->usecs = HS_USECS (1);
|
|
} else { // SPLIT+DATA, gap, CSPLIT
|
|
qh->usecs += HS_USECS (1);
|
|
qh->c_usecs = HS_USECS (0);
|
|
}
|
|
|
|
think_time = tt ? tt->think_time : 0;
|
|
qh->tt_usecs = NS_TO_US (think_time +
|
|
usb_calc_bus_time (urb->dev->speed,
|
|
is_input, 0, max_packet (maxp)));
|
|
qh->period = urb->interval;
|
|
}
|
|
}
|
|
|
|
/* support for tt scheduling, and access to toggles */
|
|
qh->dev = urb->dev;
|
|
|
|
/* using TT? */
|
|
switch (urb->dev->speed) {
|
|
case USB_SPEED_LOW:
|
|
info1 |= (1 << 12); /* EPS "low" */
|
|
/* FALL THROUGH */
|
|
|
|
case USB_SPEED_FULL:
|
|
/* EPS 0 means "full" */
|
|
if (type != PIPE_INTERRUPT)
|
|
info1 |= (EHCI_TUNE_RL_TT << 28);
|
|
if (type == PIPE_CONTROL) {
|
|
info1 |= (1 << 27); /* for TT */
|
|
info1 |= 1 << 14; /* toggle from qtd */
|
|
}
|
|
info1 |= maxp << 16;
|
|
|
|
info2 |= (EHCI_TUNE_MULT_TT << 30);
|
|
|
|
/* Some Freescale processors have an erratum in which the
|
|
* port number in the queue head was 0..N-1 instead of 1..N.
|
|
*/
|
|
if (ehci_has_fsl_portno_bug(ehci))
|
|
info2 |= (urb->dev->ttport-1) << 23;
|
|
else
|
|
info2 |= urb->dev->ttport << 23;
|
|
|
|
/* set the address of the TT; for TDI's integrated
|
|
* root hub tt, leave it zeroed.
|
|
*/
|
|
if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
|
|
info2 |= tt->hub->devnum << 16;
|
|
|
|
/* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
|
|
|
|
break;
|
|
|
|
case USB_SPEED_HIGH: /* no TT involved */
|
|
info1 |= (2 << 12); /* EPS "high" */
|
|
if (type == PIPE_CONTROL) {
|
|
info1 |= (EHCI_TUNE_RL_HS << 28);
|
|
info1 |= 64 << 16; /* usb2 fixed maxpacket */
|
|
info1 |= 1 << 14; /* toggle from qtd */
|
|
info2 |= (EHCI_TUNE_MULT_HS << 30);
|
|
} else if (type == PIPE_BULK) {
|
|
info1 |= (EHCI_TUNE_RL_HS << 28);
|
|
/* The USB spec says that high speed bulk endpoints
|
|
* always use 512 byte maxpacket. But some device
|
|
* vendors decided to ignore that, and MSFT is happy
|
|
* to help them do so. So now people expect to use
|
|
* such nonconformant devices with Linux too; sigh.
