linux/drivers/net/wireless/p54/eeprom.c
Dan Carpenter 6dac344742 p54: potential signedness issue in p54_parse_rssical()
"entries" is unsigned here, so it is never less than zero.  In theory,
len could be less than offset so I have added a check for that.

Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Christian Lamparter <chunkeey@googlemail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2012-12-03 13:51:59 -05:00

983 lines
25 KiB
C

/*
* EEPROM parser code for mac80211 Prism54 drivers
*
* Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
* Copyright (c) 2007-2009, Christian Lamparter <chunkeey@web.de>
* Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
*
* Based on:
* - the islsm (softmac prism54) driver, which is:
* Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
* - stlc45xx driver
* Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/firmware.h>
#include <linux/etherdevice.h>
#include <linux/sort.h>
#include <linux/slab.h>
#include <net/mac80211.h>
#include <linux/crc-ccitt.h>
#include <linux/export.h>
#include "p54.h"
#include "eeprom.h"
#include "lmac.h"
static struct ieee80211_rate p54_bgrates[] = {
{ .bitrate = 10, .hw_value = 0, },
{ .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 60, .hw_value = 4, },
{ .bitrate = 90, .hw_value = 5, },
{ .bitrate = 120, .hw_value = 6, },
{ .bitrate = 180, .hw_value = 7, },
{ .bitrate = 240, .hw_value = 8, },
{ .bitrate = 360, .hw_value = 9, },
{ .bitrate = 480, .hw_value = 10, },
{ .bitrate = 540, .hw_value = 11, },
};
static struct ieee80211_rate p54_arates[] = {
{ .bitrate = 60, .hw_value = 4, },
{ .bitrate = 90, .hw_value = 5, },
{ .bitrate = 120, .hw_value = 6, },
{ .bitrate = 180, .hw_value = 7, },
{ .bitrate = 240, .hw_value = 8, },
{ .bitrate = 360, .hw_value = 9, },
{ .bitrate = 480, .hw_value = 10, },
{ .bitrate = 540, .hw_value = 11, },
};
static struct p54_rssi_db_entry p54_rssi_default = {
/*
* The defaults are taken from usb-logs of the
* vendor driver. So, they should be safe to
* use in case we can't get a match from the
* rssi <-> dBm conversion database.
*/
.mul = 130,
.add = -398,
};
#define CHAN_HAS_CAL BIT(0)
#define CHAN_HAS_LIMIT BIT(1)
#define CHAN_HAS_CURVE BIT(2)
#define CHAN_HAS_ALL (CHAN_HAS_CAL | CHAN_HAS_LIMIT | CHAN_HAS_CURVE)
struct p54_channel_entry {
u16 freq;
u16 data;
int index;
int max_power;
enum ieee80211_band band;
};
struct p54_channel_list {
struct p54_channel_entry *channels;
size_t entries;
size_t max_entries;
size_t band_channel_num[IEEE80211_NUM_BANDS];
};
static int p54_get_band_from_freq(u16 freq)
{
/* FIXME: sync these values with the 802.11 spec */
if ((freq >= 2412) && (freq <= 2484))
return IEEE80211_BAND_2GHZ;
if ((freq >= 4920) && (freq <= 5825))
return IEEE80211_BAND_5GHZ;
return -1;
}
static int same_band(u16 freq, u16 freq2)
{
return p54_get_band_from_freq(freq) == p54_get_band_from_freq(freq2);
}
static int p54_compare_channels(const void *_a,
const void *_b)
{
const struct p54_channel_entry *a = _a;
const struct p54_channel_entry *b = _b;
return a->freq - b->freq;
}
static int p54_compare_rssichan(const void *_a,
