linux/drivers/staging/otus/80211core/ccmd.c

1862 lines
54 KiB
C

/*
* Copyright (c) 2007-2008 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* */
/* Module Name : cmd.c */
/* */
/* Abstract */
/* This module contains command interface functions. */
/* */
/* NOTES */
/* None */
/* */
/************************************************************************/
#include "cprecomp.h"
#include "../hal/hpreg.h"
u16_t zfWlanReset(zdev_t* dev);
u32_t zfUpdateRxRate(zdev_t* dev);
extern void zfiUsbRecv(zdev_t *dev, zbuf_t *buf);
extern void zfiUsbRegIn(zdev_t* dev, u32_t* rsp, u16_t rspLen);
extern void zfiUsbOutComplete(zdev_t* dev, zbuf_t *buf, u8_t status, u8_t *hdr);
extern void zfiUsbRegOutComplete(zdev_t* dev);
extern u16_t zfHpReinit(zdev_t* dev, u32_t frequency);
/* Get size (byte) of driver core global data structure. */
/* This size will be used by driver wrapper to allocate */
/* a memory space for driver core to store global variables */
u16_t zfiGlobalDataSize(zdev_t* dev)
{
u32_t ret;
ret = (sizeof(struct zsWlanDev));
zm_assert((ret>>16) == 0);
return (u16_t)ret;
}
/* Initialize WLAN hardware and software, resource will be allocated */
/* for WLAN operation, must be called first before other function. */
extern u16_t zfiWlanOpen(zdev_t* dev, struct zsCbFuncTbl* cbFuncTbl)
{
//u16_t ret;
//u32_t i;
//u8_t* ch;
//u8_t bPassive;
u32_t devSize;
struct zfCbUsbFuncTbl cbUsbFuncTbl;
zmw_get_wlan_dev(dev);
zm_debug_msg0("start");
devSize = sizeof(struct zsWlanDev);
/* Zeroize zsWlanDev struct */
zfZeroMemory((u8_t*)wd, (u16_t)devSize);
#ifdef ZM_ENABLE_AGGREGATION
zfAggInit(dev);
#endif
zfCwmInit(dev);
wd->commTally.RateCtrlTxMPDU = 0;
wd->commTally.RateCtrlBAFail = 0;
wd->preambleTypeInUsed = ZM_PREAMBLE_TYPE_SHORT;
if (cbFuncTbl == NULL)
{
/* zfcbRecvEth() is mandatory */
zm_assert(0);
}
else
{
if (cbFuncTbl->zfcbRecvEth == NULL)
{
/* zfcbRecvEth() is mandatory */
zm_assert(0);
}
wd->zfcbAuthNotify = cbFuncTbl->zfcbAuthNotify;
wd->zfcbAuthNotify = cbFuncTbl->zfcbAuthNotify;
wd->zfcbAsocNotify = cbFuncTbl->zfcbAsocNotify;
wd->zfcbDisAsocNotify = cbFuncTbl->zfcbDisAsocNotify;
wd->zfcbApConnectNotify = cbFuncTbl->zfcbApConnectNotify;
wd->zfcbConnectNotify = cbFuncTbl->zfcbConnectNotify;
wd->zfcbScanNotify = cbFuncTbl->zfcbScanNotify;
wd->zfcbMicFailureNotify = cbFuncTbl->zfcbMicFailureNotify;
wd->zfcbApMicFailureNotify = cbFuncTbl->zfcbApMicFailureNotify;
wd->zfcbIbssPartnerNotify = cbFuncTbl->zfcbIbssPartnerNotify;
wd->zfcbMacAddressNotify = cbFuncTbl->zfcbMacAddressNotify;
wd->zfcbSendCompleteIndication = cbFuncTbl->zfcbSendCompleteIndication;
wd->zfcbRecvEth = cbFuncTbl->zfcbRecvEth;
wd->zfcbRestoreBufData = cbFuncTbl->zfcbRestoreBufData;
wd->zfcbRecv80211 = cbFuncTbl->zfcbRecv80211;
#ifdef ZM_ENABLE_CENC
wd->zfcbCencAsocNotify = cbFuncTbl->zfcbCencAsocNotify;
#endif //ZM_ENABLE_CENC
wd->zfcbClassifyTxPacket = cbFuncTbl->zfcbClassifyTxPacket;
wd->zfcbHwWatchDogNotify = cbFuncTbl->zfcbHwWatchDogNotify;
}
//add by honda 0330
cbUsbFuncTbl.zfcbUsbRecv = zfiUsbRecv;
cbUsbFuncTbl.zfcbUsbRegIn = zfiUsbRegIn;
cbUsbFuncTbl.zfcbUsbOutComplete = zfiUsbOutComplete;
cbUsbFuncTbl.zfcbUsbRegOutComplete = zfiUsbRegOutComplete;
zfwUsbRegisterCallBack(dev, &cbUsbFuncTbl);
/* Init OWN MAC address */
wd->macAddr[0] = 0x8000;
wd->macAddr[1] = 0x0000;
wd->macAddr[2] = 0x0000;
wd->regulationTable.regionCode = 0xffff;
zfHpInit(dev, wd->frequency);
/* init region code */
//wd->regulationTable.regionCode = NULL1_WORLD; //Only 2.4g RegCode
//zfHpGetRegulationTablefromRegionCode(dev, NULL1_WORLD);
//zfiWlanSetDot11DMode(dev , 1); // Enable 802.11d
/* Get the first channel */
//wd->frequency = zfChGetFirstChannel(dev, &bPassive);
#ifdef ZM_AP_DEBUG
//wd->frequency = 2437;
#endif
//STA mode
wd->sta.mTxRate = 0x0;
wd->sta.uTxRate = 0x3;
wd->sta.mmTxRate = 0x0;
wd->sta.adapterState = ZM_STA_STATE_DISCONNECT;
wd->sta.capability[0] = 0x01;
wd->sta.capability[1] = 0x00;
wd->sta.preambleTypeHT = 0;
wd->sta.htCtrlBandwidth = 0;
wd->sta.htCtrlSTBC = 0;
wd->sta.htCtrlSG = 0;
wd->sta.defaultTA = 0;
//wd->sta.activescanTickPerChannel = ZM_TIME_ACTIVE_SCAN/ZM_MS_PER_TICK;
{
u8_t Dur = ZM_TIME_ACTIVE_SCAN;
zfwGetActiveScanDur(dev, &Dur);
wd->sta.activescanTickPerChannel = Dur/ZM_MS_PER_TICK;
}
wd->sta.passiveScanTickPerChannel = ZM_TIME_PASSIVE_SCAN/ZM_MS_PER_TICK;
wd->sta.bAutoReconnect = TRUE;
wd->sta.dropUnencryptedPkts = FALSE;
/* set default to bypass all multicast packet for linux, window XP would set 0 by wrapper initialization */
wd->sta.bAllMulticast = 1;
/* Initial the RIFS Status / RIFS-like frame count / RIFS count */
wd->sta.rifsState = ZM_RIFS_STATE_DETECTING;
wd->sta.rifsLikeFrameCnt = 0;
wd->sta.rifsCount = 0;
wd->sta.osRxFilter = 0;
wd->sta.bSafeMode = 0;
//Common
zfResetSupportRate(dev, ZM_DEFAULT_SUPPORT_RATE_DISCONNECT);
wd->beaconInterval = 100;
wd->rtsThreshold = 2346;
wd->fragThreshold = 32767;
wd->wlanMode = ZM_MODE_INFRASTRUCTURE;
wd->txMCS = 0xff; //AUTO
wd->dtim = 1;
//wd->txMT = 1; //OFDM
wd->tick = 1;
wd->maxTxPower2 = 0xff;
wd->maxTxPower5 = 0xff;
wd->supportMode = 0xffffffff;
wd->ws.adhocMode = ZM_ADHOCBAND_G;
wd->ws.autoSetFrequency = 0xff;
//AP mode
//wd->bgMode = wd->ws.bgMode;
wd->ap.ssidLen[0] = 6;
wd->ap.ssid[0][0] = 'Z';
wd->ap.ssid[0][1] = 'D';
wd->ap.ssid[0][2] = '1';
wd->ap.ssid[0][3] = '2';
wd->ap.ssid[0][4] = '2';
wd->ap.ssid[0][5] = '1';
// Init the country iso name as NA
wd->ws.countryIsoName[0] = 0;
wd->ws.countryIsoName[1] = 0;
wd->ws.countryIsoName[2] = '\0';
/* init fragmentation is disabled */
//zfiWlanSetFragThreshold(dev, 0);
/* airopeek : swSniffer 1=>on 0=>off */