|
|
*/
|
|
info1 |= max_packet(maxp) << 16;
|
|
info2 |= (EHCI_TUNE_MULT_HS << 30);
|
|
} else { /* PIPE_INTERRUPT */
|
|
info1 |= max_packet (maxp) << 16;
|
|
info2 |= hb_mult (maxp) << 30;
|
|
}
|
|
break;
|
|
default:
|
|
dbg ("bogus dev %p speed %d", urb->dev, urb->dev->speed);
|
|
done:
|
|
qh_put (qh);
|
|
return NULL;
|
|
}
|
|
|
|
/* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
|
|
|
|
/* init as live, toggle clear, advance to dummy */
|
|
qh->qh_state = QH_STATE_IDLE;
|
|
qh->hw_info1 = cpu_to_hc32(ehci, info1);
|
|
qh->hw_info2 = cpu_to_hc32(ehci, info2);
|
|
usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
|
|
qh_refresh (ehci, qh);
|
|
return qh;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* move qh (and its qtds) onto async queue; maybe enable queue. */
|
|
|
|
static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
|
|
{
|
|
__hc32 dma = QH_NEXT(ehci, qh->qh_dma);
|
|
struct ehci_qh *head;
|
|
|
|
/* (re)start the async schedule? */
|
|
head = ehci->async;
|
|
timer_action_done (ehci, TIMER_ASYNC_OFF);
|
|
if (!head->qh_next.qh) {
|
|
u32 cmd = ehci_readl(ehci, &ehci->regs->command);
|
|
|
|
if (!(cmd & CMD_ASE)) {
|
|
/* in case a clear of CMD_ASE didn't take yet */
|
|
(void)handshake(ehci, &ehci->regs->status,
|
|
STS_ASS, 0, 150);
|
|
cmd |= CMD_ASE | CMD_RUN;
|
|
ehci_writel(ehci, cmd, &ehci->regs->command);
|
|
ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
|
|
/* posted write need not be known to HC yet ... */
|
|
}
|
|
}
|
|
|
|
/* clear halt and/or toggle; and maybe recover from silicon quirk */
|
|
if (qh->qh_state == QH_STATE_IDLE)
|
|
qh_refresh (ehci, qh);
|
|
|
|
/* splice right after start */
|
|
qh->qh_next = head->qh_next;
|
|
qh->hw_next = head->hw_next;
|
|
wmb ();
|
|
|
|
head->qh_next.qh = qh;
|
|
head->hw_next = dma;
|
|
|
|
qh->qh_state = QH_STATE_LINKED;
|
|
/* qtd completions reported later by interrupt */
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* For control/bulk/interrupt, return QH with these TDs appended.
|
|
* Allocates and initializes the QH if necessary.
|
|
* Returns null if it can't allocate a QH it needs to.
|
|
* If the QH has TDs (urbs) already, that's great.
|
|
*/
|
|
static struct ehci_qh *qh_append_tds (
|
|
struct ehci_hcd *ehci,
|
|
struct urb *urb,
|
|
struct list_head *qtd_list,
|
|
int epnum,
|
|
void **ptr
|
|
)
|
|
{
|
|
struct ehci_qh *qh = NULL;
|
|
__hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
|
|
|
|
qh = (struct ehci_qh *) *ptr;
|
|
if (unlikely (qh == NULL)) {
|
|
/* can't sleep here, we have ehci->lock... */
|
|
qh = qh_make (ehci, urb, GFP_ATOMIC);
|
|
*ptr = qh;
|
|
}
|
|
if (likely (qh != NULL)) {
|
|
struct ehci_qtd *qtd;
|
|
|
|
if (unlikely (list_empty (qtd_list)))
|
|
qtd = NULL;
|
|
else
|
|
qtd = list_entry (qtd_list->next, struct ehci_qtd,
|
|
qtd_list);
|
|
|
|
/* control qh may need patching ... */
|
|
if (unlikely (epnum == 0)) {
|
|
|
|
/* usb_reset_device() briefly reverts to address 0 */
|
|
if (usb_pipedevice (urb->pipe) == 0)
|
|
qh->hw_info1 &= ~qh_addr_mask;
|
|
}
|
|
|
|
/* just one way to queue requests: swap with the dummy qtd.
|
|
* only hc or qh_refresh() ever modify the overlay.
|
|
*/
|
|
if (likely (qtd != NULL)) {
|
|
struct ehci_qtd *dummy;
|
|
dma_addr_t dma;
|
|
__hc32 token;
|
|
|
|
/* to avoid racing the HC, use the dummy td instead of
|
|
* the first td of our list (becomes new dummy). both
|
|
* tds stay deactivated until we're done, when the
|
|
* HC is allowed to fetch the old dummy (4.10.2).