const void *_b)
{
const struct p54_rssi_db_entry *a = _a;
const struct p54_rssi_db_entry *b = _b;
return a->freq - b->freq;
}
static int p54_fill_band_bitrates(struct ieee80211_hw *dev,
struct ieee80211_supported_band *band_entry,
enum ieee80211_band band)
{
/* TODO: generate rate array dynamically */
switch (band) {
case IEEE80211_BAND_2GHZ:
band_entry->bitrates = p54_bgrates;
band_entry->n_bitrates = ARRAY_SIZE(p54_bgrates);
break;
case IEEE80211_BAND_5GHZ:
band_entry->bitrates = p54_arates;
band_entry->n_bitrates = ARRAY_SIZE(p54_arates);
break;
default:
return -EINVAL;
}
return 0;
}
static int p54_generate_band(struct ieee80211_hw *dev,
struct p54_channel_list *list,
unsigned int *chan_num,
enum ieee80211_band band)
{
struct p54_common *priv = dev->priv;
struct ieee80211_supported_band *tmp, *old;
unsigned int i, j;
int ret = -ENOMEM;
if ((!list->entries) || (!list->band_channel_num[band]))
return -EINVAL;
tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
if (!tmp)
goto err_out;
tmp->channels = kzalloc(sizeof(struct ieee80211_channel) *
list->band_channel_num[band], GFP_KERNEL);
if (!tmp->channels)
goto err_out;
ret = p54_fill_band_bitrates(dev, tmp, band);
if (ret)
goto err_out;
for (i = 0, j = 0; (j < list->band_channel_num[band]) &&
(i < list->entries); i++) {
struct p54_channel_entry *chan = &list->channels[i];
struct ieee80211_channel *dest = &tmp->channels[j];
if (chan->band != band)
continue;
if (chan->data != CHAN_HAS_ALL) {
wiphy_err(dev->wiphy, "%s%s%s is/are missing for "
"channel:%d [%d MHz].\n",
(chan->data & CHAN_HAS_CAL ? "" :
" [iqauto calibration data]"),
(chan->data & CHAN_HAS_LIMIT ? "" :
" [output power limits]"),
(chan->data & CHAN_HAS_CURVE ? "" :
" [curve data]"),
chan->index, chan->freq);
continue;
}
dest->band = chan->band;
dest->center_freq = chan->freq;
dest->max_power = chan->max_power;
priv->survey[*chan_num].channel = &tmp->channels[j];
priv->survey[*chan_num].filled = SURVEY_INFO_NOISE_DBM |
SURVEY_INFO_CHANNEL_TIME |
SURVEY_INFO_CHANNEL_TIME_BUSY |
SURVEY_INFO_CHANNEL_TIME_TX;
dest->hw_value = (*chan_num);
j++;
(*chan_num)++;
}
if (j == 0) {
wiphy_err(dev->wiphy, "Disabling totally damaged %d GHz band\n",
(band == IEEE80211_BAND_2GHZ) ? 2 : 5);
ret = -ENODATA;
goto err_out;
}
tmp->n_channels = j;
old = priv->band_table[band];
priv->band_table[band] = tmp;
if (old) {
kfree(old->channels);
kfree(old);
}
return 0;
err_out:
if (tmp) {
kfree(tmp->channels);
kfree(tmp);
}
return ret;
}
static struct p54_channel_entry *p54_update_channel_param(struct p54_channel_list *list,
u16 freq, u16 data)
{
int i;
struct p54_channel_entry *entry = NULL;
/*
* usually all lists in the eeprom are mostly sorted.
* so it's very likely that the entry we are looking for
* is right at the end of the list
*/
for (i = list->entries; i >= 0; i--) {
if (freq == list->channels[i].freq) {
entry = &list->channels[i];
break;
}
}
if ((i < 0) && (list->entries < list->max_entries)) {
/* entry does not exist yet. Initialize a new one. */
int band = p54_get_band_from_freq(freq);
/*
* filter out frequencies which don't belong into
* any supported band.