wd->swSniffer = 0;
wd->XLinkMode = 0;
// jhlee HT 0
#if 1
/* AP Mode*/
/* Init HT Capability Info */
wd->ap.HTCap.Data.ElementID = ZM_WLAN_EID_HT_CAPABILITY;
wd->ap.HTCap.Data.Length = 26;
//wd->ap.HTCap.Data.SupChannelWidthSet = 0;
//wd->ap.HTCap.Data.MIMOPowerSave = 3;
//wd->ap.HTCap.Data.ShortGIfor40MHz = 0;
//wd->ap.HTCap.Data.ShortGIfor20MHz = 0;
//wd->ap.HTCap.Data.DSSSandCCKin40MHz = 0;
wd->ap.HTCap.Data.AMPDUParam |= HTCAP_MaxRxAMPDU3;
wd->ap.HTCap.Data.MCSSet[0] = 0xFF; // MCS 0 ~ 7
wd->ap.HTCap.Data.MCSSet[1] = 0xFF; // MCS 8 ~ 15
/* Init Extended HT Capability Info */
wd->ap.ExtHTCap.Data.ElementID = ZM_WLAN_EID_EXTENDED_HT_CAPABILITY;
wd->ap.ExtHTCap.Data.Length = 22;
wd->ap.ExtHTCap.Data.ControlChannel = 6;
//wd->ap.ExtHTCap.Data.ExtChannelOffset = 3;
wd->ap.ExtHTCap.Data.ChannelInfo |= ExtHtCap_RecomTxWidthSet;
//wd->ap.ExtHTCap.Data.RIFSMode = 1;
wd->ap.ExtHTCap.Data.OperatingInfo |= 1;
/* STA Mode*/
/* Init HT Capability Info */
wd->sta.HTCap.Data.ElementID = ZM_WLAN_EID_HT_CAPABILITY;
wd->sta.HTCap.Data.Length = 26;
/* Test with 5G-AP : 7603 */
//wd->sta.HTCap.Data.SupChannelWidthSet = 1;
wd->sta.HTCap.Data.HtCapInfo |= HTCAP_SMEnabled;
wd->sta.HTCap.Data.HtCapInfo |= HTCAP_SupChannelWidthSet;
wd->sta.HTCap.Data.HtCapInfo |= HTCAP_ShortGIfor40MHz;
wd->sta.HTCap.Data.HtCapInfo |= HTCAP_DSSSandCCKin40MHz;
#ifndef ZM_DISABLE_AMSDU8K_SUPPORT
wd->sta.HTCap.Data.HtCapInfo |= HTCAP_MaxAMSDULength;
#endif
//wd->sta.HTCap.Data.MIMOPowerSave = 0;
//wd->sta.HTCap.Data.ShortGIfor40MHz = 0;
//wd->sta.HTCap.Data.ShortGIfor20MHz = 0;
//wd->sta.HTCap.Data.DSSSandCCKin40MHz = 0;
wd->sta.HTCap.Data.AMPDUParam |= HTCAP_MaxRxAMPDU3;
wd->sta.HTCap.Data.MCSSet[0] = 0xFF; // MCS 0 ~ 7
wd->sta.HTCap.Data.MCSSet[1] = 0xFF; // MCS 8 ~ 15
wd->sta.HTCap.Data.PCO |= HTCAP_TransmissionTime3;
//wd->sta.HTCap.Data.TransmissionTime = 0;
/* Init Extended HT Capability Info */
wd->sta.ExtHTCap.Data.ElementID = ZM_WLAN_EID_EXTENDED_HT_CAPABILITY;
wd->sta.ExtHTCap.Data.Length = 22;
wd->sta.ExtHTCap.Data.ControlChannel = 6;
//wd->sta.ExtHTCap.Data.ExtChannelOffset |= 3;
wd->sta.ExtHTCap.Data.ChannelInfo |= ExtHtCap_ExtChannelOffsetBelow;
//wd->sta.ExtHTCap.Data.RecomTxWidthSet = 1;
//wd->sta.ExtHTCap.Data.RIFSMode = 1;
wd->sta.ExtHTCap.Data.OperatingInfo |= 1;
#endif
#if 0
/* WME test code */
wd->ap.qosMode[0] = 1;
#endif
wd->ledStruct.ledMode[0] = 0x2221;
wd->ledStruct.ledMode[1] = 0x2221;
zfTimerInit(dev);
ZM_PERFORMANCE_INIT(dev);
zfBssInfoCreate(dev);
zfScanMgrInit(dev);
zfPowerSavingMgrInit(dev);
#if 0
/* Test code */
{
u32_t key[4] = {0xffffffff, 0xff, 0, 0};
u16_t addr[3] = {0x8000, 0x01ab, 0x0000};
//zfSetKey(dev, 0, 0, ZM_WEP64, addr, key);
//zfSetKey(dev, 0, 0, ZM_AES, addr, key);
//zfSetKey(dev, 64, 0, 1, wd->macAddr, key);
}
#endif
// WME settings
wd->ws.staWmeEnabled = 1; // Enable WME by default
#define ZM_UAPSD_Q_SIZE 32 //2^N
wd->ap.uapsdQ = zfQueueCreate(dev, ZM_UAPSD_Q_SIZE);
zm_assert(wd->ap.uapsdQ != NULL);
wd->sta.uapsdQ = zfQueueCreate(dev, ZM_UAPSD_Q_SIZE);
zm_assert(wd->sta.uapsdQ != NULL);
//zfHpInit(dev, wd->frequency);
/* MAC address */
//zfHpSetMacAddress(dev, wd->macAddr, 0);
zfHpGetMacAddress(dev);
zfCoreSetFrequency(dev, wd->frequency);
#if ZM_PCI_LOOP_BACK == 1
zfwWriteReg(dev, ZM_REG_PCI_CONTROL, 6);
#endif /* #if ZM_PCI_LOOP_BACK == 1 */
//zfiWlanSetDot11DMode(dev , 1); // Enable 802.11d
//zfiWlanSetDot11HDFSMode(dev , 1); // Enable 802.11h DFS
wd->sta.DFSEnable = 1;
wd->sta.capability[1] |= ZM_BIT_0;
//zfiWlanSetFrequency(dev, 5260000, TRUE);
//zfiWlanSetAniMode(dev , 1); // Enable ANI
/* Trgger Rx DMA */
zfHpStartRecv(dev);
zm_debug_msg0("end");
return 0;
}
/* WLAN hardware will be shutdown and all resource will be release */
u16_t zfiWlanClose(zdev_t* dev)
{
zmw_get_wlan_dev(dev);
zm_msg0_init(ZM_LV_0, "enter");
wd->state = ZM_WLAN_STATE_CLOSEDED;
//zfiWlanDisable(dev, 1);
zfWlanReset(dev);
zfHpStopRecv(dev);
/* Disable MAC */
/* Disable PHY */
/* Disable RF */
zfHpRelease(dev);
zfQueueDestroy(dev, wd->ap.uapsdQ);
zfQueueDestroy(dev, wd->sta.uapsdQ);
zfBssInfoDestroy(dev);
#ifdef ZM_ENABLE_AGGREGATION
/* add by honda */
zfAggRxFreeBuf(dev, 1); //1 for release structure memory
/* end of add by honda */
#endif
zm_msg0_init(ZM_LV_0, "exit");
return 0;
}
void zfGetWrapperSetting(zdev_t* dev)
{
u8_t bPassive;
u16_t vapId = 0;
zmw_get_wlan_dev(dev);
zmw_declare_for_critical_section();
#if 0
if ( (wd->ws.countryIsoName[0] != 0)
|| (wd->ws.countryIsoName[1] != 0)
|| (wd->ws.countryIsoName[2] != '\0') )
{
zfHpGetRegulationTablefromRegionCode(
dev,
zfHpGetRegionCodeFromIsoName(dev, wd->ws.countryIsoName) );
}
#endif
zmw_enter_critical_section(dev);
wd->wlanMode = wd->ws.wlanMode;
/* set channel */
if ( wd->ws.frequency )
{
wd->frequency = wd->ws.frequency;
wd->ws.frequency = 0;
}
else
{
wd->frequency = zfChGetFirstChannel(dev, &bPassive);
if ( wd->wlanMode == ZM_MODE_IBSS )
{
if (wd->ws.adhocMode == ZM_ADHOCBAND_A)
{
wd->frequency = ZM_CH_A_36;
}
else
{
wd->frequency = ZM_CH_G_6;
}
}
}
#ifdef ZM_AP_DEBUG
/* honda add for debug, 2437 channel 6, 2452 channel 9 */
wd->frequency = 2437;
/* end of add by honda */
#endif
/* set preamble type */
switch (wd->ws.preambleType)
{
case ZM_PREAMBLE_TYPE_AUTO:
case ZM_PREAMBLE_TYPE_SHORT:
case ZM_PREAMBLE_TYPE_LONG:
wd->preambleType = wd->ws.preambleType;
break;
default:
wd->preambleType = ZM_PREAMBLE_TYPE_SHORT;
break;
}
wd->ws.preambleType = 0;
if ( wd->wlanMode == ZM_MODE_AP )
{
vapId = zfwGetVapId(dev);
if (vapId == 0xffff)
{
wd->ap.authAlgo[0] = wd->ws.authMode;
wd->ap.encryMode[0] = wd->ws.encryMode;
}
else
{