|
|
*/
|
|
token = qtd->hw_token;
|
|
qtd->hw_token = HALT_BIT(ehci);
|
|
wmb ();
|
|
dummy = qh->dummy;
|
|
|
|
dma = dummy->qtd_dma;
|
|
*dummy = *qtd;
|
|
dummy->qtd_dma = dma;
|
|
|
|
list_del (&qtd->qtd_list);
|
|
list_add (&dummy->qtd_list, qtd_list);
|
|
__list_splice (qtd_list, qh->qtd_list.prev);
|
|
|
|
ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
|
|
qh->dummy = qtd;
|
|
|
|
/* hc must see the new dummy at list end */
|
|
dma = qtd->qtd_dma;
|
|
qtd = list_entry (qh->qtd_list.prev,
|
|
struct ehci_qtd, qtd_list);
|
|
qtd->hw_next = QTD_NEXT(ehci, dma);
|
|
|
|
/* let the hc process these next qtds */
|
|
wmb ();
|
|
dummy->hw_token = token;
|
|
|
|
urb->hcpriv = qh_get (qh);
|
|
}
|
|
}
|
|
return qh;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static int
|
|
submit_async (
|
|
struct ehci_hcd *ehci,
|
|
struct urb *urb,
|
|
struct list_head *qtd_list,
|
|
gfp_t mem_flags
|
|
) {
|
|
struct ehci_qtd *qtd;
|
|
int epnum;
|
|
unsigned long flags;
|
|
struct ehci_qh *qh = NULL;
|
|
int rc;
|
|
|
|
qtd = list_entry (qtd_list->next, struct ehci_qtd, qtd_list);
|
|
epnum = urb->ep->desc.bEndpointAddress;
|
|
|
|
#ifdef EHCI_URB_TRACE
|
|
ehci_dbg (ehci,
|
|
"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
|
|
__func__, urb->dev->devpath, urb,
|
|
epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
|
|
urb->transfer_buffer_length,
|
|
qtd, urb->ep->hcpriv);
|
|
#endif
|
|
|
|
spin_lock_irqsave (&ehci->lock, flags);
|
|
if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
|
|
&ehci_to_hcd(ehci)->flags))) {
|
|
rc = -ESHUTDOWN;
|
|
goto done;
|
|
}
|
|
rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
|
|
if (unlikely(rc))
|
|
goto done;
|
|
|
|
qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
|
|
if (unlikely(qh == NULL)) {
|
|
usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
|
|
rc = -ENOMEM;
|
|
goto done;
|
|
}
|
|
|
|
/* Control/bulk operations through TTs don't need scheduling,
|
|
* the HC and TT handle it when the TT has a buffer ready.
|
|
*/
|
|
if (likely (qh->qh_state == QH_STATE_IDLE))
|
|
qh_link_async (ehci, qh_get (qh));
|
|
done:
|
|
spin_unlock_irqrestore (&ehci->lock, flags);
|
|
if (unlikely (qh == NULL))
|
|
qtd_list_free (ehci, urb, qtd_list);
|
|
return rc;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* the async qh for the qtds being reclaimed are now unlinked from the HC */
|
|
|
|
static void end_unlink_async (struct ehci_hcd *ehci)
|
|
{
|
|
struct ehci_qh *qh = ehci->reclaim;
|
|
struct ehci_qh *next;
|
|
|
|
iaa_watchdog_done(ehci);
|
|
|
|
// qh->hw_next = cpu_to_hc32(qh->qh_dma);
|
|
qh->qh_state = QH_STATE_IDLE;
|
|
qh->qh_next.qh = NULL;
|
|
qh_put (qh); // refcount from reclaim
|
|
|
|
/* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
|
|
next = qh->reclaim;
|
|
ehci->reclaim = next;
|
|
qh->reclaim = NULL;
|
|
|
|
qh_completions (ehci, qh);
|
|
|
|
if (!list_empty (&qh->qtd_list)
|
|
&& HC_IS_RUNNING (ehci_to_hcd(ehci)->state))
|
|
qh_link_async (ehci, qh);
|
|
else {
|
|
qh_put (qh); // refcount from async list
|
|
|
|
/* it's not free to turn the async schedule on/off; leave it
|
|
* active but idle for a while once it empties.