*/
if (band >= 0) {
i = list->entries++;
list->band_channel_num[band]++;
entry = &list->channels[i];
entry->freq = freq;
entry->band = band;
entry->index = ieee80211_frequency_to_channel(freq);
entry->max_power = 0;
entry->data = 0;
}
}
if (entry)
entry->data |= data;
return entry;
}
static int p54_get_maxpower(struct p54_common *priv, void *data)
{
switch (priv->rxhw & PDR_SYNTH_FRONTEND_MASK) {
case PDR_SYNTH_FRONTEND_LONGBOW: {
struct pda_channel_output_limit_longbow *pda = data;
int j;
u16 rawpower = 0;
pda = data;
for (j = 0; j < ARRAY_SIZE(pda->point); j++) {
struct pda_channel_output_limit_point_longbow *point =
&pda->point[j];
rawpower = max_t(u16,
rawpower, le16_to_cpu(point->val_qpsk));
rawpower = max_t(u16,
rawpower, le16_to_cpu(point->val_bpsk));
rawpower = max_t(u16,
rawpower, le16_to_cpu(point->val_16qam));
rawpower = max_t(u16,
rawpower, le16_to_cpu(point->val_64qam));
}
/* longbow seems to use 1/16 dBm units */
return rawpower / 16;
}
case PDR_SYNTH_FRONTEND_DUETTE3:
case PDR_SYNTH_FRONTEND_DUETTE2:
case PDR_SYNTH_FRONTEND_FRISBEE:
case PDR_SYNTH_FRONTEND_XBOW: {
struct pda_channel_output_limit *pda = data;
u8 rawpower = 0;
rawpower = max(rawpower, pda->val_qpsk);
rawpower = max(rawpower, pda->val_bpsk);
rawpower = max(rawpower, pda->val_16qam);
rawpower = max(rawpower, pda->val_64qam);
/* raw values are in 1/4 dBm units */
return rawpower / 4;
}
default:
return 20;
}
}
static int p54_generate_channel_lists(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
struct p54_channel_list *list;
unsigned int i, j, k, max_channel_num;
int ret = 0;
u16 freq;
if ((priv->iq_autocal_len != priv->curve_data->entries) ||
(priv->iq_autocal_len != priv->output_limit->entries))
wiphy_err(dev->wiphy,
"Unsupported or damaged EEPROM detected. "
"You may not be able to use all channels.\n");
max_channel_num = max_t(unsigned int, priv->output_limit->entries,
priv->iq_autocal_len);
max_channel_num = max_t(unsigned int, max_channel_num,
priv->curve_data->entries);
list = kzalloc(sizeof(*list), GFP_KERNEL);
if (!list) {
ret = -ENOMEM;
goto free;
}
priv->chan_num = max_channel_num;
priv->survey = kzalloc(sizeof(struct survey_info) * max_channel_num,
GFP_KERNEL);
if (!priv->survey) {
ret = -ENOMEM;
goto free;
}
list->max_entries = max_channel_num;
list->channels = kzalloc(sizeof(struct p54_channel_entry) *
max_channel_num, GFP_KERNEL);
if (!list->channels) {
ret = -ENOMEM;
goto free;
}
for (i = 0; i < max_channel_num; i++) {
if (i < priv->iq_autocal_len) {
freq = le16_to_cpu(priv->iq_autocal[i].freq);
p54_update_channel_param(list, freq, CHAN_HAS_CAL);
}
if (i < priv->output_limit->entries) {
struct p54_channel_entry *tmp;
void *data = (void *) ((unsigned long) i *
priv->output_limit->entry_size +
priv->output_limit->offset +
priv->output_limit->data);
freq = le16_to_cpup((__le16 *) data);
tmp = p54_update_channel_param(list, freq,
CHAN_HAS_LIMIT);
if (tmp) {
tmp->max_power = p54_get_maxpower(priv, data);
}
}
if (i < priv->curve_data->entries) {
freq = le16_to_cpup((__le16 *) (i *
priv->curve_data->entry_size +
priv->curve_data->offset +
priv->curve_data->data));
p54_update_channel_param(list, freq, CHAN_HAS_CURVE);
}
}
/* sort the channel list by frequency */
sort(list->channels, list->entries, sizeof(struct p54_channel_entry),
p54_compare_channels, NULL);
k = 0;
for (i = 0, j = 0; i < IEEE80211_NUM_BANDS; i++) {
if (p54_generate_band(dev, list, &k, i) == 0)
j++;
}
if (j == 0) {
/* no useable band available. */
ret = -EINVAL;
}
free:
if (list) {
kfree(list->channels);