wd->ap.authAlgo[vapId + 1] = wd->ws.authMode;
wd->ap.encryMode[vapId + 1] = wd->ws.encryMode;
}
wd->ws.authMode = 0;
wd->ws.encryMode = ZM_NO_WEP;
/* Get beaconInterval from WrapperSetting */
if ((wd->ws.beaconInterval >= 20) && (wd->ws.beaconInterval <= 1000))
{
wd->beaconInterval = wd->ws.beaconInterval;
}
else
{
wd->beaconInterval = 100; //100ms
}
if (wd->ws.dtim > 0)
{
wd->dtim = wd->ws.dtim;
}
else
{
wd->dtim = 1;
}
wd->ap.qosMode = wd->ws.apWmeEnabled & 0x1;
wd->ap.uapsdEnabled = (wd->ws.apWmeEnabled & 0x2) >> 1;
}
else
{
wd->sta.authMode = wd->ws.authMode;
wd->sta.currentAuthMode = wd->ws.authMode;
wd->sta.wepStatus = wd->ws.wepStatus;
if ( wd->ws.beaconInterval )
{
wd->beaconInterval = wd->ws.beaconInterval;
}
else
{
wd->beaconInterval = 0x64;
}
if ( wd->wlanMode == ZM_MODE_IBSS )
{
/* 1. Set default channel 6 (2437MHz) */
// wd->frequency = 2437;
/* 2. Otus support 802.11g Mode */
if ((wd->ws.adhocMode == ZM_ADHOCBAND_G) ||
(wd->ws.adhocMode == ZM_ADHOCBAND_BG) ||
(wd->ws.adhocMode == ZM_ADHOCBAND_ABG) ) {
wd->wfc.bIbssGMode = 1;
} else {
wd->wfc.bIbssGMode = 0;
}
/* 3. set short preamble */
//wd->sta.preambleType = ZM_PREAMBLE_TYPE_SHORT ;
}
/* set ATIM window */
if ( wd->ws.atimWindow )
{
wd->sta.atimWindow = wd->ws.atimWindow;
}
else
{
//wd->sta.atimWindow = 0x0a;
wd->sta.atimWindow = 0;
}
//wd->sta.connectingHiddenAP = 1;//wd->ws.connectingHiddenAP;
wd->sta.dropUnencryptedPkts = wd->ws.dropUnencryptedPkts;
wd->sta.ibssJoinOnly = wd->ws.ibssJoinOnly;
if ( wd->ws.bDesiredBssid )
{
zfMemoryCopy(wd->sta.desiredBssid, wd->ws.desiredBssid, 6);
wd->sta.bDesiredBssid = TRUE;
wd->ws.bDesiredBssid = FALSE;
}
else
{
wd->sta.bDesiredBssid = FALSE;
}
/* check ssid */
if ( wd->ws.ssidLen != 0 )
{
if ( (!zfMemoryIsEqual(wd->ws.ssid, wd->sta.ssid,
wd->sta.ssidLen))||
(wd->ws.ssidLen != wd->sta.ssidLen)||
(wd->sta.authMode == ZM_AUTH_MODE_WPA)||
(wd->sta.authMode == ZM_AUTH_MODE_WPAPSK) ||
(wd->ws.staWmeQosInfo!= 0) )
{
/*if u-APSD test(set QosInfo), clear connectByReasso to do association (not reassociation)*/
wd->sta.connectByReasso = FALSE;
wd->sta.failCntOfReasso = 0;
wd->sta.pmkidInfo.bssidCount = 0;
wd->sta.ssidLen = wd->ws.ssidLen;
zfMemoryCopy(wd->sta.ssid, wd->ws.ssid, wd->sta.ssidLen);
if ( wd->sta.ssidLen < 32 )
{
wd->sta.ssid[wd->sta.ssidLen] = 0;
}
}
}
else
{ /* ANY BSS */
wd->sta.ssid[0] = 0;
wd->sta.ssidLen = 0;
}
wd->sta.wmeEnabled = wd->ws.staWmeEnabled;
wd->sta.wmeQosInfo = wd->ws.staWmeQosInfo;
}
zmw_leave_critical_section(dev);
}
u16_t zfWlanEnable(zdev_t* dev)
{
u8_t bssid[6] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0};
u16_t i;
zmw_get_wlan_dev(dev);
zmw_declare_for_critical_section();
if ( wd->wlanMode == ZM_MODE_UNKNOWN )
{
zm_debug_msg0("Unknown Mode...Skip...");
return 0;
}
if (wd->wlanMode == ZM_MODE_AP)
{
u16_t vapId;
vapId = zfwGetVapId(dev);
if (vapId == 0xffff)
{
/* AP mode */
zfApInitStaTbl(dev);
/* AP default parameters */
wd->bRate = 0xf;
wd->gRate = 0xff;
wd->bRateBasic = 0xf;
wd->gRateBasic = 0x0;
//wd->beaconInterval = 100;
wd->ap.apBitmap = 1;
wd->ap.beaconCounter = 0;
//wd->ap.vapNumber = 1; //mark by ygwei for Vap
wd->ap.hideSsid[0] = 0;
wd->ap.staAgingTimeSec = 10*60;
wd->ap.staProbingTimeSec = 60;
for (i=0; i<ZM_MAX_AP_SUPPORT; i++)
{
wd->ap.bcmcHead[i] = wd->ap.bcmcTail[i] = 0;
}
//wd->ap.uniHead = wd->ap.uniTail = 0;
/* load AP parameters */
wd->bRateBasic = wd->ws.bRateBasic;
wd->gRateBasic = wd->ws.gRateBasic;
wd->bgMode = wd->ws.bgMode;
if ((wd->ws.ssidLen <= 32) && (wd->ws.ssidLen != 0))
{
wd->ap.ssidLen[0] = wd->ws.ssidLen;
for(i=0; i<wd->ws.ssidLen; i++)
{
wd->ap.ssid[0][i] = wd->ws.ssid[i];
}
wd->ws.ssidLen = 0; // Reset Wrapper Variable
}
if (wd->ap.encryMode[0] == 0)
{
wd->ap.capab[0] = 0x001;
}
else
{
wd->ap.capab[0] = 0x011;
}
/* set Short Slot Time bit if not 11b */
if (wd->ap.wlanType[0] != ZM_WLAN_TYPE_PURE_B)
{
wd->ap.capab[0] |= 0x400;
}
// wd->ap.vapNumber = 1; // mark by ygwei for Vap Test
}
else
{
#if 0
/* VAP Test Code */
wd->ap.apBitmap = 0x3;
wd->ap.capab[1] = 0x401;
wd->ap.ssidLen[1] = 4;
wd->ap.ssid[1][0] = 'v';
wd->ap.ssid[1][1] = 'a';
wd->ap.ssid[1][2] = 'p';
wd->ap.ssid[1][3] = '1';
wd->ap.authAlgo[1] = wd->ws.authMode;
wd->ap.encryMode[1] = wd->ws.encryMode;
wd->ap.vapNumber = 2;
#else
/* VAP Test Code */
wd->ap.apBitmap = 0x1 | (0x01 << (vapId+1));
if ((wd->ws.ssidLen <= 32) && (wd->ws.ssidLen != 0))
{
wd->ap.ssidLen[vapId+1] = wd->ws.ssidLen;
for(i=0; i<wd->ws.ssidLen; i++)
{
wd->ap.ssid[vapId+1][i] = wd->ws.ssid[i];
}
wd->ws.ssidLen = 0; // Reset Wrapper Variable
}
if (wd->ap.encryMode[vapId+1] == 0)
{
wd->ap.capab[vapId+1] = 0x401;
}
else
{
wd->ap.capab[vapId+1] = 0x411;
}
wd->ap.authAlgo[vapId+1] = wd->ws.authMode;
wd->ap.encryMode[vapId+1] = wd->ws.encryMode;
/* Need to be modified when VAP is used */
//wd->ap.vapNumber = 2;
#endif
}
wd->ap.vapNumber++;
zfCoreSetFrequency(dev, wd->frequency);
zfInitMacApMode(dev);
/* Disable protection mode */
zfApSetProtectionMode(dev, 0);
zfApSendBeacon(dev);
} /*if (wd->wlanMode == ZM_MODE_AP) */
else
{
zfScanMgrScanStop(dev, ZM_SCAN_MGR_SCAN_INTERNAL);
zfScanMgrScanStop(dev, ZM_SCAN_MGR_SCAN_EXTERNAL);
zmw_enter_critical_section(dev);
wd->sta.oppositeCount = 0; /* reset opposite count */
//wd->sta.bAutoReconnect = wd->sta.bAutoReconnectEnabled;
//wd->sta.scanWithSSID = 0;
zfStaInitOppositeInfo(dev);
zmw_leave_critical_section(dev);
zfStaResetStatus(dev, 0);
if ( (wd->sta.cmDisallowSsidLength != 0)&&
(wd->sta.ssidLen == wd->sta.cmDisallowSsidLength)&&
(zfMemoryIsEqual(wd->sta.ssid, wd->sta.cmDisallowSsid,
wd->sta.ssidLen)) &&
(wd->sta.wepStatus == ZM_ENCRYPTION_TKIP))