|
|
*/
|
|
if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
|
|
&& ehci->async->qh_next.qh == NULL)
|
|
timer_action (ehci, TIMER_ASYNC_OFF);
|
|
}
|
|
|
|
if (next) {
|
|
ehci->reclaim = NULL;
|
|
start_unlink_async (ehci, next);
|
|
}
|
|
}
|
|
|
|
/* makes sure the async qh will become idle */
|
|
/* caller must own ehci->lock */
|
|
|
|
static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
|
|
{
|
|
int cmd = ehci_readl(ehci, &ehci->regs->command);
|
|
struct ehci_qh *prev;
|
|
|
|
#ifdef DEBUG
|
|
assert_spin_locked(&ehci->lock);
|
|
if (ehci->reclaim
|
|
|| (qh->qh_state != QH_STATE_LINKED
|
|
&& qh->qh_state != QH_STATE_UNLINK_WAIT)
|
|
)
|
|
BUG ();
|
|
#endif
|
|
|
|
/* stop async schedule right now? */
|
|
if (unlikely (qh == ehci->async)) {
|
|
/* can't get here without STS_ASS set */
|
|
if (ehci_to_hcd(ehci)->state != HC_STATE_HALT
|
|
&& !ehci->reclaim) {
|
|
/* ... and CMD_IAAD clear */
|
|
ehci_writel(ehci, cmd & ~CMD_ASE,
|
|
&ehci->regs->command);
|
|
wmb ();
|
|
// handshake later, if we need to
|
|
timer_action_done (ehci, TIMER_ASYNC_OFF);
|
|
}
|
|
return;
|
|
}
|
|
|
|
qh->qh_state = QH_STATE_UNLINK;
|
|
ehci->reclaim = qh = qh_get (qh);
|
|
|
|
prev = ehci->async;
|
|
while (prev->qh_next.qh != qh)
|
|
prev = prev->qh_next.qh;
|
|
|
|
prev->hw_next = qh->hw_next;
|
|
prev->qh_next = qh->qh_next;
|
|
wmb ();
|
|
|
|
if (unlikely (ehci_to_hcd(ehci)->state == HC_STATE_HALT)) {
|
|
/* if (unlikely (qh->reclaim != 0))
|
|
* this will recurse, probably not much
|
|
*/
|
|
end_unlink_async (ehci);
|
|
return;
|
|
}
|
|
|
|
cmd |= CMD_IAAD;
|
|
ehci_writel(ehci, cmd, &ehci->regs->command);
|
|
(void)ehci_readl(ehci, &ehci->regs->command);
|
|
iaa_watchdog_start(ehci);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static void scan_async (struct ehci_hcd *ehci)
|
|
{
|
|
struct ehci_qh *qh;
|
|
enum ehci_timer_action action = TIMER_IO_WATCHDOG;
|
|
|
|
if (!++(ehci->stamp))
|
|
ehci->stamp++;
|
|
timer_action_done (ehci, TIMER_ASYNC_SHRINK);
|
|
rescan:
|
|
qh = ehci->async->qh_next.qh;
|
|
if (likely (qh != NULL)) {
|
|
do {
|
|
/* clean any finished work for this qh */
|
|
if (!list_empty (&qh->qtd_list)
|
|
&& qh->stamp != ehci->stamp) {
|
|
int temp;
|
|
|
|
/* unlinks could happen here; completion
|
|
* reporting drops the lock. rescan using
|
|
* the latest schedule, but don't rescan
|
|
* qhs we already finished (no looping).
|
|
*/
|
|
qh = qh_get (qh);
|
|
qh->stamp = ehci->stamp;
|
|
temp = qh_completions (ehci, qh);
|
|
qh_put (qh);
|
|
if (temp != 0) {
|
|
goto rescan;
|
|
}
|
|
}
|
|
|
|
/* unlink idle entries, reducing HC PCI usage as well
|
|
* as HCD schedule-scanning costs. delay for any qh
|
|
* we just scanned, there's a not-unusual case that it
|
|
* doesn't stay idle for long.
|
|
* (plus, avoids some kind of re-activation race.)
|
|
*/
|
|
if (list_empty (&qh->qtd_list)) {
|
|
if (qh->stamp == ehci->stamp)
|
|
action = TIMER_ASYNC_SHRINK;
|
|
else if (!ehci->reclaim
|
|
&& qh->qh_state == QH_STATE_LINKED)
|
|
start_unlink_async (ehci, qh);
|
|
}
|
|
|
|
qh = qh->qh_next.qh;
|
|
} while (qh);
|
|
}
|
|
if (action == TIMER_ASYNC_SHRINK)
|
|
timer_action (ehci, TIMER_ASYNC_SHRINK);
|
|
}
|