kfree(list);
}
if (ret) {
kfree(priv->survey);
priv->survey = NULL;
}
return ret;
}
static int p54_convert_rev0(struct ieee80211_hw *dev,
struct pda_pa_curve_data *curve_data)
{
struct p54_common *priv = dev->priv;
struct p54_pa_curve_data_sample *dst;
struct pda_pa_curve_data_sample_rev0 *src;
size_t cd_len = sizeof(*curve_data) +
(curve_data->points_per_channel*sizeof(*dst) + 2) *
curve_data->channels;
unsigned int i, j;
void *source, *target;
priv->curve_data = kmalloc(sizeof(*priv->curve_data) + cd_len,
GFP_KERNEL);
if (!priv->curve_data)
return -ENOMEM;
priv->curve_data->entries = curve_data->channels;
priv->curve_data->entry_size = sizeof(__le16) +
sizeof(*dst) * curve_data->points_per_channel;
priv->curve_data->offset = offsetof(struct pda_pa_curve_data, data);
priv->curve_data->len = cd_len;
memcpy(priv->curve_data->data, curve_data, sizeof(*curve_data));
source = curve_data->data;
target = ((struct pda_pa_curve_data *) priv->curve_data->data)->data;
for (i = 0; i < curve_data->channels; i++) {
__le16 *freq = source;
source += sizeof(__le16);
*((__le16 *)target) = *freq;
target += sizeof(__le16);
for (j = 0; j < curve_data->points_per_channel; j++) {
dst = target;
src = source;
dst->rf_power = src->rf_power;
dst->pa_detector = src->pa_detector;
dst->data_64qam = src->pcv;
/* "invent" the points for the other modulations */
#define SUB(x, y) (u8)(((x) - (y)) > (x) ? 0 : (x) - (y))
dst->data_16qam = SUB(src->pcv, 12);
dst->data_qpsk = SUB(dst->data_16qam, 12);
dst->data_bpsk = SUB(dst->data_qpsk, 12);
dst->data_barker = SUB(dst->data_bpsk, 14);
#undef SUB
target += sizeof(*dst);
source += sizeof(*src);
}
}
return 0;
}
static int p54_convert_rev1(struct ieee80211_hw *dev,
struct pda_pa_curve_data *curve_data)
{
struct p54_common *priv = dev->priv;
struct p54_pa_curve_data_sample *dst;
struct pda_pa_curve_data_sample_rev1 *src;
size_t cd_len = sizeof(*curve_data) +
(curve_data->points_per_channel*sizeof(*dst) + 2) *
curve_data->channels;
unsigned int i, j;
void *source, *target;
priv->curve_data = kzalloc(cd_len + sizeof(*priv->curve_data),
GFP_KERNEL);
if (!priv->curve_data)
return -ENOMEM;
priv->curve_data->entries = curve_data->channels;
priv->curve_data->entry_size = sizeof(__le16) +
sizeof(*dst) * curve_data->points_per_channel;
priv->curve_data->offset = offsetof(struct pda_pa_curve_data, data);
priv->curve_data->len = cd_len;
memcpy(priv->curve_data->data, curve_data, sizeof(*curve_data));
source = curve_data->data;
target = ((struct pda_pa_curve_data *) priv->curve_data->data)->data;
for (i = 0; i < curve_data->channels; i++) {
__le16 *freq = source;
source += sizeof(__le16);
*((__le16 *)target) = *freq;
target += sizeof(__le16);
for (j = 0; j < curve_data->points_per_channel; j++) {
memcpy(target, source, sizeof(*src));
target += sizeof(*dst);
source += sizeof(*src);
}
source++;
}
return 0;
}
static const char *p54_rf_chips[] = { "INVALID-0", "Duette3", "Duette2",
"Frisbee", "Xbow", "Longbow", "INVALID-6", "INVALID-7" };
static int p54_parse_rssical(struct ieee80211_hw *dev,
u8 *data, int len, u16 type)
{
struct p54_common *priv = dev->priv;
struct p54_rssi_db_entry *entry;
size_t db_len, entries;
int offset = 0, i;
if (type != PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED) {
entries = (type == PDR_RSSI_LINEAR_APPROXIMATION) ? 1 : 2;
if (len != sizeof(struct pda_rssi_cal_entry) * entries) {
wiphy_err(dev->wiphy, "rssical size mismatch.\n");
goto err_data;
}
} else {
/*
* Some devices (Dell 1450 USB, Xbow 5GHz card, etc...)