{ /* countermeasures */
zm_debug_msg0("countermeasures disallow association");
}
else
{
switch( wd->wlanMode )
{
case ZM_MODE_IBSS:
/* some registers may be set here */
if ( wd->sta.authMode == ZM_AUTH_MODE_WPA2PSK )
{
zfHpSetApStaMode(dev, ZM_HAL_80211_MODE_IBSS_WPA2PSK);
}
else
{
zfHpSetApStaMode(dev, ZM_HAL_80211_MODE_IBSS_GENERAL);
}
zm_msg0_mm(ZM_LV_0, "ZM_MODE_IBSS");
zfIbssConnectNetwork(dev);
break;
case ZM_MODE_INFRASTRUCTURE:
/* some registers may be set here */
zfHpSetApStaMode(dev, ZM_HAL_80211_MODE_STA);
zfInfraConnectNetwork(dev);
break;
case ZM_MODE_PSEUDO:
/* some registers may be set here */
zfHpSetApStaMode(dev, ZM_HAL_80211_MODE_STA);
zfUpdateBssid(dev, bssid);
zfCoreSetFrequency(dev, wd->frequency);
break;
default:
break;
}
}
}
//if ( (wd->wlanMode != ZM_MODE_INFRASTRUCTURE)&&
// (wd->wlanMode != ZM_MODE_AP) )
if ( wd->wlanMode == ZM_MODE_PSEUDO )
{
/* Reset Wlan status */
zfWlanReset(dev);
if (wd->zfcbConnectNotify != NULL)
{
wd->zfcbConnectNotify(dev, ZM_STATUS_MEDIA_CONNECT, wd->sta.bssid);
}
zfChangeAdapterState(dev, ZM_STA_STATE_CONNECTED);
}
if(wd->wlanMode == ZM_MODE_AP)
{
if (wd->zfcbConnectNotify != NULL)
{
wd->zfcbConnectNotify(dev, ZM_STATUS_MEDIA_CONNECT, wd->sta.bssid);
}
//zfChangeAdapterState(dev, ZM_STA_STATE_CONNECTED);
}
// Assign default Tx Rate
if ( wd->sta.EnableHT )
{
u32_t oneTxStreamCap;
oneTxStreamCap = (zfHpCapability(dev) & ZM_HP_CAP_11N_ONE_TX_STREAM);
if(oneTxStreamCap)
wd->CurrentTxRateKbps = 135000;
else
wd->CurrentTxRateKbps = 270000;
wd->CurrentRxRateKbps = 270000;
}
else
{
wd->CurrentTxRateKbps = 54000;
wd->CurrentRxRateKbps = 54000;
}
wd->state = ZM_WLAN_STATE_ENABLED;
return 0;
}
/* Enable/disable Wlan operation */
u16_t zfiWlanEnable(zdev_t* dev)
{
u16_t ret;
zmw_get_wlan_dev(dev);
zm_msg0_mm(ZM_LV_1, "Enable Wlan");
zfGetWrapperSetting(dev);
zfZeroMemory((u8_t*) &wd->trafTally, sizeof(struct zsTrafTally));
// Reset cmMicFailureCount to 0 for new association request
if ( wd->sta.cmMicFailureCount == 1 )
{
zfTimerCancel(dev, ZM_EVENT_CM_TIMER);
wd->sta.cmMicFailureCount = 0;
}
zfFlushVtxq(dev);
if ((wd->queueFlushed & 0x10) != 0)
{
zfHpUsbReset(dev);
}
ret = zfWlanEnable(dev);
return ret;
}
/* Add a flag named ResetKeyCache to show if KeyCache should be cleared.
for hostapd in AP mode, if driver receives iwconfig ioctl
after setting group key, it shouldn't clear KeyCache. */
u16_t zfiWlanDisable(zdev_t* dev, u8_t ResetKeyCache)
{
u16_t i;
u8_t isConnected;
zmw_get_wlan_dev(dev);
#ifdef ZM_ENABLE_IBSS_WPA2PSK
zmw_declare_for_critical_section();
#endif
wd->state = ZM_WLAN_STATE_DISABLED;
zm_msg0_mm(ZM_LV_1, "Disable Wlan");
if ( wd->wlanMode != ZM_MODE_AP )
{
isConnected = zfStaIsConnected(dev);
if ( (wd->wlanMode == ZM_MODE_INFRASTRUCTURE)&&
(wd->sta.currentAuthMode != ZM_AUTH_MODE_WPA2) )
{
/* send deauthentication frame */
if (isConnected)
{
//zfiWlanDeauth(dev, NULL, 0);
zfSendMmFrame(dev, ZM_WLAN_FRAME_TYPE_DEAUTH, wd->sta.bssid, 3, 0, 0);
//zmw_debug_msg0("send a Deauth frame!");
}
}
// Remove all the connected peer stations
if ( wd->wlanMode == ZM_MODE_IBSS )
{
wd->sta.ibssBssIsCreator = 0;
zfTimerCancel(dev, ZM_EVENT_IBSS_MONITOR);
zfStaIbssMonitoring(dev, 1);
}
#ifdef ZM_ENABLE_IBSS_WPA2PSK
zmw_enter_critical_section(dev);
wd->sta.ibssWpa2Psk = 0;
zmw_leave_critical_section(dev);
#endif
wd->sta.wpaState = ZM_STA_WPA_STATE_INIT;
/* reset connect timeout counter */
wd->sta.connectTimeoutCount = 0;
/* reset connectState to None */
wd->sta.connectState = ZM_STA_CONN_STATE_NONE;
/* reset leap enable variable */
wd->sta.leapEnabled = 0;
/* Disable the RIFS Status / RIFS-like frame count / RIFS count */
if( wd->sta.rifsState == ZM_RIFS_STATE_DETECTED )
zfHpDisableRifs(dev);
wd->sta.rifsState = ZM_RIFS_STATE_DETECTING;
wd->sta.rifsLikeFrameCnt = 0;
wd->sta.rifsCount = 0;
wd->sta.osRxFilter = 0;
wd->sta.bSafeMode = 0;
zfChangeAdapterState(dev, ZM_STA_STATE_DISCONNECT);
if (ResetKeyCache)
zfHpResetKeyCache(dev);
if (isConnected)
{
if (wd->zfcbConnectNotify != NULL)
{
wd->zfcbConnectNotify(dev, ZM_STATUS_MEDIA_CONNECTION_DISABLED, wd->sta.bssid);
}
}
else
{
if (wd->zfcbConnectNotify != NULL)
{
wd->zfcbConnectNotify(dev, ZM_STATUS_MEDIA_DISABLED, wd->sta.bssid);
}
}
}
else //if (wd->wlanMode == ZM_MODE_AP)
{
for (i=0; i<ZM_MAX_STA_SUPPORT; i++)
{
/* send deauthentication frame */
if (wd->ap.staTable[i].valid == 1)
{
/* Reason : Sending station is leaving */
zfSendMmFrame(dev, ZM_WLAN_FRAME_TYPE_DEAUTH,
wd->ap.staTable[i].addr, 3, 0, 0);
}
}
if (ResetKeyCache)
zfHpResetKeyCache(dev);
wd->ap.vapNumber--;
}
/* stop beacon */
zfHpDisableBeacon(dev);
/* Flush VTxQ and MmQ */
zfFlushVtxq(dev);
/* Flush AP PS queues */
zfApFlushBufferedPsFrame(dev);
/* Free buffer in defragment list*/
zfAgingDefragList(dev, 1);
#ifdef ZM_ENABLE_AGGREGATION
/* add by honda */
zfAggRxFreeBuf(dev, 0); //1 for release structure memory
/* end of add by honda */
#endif
// Clear the information for the peer stations of IBSS or AP of Station mode
zfZeroMemory((u8_t*)wd->sta.oppositeInfo, sizeof(struct zsOppositeInfo) * ZM_MAX_OPPOSITE_COUNT);
/* Turn off Software WEP/TKIP */
if (wd->sta.SWEncryptEnable != 0)
{
zm_debug_msg0("Disable software encryption");
zfStaDisableSWEncryption(dev);
}
/* Improve WEP/TKIP performace with HT AP, detail information please look bug#32495 */
//zfHpSetTTSIFSTime(dev, 0x8);
return 0;
}
u16_t zfiWlanSuspend(zdev_t* dev)
{
zmw_get_wlan_dev(dev);
zmw_declare_for_critical_section();
// Change the HAL state to init so that any packet can't be transmitted between
// resume & HAL reinit. This would cause the chip hang issue in OTUS.
zmw_enter_critical_section(dev);
wd->halState = ZM_HAL_STATE_INIT;
zmw_leave_critical_section(dev);
return 0;
}
u16_t zfiWlanResume(zdev_t* dev, u8_t doReconn)
{
u16_t ret;
zmw_get_wlan_dev(dev);
zmw_declare_for_critical_section();
/* Redownload firmware, Reinit MAC,PHY,RF */
zfHpReinit(dev, wd->frequency);
//Set channel according to AP's configuration
zfCoreSetFrequencyExV2(dev, wd->frequency, wd->BandWidth40,
wd->ExtOffset, NULL, 1);
zfHpSetMacAddress(dev, wd->macAddr, 0);
/* Start Rx */
zfHpStartRecv(dev);
zfFlushVtxq(dev);
if ( wd->wlanMode != ZM_MODE_INFRASTRUCTURE &&
wd->wlanMode != ZM_MODE_IBSS )
{
return 1;
}
zm_msg0_mm(ZM_LV_1, "Resume Wlan");
if ( (zfStaIsConnected(dev)) || (zfStaIsConnecting(dev)) )
{
if (doReconn == 1)
{
zm_msg0_mm(ZM_LV_1, "Re-connect...");
zmw_enter_critical_section(dev);
wd->sta.connectByReasso = FALSE;
zmw_leave_critical_section(dev);
zfWlanEnable(dev);
}
else if (doReconn == 0)
{
zfHpSetRollCallTable(dev);
}
}
ret = 0;
return ret;
}
/************************************************************************/
/* */
/* FUNCTION DESCRIPTION zfiWlanFlushAllQueuedBuffers */
/* Flush Virtual TxQ, MmQ, PS frames and defragment list */
/* */
/* INPUTS */
/* dev : device pointer */
/* */
/* OUTPUTS */
/* None */
/* */
/* AUTHOR */
/* Stephen Chen Atheros Communications, INC. 2007.1 */
/* */
/************************************************************************/
void zfiWlanFlushAllQueuedBuffers(zdev_t* dev)
{
/* Flush VTxQ and MmQ */
zfFlushVtxq(dev);
/* Flush AP PS queues */
zfApFlushBufferedPsFrame(dev);
/* Free buffer in defragment list*/
zfAgingDefragList(dev, 1);
}
/* Do WLAN site survey */
u16_t zfiWlanScan(zdev_t* dev)
{
u16_t ret = 1;
zmw_get_wlan_dev(dev);
zm_debug_msg0("");
zmw_declare_for_critical_section();
zmw_enter_critical_section(dev);
if (wd->wlanMode == ZM_MODE_AP)
{
wd->heartBeatNotification |= ZM_BSSID_LIST_SCAN;
wd->sta.scanFrequency = 0;
//wd->sta.pUpdateBssList->bssCount = 0;
ret = 0;
}
else
{
#if 0
if ( !zfStaBlockWlanScan(dev) )
{
zm_debug_msg0("scan request");
//zfTimerSchedule(dev, ZM_EVENT_SCAN, ZM_TICK_ZERO);
ret = 0;
goto start_scan;
}
#else
goto start_scan;
#endif
}
zmw_leave_critical_section(dev);
return ret;
start_scan:
zmw_leave_critical_section(dev);
if(wd->ledStruct.LEDCtrlFlagFromReg & ZM_LED_CTRL_FLAG_ALPHA) // flag for Alpha
wd->ledStruct.LEDCtrlFlag |= ZM_LED_CTRL_FLAG_ALPHA;
ret = zfScanMgrScanStart(dev, ZM_SCAN_MGR_SCAN_EXTERNAL);
zm_debug_msg1("ret = ", ret);
return ret;
}
/* rate */
/* 0 : AUTO */
/* 1 : CCK 1M */
/* 2 : CCK 2M */
/* 3 : CCK 5.5M */
/* 4 : CCK 11M */
/* 5 : OFDM 6M */
/* 6 : OFDM 9M */
/* 7 : OFDM 12M */
/* 8 : OFDM 18M */
/* 9 : OFDM 24M */
/* 10 : OFDM 36M */
/* 11 : OFDM 48M */
/* 12 : OFDM 54M */
/* 13 : MCS 0 */
/* 28 : MCS 15 */
u16_t zcRateToMCS[] =
{0xff, 0, 1, 2, 3, 0xb, 0xf, 0xa, 0xe, 0x9, 0xd, 0x8, 0xc};
u16_t zcRateToMT[] = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1};
u16_t zfiWlanSetTxRate(zdev_t* dev, u16_t rate)
{ // jhlee HT 0
zmw_get_wlan_dev(dev);
if (rate <=12)
{
wd->txMCS = zcRateToMCS[rate];
wd->txMT = zcRateToMT[rate];
return ZM_SUCCESS;
}
else if ((rate<=28)||(rate==13+32))
{
wd->txMCS = rate - 12 - 1;
wd->txMT = 2;
return ZM_SUCCESS;
}
return ZM_ERR_INVALID_TX_RATE;
}
const u32_t zcRateIdToKbps40M[] =
{
1000, 2000, 5500, 11000, /* 1M, 2M, 5M, 11M , 0 1 2 3*/
6000, 9000, 12000, 18000, /* 6M 9M 12M 18M , 4 5 6 7*/
24000, 36000, 48000, 54000, /* 24M 36M 48M 54M , 8 9 10 11*/
13500, 27000, 40500, 54000, /* MCS0 MCS1 MCS2 MCS3 , 12 13 14 15*/
81000, 108000, 121500, 135000, /* MCS4 MCS5 MCS6 MCS7 , 16 17 18 19*/
27000, 54000, 81000, 108000, /* MCS8 MCS9 MCS10 MCS11 , 20 21 22 23*/
162000, 216000, 243000, 270000, /* MCS12 MCS13 MCS14 MCS15 , 24 25 26 27*/
270000, 300000, 150000 /* MCS14SG, MCS15SG, MCS7SG , 28 29 30*/
};
const u32_t zcRateIdToKbps20M[] =
{
1000, 2000, 5500, 11000, /* 1M, 2M, 5M, 11M , 0 1 2 3*/
6000, 9000, 12000, 18000, /* 6M 9M 12M 18M , 4 5 6 7*/
24000, 36000, 48000, 54000, /* 24M 36M 48M 54M , 8 9 10 11*/
6500, 13000, 19500, 26000, /* MCS0 MCS1 MCS2 MCS3 , 12 13 14 15*/
39000, 52000, 58500, 65000, /* MCS4 MCS5 MCS6 MCS7 , 16 17 18 19*/
13000, 26000, 39000, 52000, /* MCS8 MCS9 MCS10 MCS11 , 20 21 22 23*/
78000, 104000, 117000, 130000, /* MCS12 MCS13 MCS14 MCS15 , 24 25 26 27*/
130000, 144400, 72200 /* MCS14SG, MCS15SG, MSG7SG , 28 29 30*/
};
u32_t zfiWlanQueryTxRate(zdev_t* dev)
{
u8_t rateId = 0xff;
zmw_get_wlan_dev(dev);
zmw_declare_for_critical_section();
/* If Tx rate had not been trained, return maximum Tx rate instead */
if ((wd->wlanMode == ZM_MODE_INFRASTRUCTURE) && (zfStaIsConnected(dev)))
{
zmw_enter_critical_section(dev);
//Not in fixed rate mode
if (wd->txMCS == 0xff)
{
if ((wd->sta.oppositeInfo[0].rcCell.flag & ZM_RC_TRAINED_BIT) == 0)
{
rateId = wd->sta.oppositeInfo[0].rcCell.operationRateSet[wd->sta.oppositeInfo[0].rcCell.operationRateCount-1];
}
else
{
rateId = wd->sta.oppositeInfo[0].rcCell.operationRateSet[wd->sta.oppositeInfo[0].rcCell.currentRateIndex];