* have an empty two byte header.
*/
if (*((__le16 *)&data[offset]) == cpu_to_le16(0))
offset += 2;
entries = (len - offset) /
sizeof(struct pda_rssi_cal_ext_entry);
if (len < offset ||
(len - offset) % sizeof(struct pda_rssi_cal_ext_entry) ||
entries == 0) {
wiphy_err(dev->wiphy, "invalid rssi database.\n");
goto err_data;
}
}
db_len = sizeof(*entry) * entries;
priv->rssi_db = kzalloc(db_len + sizeof(*priv->rssi_db), GFP_KERNEL);
if (!priv->rssi_db)
return -ENOMEM;
priv->rssi_db->offset = 0;
priv->rssi_db->entries = entries;
priv->rssi_db->entry_size = sizeof(*entry);
priv->rssi_db->len = db_len;
entry = (void *)((unsigned long)priv->rssi_db->data + priv->rssi_db->offset);
if (type == PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED) {
struct pda_rssi_cal_ext_entry *cal = (void *) &data[offset];
for (i = 0; i < entries; i++) {
entry[i].freq = le16_to_cpu(cal[i].freq);
entry[i].mul = (s16) le16_to_cpu(cal[i].mul);
entry[i].add = (s16) le16_to_cpu(cal[i].add);
}
} else {
struct pda_rssi_cal_entry *cal = (void *) &data[offset];
for (i = 0; i < entries; i++) {
u16 freq = 0;
switch (i) {
case IEEE80211_BAND_2GHZ:
freq = 2437;
break;
case IEEE80211_BAND_5GHZ:
freq = 5240;
break;
}
entry[i].freq = freq;
entry[i].mul = (s16) le16_to_cpu(cal[i].mul);
entry[i].add = (s16) le16_to_cpu(cal[i].add);
}
}
/* sort the list by channel frequency */
sort(entry, entries, sizeof(*entry), p54_compare_rssichan, NULL);
return 0;
err_data:
wiphy_err(dev->wiphy,
"rssi calibration data packing type:(%x) len:%d.\n",
type, len);
print_hex_dump_bytes("rssical:", DUMP_PREFIX_NONE, data, len);
wiphy_err(dev->wiphy, "please report this issue.\n");
return -EINVAL;
}
struct p54_rssi_db_entry *p54_rssi_find(struct p54_common *priv, const u16 freq)
{
struct p54_rssi_db_entry *entry;
int i, found = -1;
if (!priv->rssi_db)
return &p54_rssi_default;
entry = (void *)(priv->rssi_db->data + priv->rssi_db->offset);
for (i = 0; i < priv->rssi_db->entries; i++) {
if (!same_band(freq, entry[i].freq))
continue;
if (found == -1) {
found = i;
continue;
}
/* nearest match */
if (abs(freq - entry[i].freq) <
abs(freq - entry[found].freq)) {
found = i;
continue;
} else {
break;
}
}
return found < 0 ? &p54_rssi_default : &entry[found];
}
static void p54_parse_default_country(struct ieee80211_hw *dev,
void *data, int len)
{
struct pda_country *country;
if (len != sizeof(*country)) {
wiphy_err(dev->wiphy,
"found possible invalid default country eeprom entry. (entry size: %d)\n",
len);
print_hex_dump_bytes("country:", DUMP_PREFIX_NONE,
data, len);
wiphy_err(dev->wiphy, "please report this issue.\n");
return;
}
country = (struct pda_country *) data;
if (country->flags == PDR_COUNTRY_CERT_CODE_PSEUDO)
regulatory_hint(dev->wiphy, country->alpha2);
else {
/* TODO:
* write a shared/common function that converts
* "Regulatory domain codes" (802.11-2007 14.8.2.2)
* into ISO/IEC 3166-1 alpha2 for regulatory_hint.