}
}
zmw_leave_critical_section(dev);
}
if (rateId != 0xff)
{
if (wd->sta.htCtrlBandwidth)
{
return zcRateIdToKbps40M[rateId];
}
else
{
return zcRateIdToKbps20M[rateId];
}
}
else
{
return wd->CurrentTxRateKbps;
}
}
void zfWlanUpdateRxRate(zdev_t* dev, struct zsAdditionInfo* addInfo)
{
u32_t rxRateKbps;
zmw_get_wlan_dev(dev);
//zm_msg1_mm(ZM_LV_0, "addInfo->Tail.Data.RxMacStatus =", addInfo->Tail.Data.RxMacStatus & 0x03);
/* b5~b4: MPDU indication. */
/* 00: Single MPDU. */
/* 10: First MPDU of A-MPDU. */
/* 11: Middle MPDU of A-MPDU. */
/* 01: Last MPDU of A-MPDU. */
/* Only First MPDU and Single MPDU have PLCP header */
/* First MPDU : (mpduInd & 0x30) == 0x00 */
/* Single MPDU : (mpduInd & 0x30) == 0x20 */
if ((addInfo->Tail.Data.RxMacStatus & 0x10) == 0)
{
/* Modulation type */
wd->modulationType = addInfo->Tail.Data.RxMacStatus & 0x03;
switch(wd->modulationType)
{
case 0x0: wd->rateField = addInfo->PlcpHeader[0] & 0xff; //CCK mode
wd->rxInfo = 0;
break;
case 0x1: wd->rateField = addInfo->PlcpHeader[0] & 0x0f; //Legacy-OFDM mode
wd->rxInfo = 0;
break;
case 0x2: wd->rateField = addInfo->PlcpHeader[3]; //HT-OFDM mode
wd->rxInfo = addInfo->PlcpHeader[6];
break;
default: break;
}
rxRateKbps = zfUpdateRxRate(dev);
if (wd->CurrentRxRateUpdated == 1)
{
if (rxRateKbps > wd->CurrentRxRateKbps)
{
wd->CurrentRxRateKbps = rxRateKbps;
}
}
else
{
wd->CurrentRxRateKbps = rxRateKbps;
wd->CurrentRxRateUpdated = 1;
}
}
}
#if 0
u16_t zcIndextoRateBG[16] = {1000, 2000, 5500, 11000, 0, 0, 0, 0, 48000,
24000, 12000, 6000, 54000, 36000, 18000, 9000};
u32_t zcIndextoRateN20L[16] = {6500, 13000, 19500, 26000, 39000, 52000, 58500,
65000, 13000, 26000, 39000, 52000, 78000, 104000,
117000, 130000};
u32_t zcIndextoRateN20S[16] = {7200, 14400, 21700, 28900, 43300, 57800, 65000,
72200, 14400, 28900, 43300, 57800, 86700, 115600,
130000, 144400};
u32_t zcIndextoRateN40L[16] = {13500, 27000, 40500, 54000, 81000, 108000, 121500,
135000, 27000, 54000, 81000, 108000, 162000, 216000,
243000, 270000};
u32_t zcIndextoRateN40S[16] = {15000, 30000, 45000, 60000, 90000, 120000, 135000,
150000, 30000, 60000, 90000, 120000, 180000, 240000,
270000, 300000};
#endif
extern u16_t zcIndextoRateBG[16];
extern u32_t zcIndextoRateN20L[16];
extern u32_t zcIndextoRateN20S[16];
extern u32_t zcIndextoRateN40L[16];
extern u32_t zcIndextoRateN40S[16];
u32_t zfiWlanQueryRxRate(zdev_t* dev)
{
zmw_get_wlan_dev(dev);
wd->CurrentRxRateUpdated = 0;
return wd->CurrentRxRateKbps;
}
u32_t zfUpdateRxRate(zdev_t* dev)
{
u8_t mcs, bandwidth;
u32_t rxRateKbps = 130000;
zmw_get_wlan_dev(dev);
switch (wd->modulationType)
{
case 0x0: //CCK mode
switch (wd->rateField)
{
case 0x0a: rxRateKbps = 1000;
break;
case 0x14: rxRateKbps = 2000;
case 0x37: rxRateKbps = 5500;
break;
case 0x6e: rxRateKbps = 11000;
break;
default:
break;
}
break;
case 0x1: //Legacy-OFDM mode
if (wd->rateField <= 15)
{
rxRateKbps = zcIndextoRateBG[wd->rateField];
}
break;
case 0x2: //HT-OFDM mode
mcs = wd->rateField & 0x7F;
bandwidth = wd->rateField & 0x80;
if (mcs <= 15)
{
if (bandwidth != 0)
{
if((wd->rxInfo & 0x80) != 0)
{
/* Short GI 40 MHz MIMO Rate */
rxRateKbps = zcIndextoRateN40S[mcs];
}
else
{
/* Long GI 40 MHz MIMO Rate */
rxRateKbps = zcIndextoRateN40L[mcs];
}
}
else
{
if((wd->rxInfo & 0x80) != 0)
{
/* Short GI 20 MHz MIMO Rate */
rxRateKbps = zcIndextoRateN20S[mcs];
}
else
{
/* Long GI 20 MHz MIMO Rate */
rxRateKbps = zcIndextoRateN20L[mcs];
}
}
}
break;
default:
break;
}
//zm_msg1_mm(ZM_LV_0, "wd->CurrentRxRateKbps=", wd->CurrentRxRateKbps);
// ToDo: use bandwith field to define 40MB
return rxRateKbps;
}
/* Get WLAN stastics */
u16_t zfiWlanGetStatistics(zdev_t* dev)
{
/* Return link statistics */
return 0;
}
u16_t zfiWlanReset(zdev_t* dev)
{
zmw_get_wlan_dev(dev);
wd->state = ZM_WLAN_STATE_DISABLED;
return zfWlanReset(dev);
}
/* Reset WLAN */
u16_t zfWlanReset(zdev_t* dev)
{
u8_t isConnected;
zmw_get_wlan_dev(dev);
zmw_declare_for_critical_section();
zm_debug_msg0("zfWlanReset");
isConnected = zfStaIsConnected(dev);
//if ( wd->wlanMode != ZM_MODE_AP )
{
if ( (wd->wlanMode == ZM_MODE_INFRASTRUCTURE)&&
(wd->sta.currentAuthMode != ZM_AUTH_MODE_WPA2) )
{
/* send deauthentication frame */
if (isConnected)
{
//zfiWlanDeauth(dev, NULL, 0);
zfSendMmFrame(dev, ZM_WLAN_FRAME_TYPE_DEAUTH, wd->sta.bssid, 3, 0, 0);
//zmw_debug_msg0("send a Deauth frame!");
}
}
}
zfChangeAdapterState(dev, ZM_STA_STATE_DISCONNECT);
zfHpResetKeyCache(dev);
if (isConnected)
{
//zfiWlanDisable(dev);
if (wd->zfcbConnectNotify != NULL)
{
wd->zfcbConnectNotify(dev, ZM_STATUS_MEDIA_CONNECTION_RESET, wd->sta.bssid);
}
}
else
{
if (wd->zfcbConnectNotify != NULL)
{
wd->zfcbConnectNotify(dev, ZM_STATUS_MEDIA_RESET, wd->sta.bssid);
}
}
/* stop beacon */
zfHpDisableBeacon(dev);
/* Free buffer in defragment list*/
zfAgingDefragList(dev, 1);
/* Flush VTxQ and MmQ */
zfFlushVtxq(dev);
#ifdef ZM_ENABLE_AGGREGATION
/* add by honda */
zfAggRxFreeBuf(dev, 0); //1 for release structure memory