*/
}
}
static int p54_convert_output_limits(struct ieee80211_hw *dev,
u8 *data, size_t len)
{
struct p54_common *priv = dev->priv;
if (len < 2)
return -EINVAL;
if (data[0] != 0) {
wiphy_err(dev->wiphy, "unknown output power db revision:%x\n",
data[0]);
return -EINVAL;
}
if (2 + data[1] * sizeof(struct pda_channel_output_limit) > len)
return -EINVAL;
priv->output_limit = kmalloc(data[1] *
sizeof(struct pda_channel_output_limit) +
sizeof(*priv->output_limit), GFP_KERNEL);
if (!priv->output_limit)
return -ENOMEM;
priv->output_limit->offset = 0;
priv->output_limit->entries = data[1];
priv->output_limit->entry_size =
sizeof(struct pda_channel_output_limit);
priv->output_limit->len = priv->output_limit->entry_size *
priv->output_limit->entries +
priv->output_limit->offset;
memcpy(priv->output_limit->data, &data[2],
data[1] * sizeof(struct pda_channel_output_limit));
return 0;
}
static struct p54_cal_database *p54_convert_db(struct pda_custom_wrapper *src,
size_t total_len)
{
struct p54_cal_database *dst;
size_t payload_len, entries, entry_size, offset;
payload_len = le16_to_cpu(src->len);
entries = le16_to_cpu(src->entries);
entry_size = le16_to_cpu(src->entry_size);
offset = le16_to_cpu(src->offset);
if (((entries * entry_size + offset) != payload_len) ||
(payload_len + sizeof(*src) != total_len))
return NULL;
dst = kmalloc(sizeof(*dst) + payload_len, GFP_KERNEL);
if (!dst)
return NULL;
dst->entries = entries;
dst->entry_size = entry_size;
dst->offset = offset;
dst->len = payload_len;
memcpy(dst->data, src->data, payload_len);
return dst;
}
int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
{
struct p54_common *priv = dev->priv;
struct eeprom_pda_wrap *wrap;
struct pda_entry *entry;
unsigned int data_len, entry_len;
void *tmp;
int err;
u8 *end = (u8 *)eeprom + len;
u16 synth = 0;
u16 crc16 = ~0;
wrap = (struct eeprom_pda_wrap *) eeprom;
entry = (void *)wrap->data + le16_to_cpu(wrap->len);
/* verify that at least the entry length/code fits */
while ((u8 *)entry <= end - sizeof(*entry)) {
entry_len = le16_to_cpu(entry->len);
data_len = ((entry_len - 1) << 1);
/* abort if entry exceeds whole structure */
if ((u8 *)entry + sizeof(*entry) + data_len > end)
break;
switch (le16_to_cpu(entry->code)) {
case PDR_MAC_ADDRESS:
if (data_len != ETH_ALEN)
break;
SET_IEEE80211_PERM_ADDR(dev, entry->data);
break;
case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
if (priv->output_limit)
break;
err = p54_convert_output_limits(dev, entry->data,
data_len);
if (err)
goto err;
break;
case PDR_PRISM_PA_CAL_CURVE_DATA: {
struct pda_pa_curve_data *curve_data =
(struct pda_pa_curve_data *)entry->data;
if (data_len < sizeof(*curve_data)) {
err = -EINVAL;
goto err;
}
switch (curve_data->cal_method_rev) {
case 0:
err = p54_convert_rev0(dev, curve_data);
break;
case 1:
err = p54_convert_rev1(dev, curve_data);
break;
default:
wiphy_err(dev->wiphy,
"unknown curve data revision %d\n",
curve_data->cal_method_rev);