/* end of add by honda */
#endif
zfStaRefreshBlockList(dev, 1);
zmw_enter_critical_section(dev);
zfTimerCancel(dev, ZM_EVENT_IBSS_MONITOR);
zfTimerCancel(dev, ZM_EVENT_CM_BLOCK_TIMER);
zfTimerCancel(dev, ZM_EVENT_CM_DISCONNECT);
wd->sta.connectState = ZM_STA_CONN_STATE_NONE;
wd->sta.connectByReasso = FALSE;
wd->sta.cmDisallowSsidLength = 0;
wd->sta.bAutoReconnect = 0;
wd->sta.InternalScanReq = 0;
wd->sta.encryMode = ZM_NO_WEP;
wd->sta.wepStatus = ZM_ENCRYPTION_WEP_DISABLED;
wd->sta.wpaState = ZM_STA_WPA_STATE_INIT;
wd->sta.cmMicFailureCount = 0;
wd->sta.ibssBssIsCreator = 0;
#ifdef ZM_ENABLE_IBSS_WPA2PSK
wd->sta.ibssWpa2Psk = 0;
#endif
/* reset connect timeout counter */
wd->sta.connectTimeoutCount = 0;
/* reset leap enable variable */
wd->sta.leapEnabled = 0;
/* Reset the RIFS Status / RIFS-like frame count / RIFS count */
if( wd->sta.rifsState == ZM_RIFS_STATE_DETECTED )
zfHpDisableRifs(dev);
wd->sta.rifsState = ZM_RIFS_STATE_DETECTING;
wd->sta.rifsLikeFrameCnt = 0;
wd->sta.rifsCount = 0;
wd->sta.osRxFilter = 0;
wd->sta.bSafeMode = 0;
// Clear the information for the peer stations of IBSS or AP of Station mode
zfZeroMemory((u8_t*)wd->sta.oppositeInfo, sizeof(struct zsOppositeInfo) * ZM_MAX_OPPOSITE_COUNT);
zmw_leave_critical_section(dev);
zfScanMgrScanStop(dev, ZM_SCAN_MGR_SCAN_INTERNAL);
zfScanMgrScanStop(dev, ZM_SCAN_MGR_SCAN_EXTERNAL);
/* Turn off Software WEP/TKIP */
if (wd->sta.SWEncryptEnable != 0)
{
zm_debug_msg0("Disable software encryption");
zfStaDisableSWEncryption(dev);
}
/* Improve WEP/TKIP performace with HT AP, detail information please look bug#32495 */
//zfHpSetTTSIFSTime(dev, 0x8);
/* Keep Pseudo mode */
if ( wd->wlanMode != ZM_MODE_PSEUDO )
{
wd->wlanMode = ZM_MODE_INFRASTRUCTURE;
}
return 0;
}
/* Deauthenticate a STA */
u16_t zfiWlanDeauth(zdev_t* dev, u16_t* macAddr, u16_t reason)
{
zmw_get_wlan_dev(dev);
if ( wd->wlanMode == ZM_MODE_AP )
{
//u16_t id;
/*
* we will reset all key in zfHpResetKeyCache() when call
* zfiWlanDisable(), if we want to reset PairwiseKey for each sta,
* need to use a nullAddr to let keyindex not match.
* otherwise hardware will still find PairwiseKey when AP change
* encryption mode from WPA to WEP
*/
/*
if ((id = zfApFindSta(dev, macAddr)) != 0xffff)
{
u32_t key[8];
u16_t nullAddr[3] = { 0x0, 0x0, 0x0 };
if (wd->ap.staTable[i].encryMode != ZM_NO_WEP)
{
zfHpSetApPairwiseKey(dev, nullAddr,
ZM_NO_WEP, &key[0], &key[4], i+1);
}
//zfHpSetApPairwiseKey(dev, (u16_t *)macAddr,
// ZM_NO_WEP, &key[0], &key[4], id+1);
wd->ap.staTable[id].encryMode = ZM_NO_WEP;
wd->ap.staTable[id].keyIdx = 0xff;
}
*/
zfSendMmFrame(dev, ZM_WLAN_FRAME_TYPE_DEAUTH, macAddr, reason, 0, 0);
}
else
{
zfSendMmFrame(dev, ZM_WLAN_FRAME_TYPE_DEAUTH, wd->sta.bssid, 3, 0, 0);
}
/* Issue DEAUTH command to FW */
return 0;
}
/* XP packet filter feature : */
/* 1=>enable: All multicast address packets, not just the ones enumerated in the multicast address list. */
/* 0=>disable */
void zfiWlanSetAllMulticast(zdev_t* dev, u32_t setting)
{
zmw_get_wlan_dev(dev);
zm_msg1_mm(ZM_LV_0, "sta.bAllMulticast = ", setting);
wd->sta.bAllMulticast = (u8_t)setting;
}
/* HT configure API */
void zfiWlanSetHTCtrl(zdev_t* dev, u32_t *setting, u32_t forceTxTPC)
{
zmw_get_wlan_dev(dev);
wd->preambleType = (u8_t)setting[0];
wd->sta.preambleTypeHT = (u8_t)setting[1];
wd->sta.htCtrlBandwidth = (u8_t)setting[2];
wd->sta.htCtrlSTBC = (u8_t)setting[3];
wd->sta.htCtrlSG = (u8_t)setting[4];
wd->sta.defaultTA = (u8_t)setting[5];
wd->enableAggregation = (u8_t)setting[6];
wd->enableWDS = (u8_t)setting[7];
wd->forceTxTPC = forceTxTPC;
}
/* FB50 in OS XP, RD private test code */
void zfiWlanQueryHTCtrl(zdev_t* dev, u32_t *setting, u32_t *forceTxTPC)
{
zmw_get_wlan_dev(dev);
setting[0] = wd->preambleType;
setting[1] = wd->sta.preambleTypeHT;
setting[2] = wd->sta.htCtrlBandwidth;
setting[3] = wd->sta.htCtrlSTBC;
setting[4] = wd->sta.htCtrlSG;
setting[5] = wd->sta.defaultTA;
setting[6] = wd->enableAggregation;
setting[7] = wd->enableWDS;
*forceTxTPC = wd->forceTxTPC;
}
void zfiWlanDbg(zdev_t* dev, u8_t setting)
{
zmw_get_wlan_dev(dev);
wd->enableHALDbgInfo = setting;
}
/* FB50 in OS XP, RD private test code */
void zfiWlanSetRxPacketDump(zdev_t* dev, u32_t setting)
{
zmw_get_wlan_dev(dev);
if (setting)
{
wd->rxPacketDump = 1; /* enable */
}
else
{
wd->rxPacketDump = 0; /* disable */
}
}
/* FB50 in OS XP, RD private test code */
/* Tally */
void zfiWlanResetTally(zdev_t* dev)
{
zmw_get_wlan_dev(dev);
zmw_declare_for_critical_section();
zmw_enter_critical_section(dev);
wd->commTally.txUnicastFrm = 0; //txUnicastFrames
wd->commTally.txMulticastFrm = 0; //txMulticastFrames
wd->commTally.txUnicastOctets = 0; //txUniOctets byte size
wd->commTally.txMulticastOctets = 0; //txMultiOctets byte size
wd->commTally.txFrmUpperNDIS = 0;
wd->commTally.txFrmDrvMgt = 0;
wd->commTally.RetryFailCnt = 0;
wd->commTally.Hw_TotalTxFrm = 0; //Hardware total Tx Frame
wd->commTally.Hw_RetryCnt = 0; //txMultipleRetriesFrames
wd->commTally.Hw_UnderrunCnt = 0;//
wd->commTally.DriverRxFrmCnt = 0;//
wd->commTally.rxUnicastFrm = 0; //rxUnicastFrames
wd->commTally.rxMulticastFrm = 0; //rxMulticastFrames
wd->commTally.NotifyNDISRxFrmCnt = 0;//
wd->commTally.rxUnicastOctets = 0; //rxUniOctets byte size
wd->commTally.rxMulticastOctets = 0; //rxMultiOctets byte size
wd->commTally.DriverDiscardedFrm = 0;// Discard by ValidateFrame
wd->commTally.LessThanDataMinLen = 0;//
wd->commTally.GreaterThanMaxLen = 0;//
wd->commTally.DriverDiscardedFrmCauseByMulticastList = 0;
wd->commTally.DriverDiscardedFrmCauseByFrmCtrl = 0;
wd->commTally.rxNeedFrgFrm = 0; // need more frg frm
wd->commTally.DriverRxMgtFrmCnt = 0;
wd->commTally.rxBroadcastFrm = 0; //Receive broadcast frame count
wd->commTally.rxBroadcastOctets = 0; //Receive broadcast frame byte size
wd->commTally.Hw_TotalRxFrm = 0;//
wd->commTally.Hw_CRC16Cnt = 0; //rxPLCPCRCErrCnt
wd->commTally.Hw_CRC32Cnt = 0; //rxCRC32ErrCnt
wd->commTally.Hw_DecrypErr_UNI = 0;//
wd->commTally.Hw_DecrypErr_Mul = 0;//
wd->commTally.Hw_RxFIFOOverrun = 0;//
wd->commTally.Hw_RxTimeOut = 0;
wd->commTally.LossAP = 0;//
wd->commTally.Tx_MPDU = 0;
wd->commTally.BA_Fail = 0;
wd->commTally.Hw_Tx_AMPDU = 0;
wd->commTally.Hw_Tx_MPDU = 0;
wd->commTally.txQosDropCount[0] = 0;
wd->commTally.txQosDropCount[1] = 0;
wd->commTally.txQosDropCount[2] = 0;
wd->commTally.txQosDropCount[3] = 0;
wd->commTally.txQosDropCount[4] = 0;
wd->commTally.Hw_RxMPDU = 0;
wd->commTally.Hw_RxDropMPDU = 0;
wd->commTally.Hw_RxDelMPDU = 0;
wd->commTally.Hw_RxPhyMiscError = 0;
wd->commTally.Hw_RxPhyXRError = 0;
wd->commTally.Hw_RxPhyOFDMError = 0;
wd->commTally.Hw_RxPhyCCKError = 0;
wd->commTally.Hw_RxPhyHTError = 0;
wd->commTally.Hw_RxPhyTotalCount = 0;
#if (defined(GCCK) && defined(OFDM))
wd->commTally.rx11bDataFrame = 0;
wd->commTally.rxOFDMDataFrame = 0;
#endif
zmw_leave_critical_section(dev);
}
/* FB50 in OS XP, RD private test code */
void zfiWlanQueryTally(zdev_t* dev, struct zsCommTally *tally)
{
zmw_get_wlan_dev(dev);
zmw_declare_for_critical_section();
zmw_enter_critical_section(dev);
zfMemoryCopy((u8_t*)tally, (u8_t*)&wd->commTally, sizeof(struct zsCommTally));
zmw_leave_critical_section(dev);
}
void zfiWlanQueryTrafTally(zdev_t* dev, struct zsTrafTally *tally)
{
zmw_get_wlan_dev(dev);
zmw_declare_for_critical_section();
zmw_enter_critical_section(dev);
zfMemoryCopy((u8_t*)tally, (u8_t*)&wd->trafTally, sizeof(struct zsTrafTally));
zmw_leave_critical_section(dev);
}
void zfiWlanQueryMonHalRxInfo(zdev_t* dev, struct zsMonHalRxInfo *monHalRxInfo)
{
zfHpQueryMonHalRxInfo(dev, (u8_t *)monHalRxInfo);
}
/* parse the modeMDKEnable to DrvCore */
void zfiDKEnable(zdev_t* dev, u32_t enable)
{
zmw_get_wlan_dev(dev);
wd->modeMDKEnable = enable;
zm_debug_msg1("modeMDKEnable = ", wd->modeMDKEnable);
}
/* airoPeek */
u32_t zfiWlanQueryPacketTypePromiscuous(zdev_t* dev)
{
zmw_get_wlan_dev(dev);
return wd->swSniffer;
}
/* airoPeek */
void zfiWlanSetPacketTypePromiscuous(zdev_t* dev, u32_t setValue)
{
zmw_get_wlan_dev(dev);
wd->swSniffer = setValue;
zm_msg1_mm(ZM_LV_0, "wd->swSniffer ", wd->swSniffer);
if (setValue)
{
/* write register for sniffer mode */
zfHpSetSnifferMode(dev, 1);
zm_msg0_mm(ZM_LV_1, "enalbe sniffer mode");
}
else
{
zfHpSetSnifferMode(dev, 0);
zm_msg0_mm(ZM_LV_0, "disalbe sniffer mode");
}
}
void zfiWlanSetXLinkMode(zdev_t* dev, u32_t setValue)
{
zmw_get_wlan_dev(dev);
wd->XLinkMode = setValue;
if (setValue)
{
/* write register for sniffer mode */
zfHpSetSnifferMode(dev, 1);
}
else
{
zfHpSetSnifferMode(dev, 0);
}
}
extern void zfStaChannelManagement(zdev_t* dev, u8_t scan);
void zfiSetChannelManagement(zdev_t* dev, u32_t setting)
{
zmw_get_wlan_dev(dev);
switch (setting)
{
case 1:
wd->sta.EnableHT = 1;
wd->BandWidth40 = 1;
wd->ExtOffset = 1;
break;
case 3:
wd->sta.EnableHT = 1;
wd->BandWidth40 = 1;
wd->ExtOffset = 3;
break;
case 0:
wd->sta.EnableHT = 1;
wd->BandWidth40 = 0;
wd->ExtOffset = 0;
break;
default:
wd->BandWidth40 = 0;
wd->ExtOffset = 0;
break;
}
zfCoreSetFrequencyEx(dev, wd->frequency, wd->BandWidth40,
wd->ExtOffset, NULL);
}
void zfiSetRifs(zdev_t* dev, u16_t setting)
{
zmw_get_wlan_dev(dev);
wd->sta.ie.HtInfo.ChannelInfo |= ExtHtCap_RIFSMode;
wd->sta.EnableHT = 1;
switch (setting)
{
case 0:
wd->sta.HT2040 = 0;
// zfHpSetRifs(dev, 1, 0, (wd->sta.currentFrequency < 3000)? 1:0);
break;
case 1:
wd->sta.HT2040 = 1;
// zfHpSetRifs(dev, 1, 1, (wd->sta.currentFrequency < 3000)? 1:0);
break;
default:
wd->sta.HT2040 = 0;
// zfHpSetRifs(dev, 1, 0, (wd->sta.currentFrequency < 3000)? 1:0);
break;
}
}
void zfiCheckRifs(zdev_t* dev)
{
zmw_get_wlan_dev(dev);
if(wd->sta.ie.HtInfo.ChannelInfo & ExtHtCap_RIFSMode)
{
// zfHpSetRifs(dev, wd->sta.EnableHT, wd->sta.HT2040, (wd->sta.currentFrequency < 3000)? 1:0);
}
}
void zfiSetReorder(zdev_t* dev, u16_t value)
{
zmw_get_wlan_dev(dev);
wd->reorder = value;
}
void zfiSetSeqDebug(zdev_t* dev, u16_t value)
{
zmw_get_wlan_dev(dev);
wd->seq_debug = value;
}