err = -ENODEV;
break;
}
if (err)
goto err;
}
break;
case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
priv->iq_autocal = kmemdup(entry->data, data_len,
GFP_KERNEL);
if (!priv->iq_autocal) {
err = -ENOMEM;
goto err;
}
priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
break;
case PDR_DEFAULT_COUNTRY:
p54_parse_default_country(dev, entry->data, data_len);
break;
case PDR_INTERFACE_LIST:
tmp = entry->data;
while ((u8 *)tmp < entry->data + data_len) {
struct exp_if *exp_if = tmp;
if (exp_if->if_id == cpu_to_le16(IF_ID_ISL39000))
synth = le16_to_cpu(exp_if->variant);
tmp += sizeof(*exp_if);
}
break;
case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
if (data_len < 2)
break;
priv->version = *(u8 *)(entry->data + 1);
break;
case PDR_RSSI_LINEAR_APPROXIMATION:
case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND:
case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED:
err = p54_parse_rssical(dev, entry->data, data_len,
le16_to_cpu(entry->code));
if (err)
goto err;
break;
case PDR_RSSI_LINEAR_APPROXIMATION_CUSTOMV2: {
struct pda_custom_wrapper *pda = (void *) entry->data;
__le16 *src;
u16 *dst;
int i;
if (priv->rssi_db || data_len < sizeof(*pda))
break;
priv->rssi_db = p54_convert_db(pda, data_len);
if (!priv->rssi_db)
break;
src = (void *) priv->rssi_db->data;
dst = (void *) priv->rssi_db->data;
for (i = 0; i < priv->rssi_db->entries; i++)
*(dst++) = (s16) le16_to_cpu(*(src++));
}
break;
case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS_CUSTOM: {
struct pda_custom_wrapper *pda = (void *) entry->data;
if (priv->output_limit || data_len < sizeof(*pda))
break;
priv->output_limit = p54_convert_db(pda, data_len);
}
break;
case PDR_PRISM_PA_CAL_CURVE_DATA_CUSTOM: {
struct pda_custom_wrapper *pda = (void *) entry->data;
if (priv->curve_data || data_len < sizeof(*pda))
break;
priv->curve_data = p54_convert_db(pda, data_len);
}
break;
case PDR_END:
crc16 = ~crc_ccitt(crc16, (u8 *) entry, sizeof(*entry));
if (crc16 != le16_to_cpup((__le16 *)entry->data)) {
wiphy_err(dev->wiphy, "eeprom failed checksum "
"test!\n");
err = -ENOMSG;
goto err;
} else {
goto good_eeprom;
}
break;
default:
break;
}
crc16 = crc_ccitt(crc16, (u8 *)entry, (entry_len + 1) * 2);
entry = (void *)entry + (entry_len + 1) * 2;
}
wiphy_err(dev->wiphy, "unexpected end of eeprom data.\n");
err = -ENODATA;
goto err;
good_eeprom:
if (!synth || !priv->iq_autocal || !priv->output_limit ||
!priv->curve_data) {
wiphy_err(dev->wiphy,
"not all required entries found in eeprom!\n");
err = -EINVAL;
goto err;
}
priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
err = p54_generate_channel_lists(dev);
if (err)
goto err;
if (priv->rxhw == PDR_SYNTH_FRONTEND_XBOW)
p54_init_xbow_synth(priv);
if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
dev->wiphy->bands[IEEE80211_BAND_2GHZ] =
priv->band_table[IEEE80211_BAND_2GHZ];
if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
dev->wiphy->bands[IEEE80211_BAND_5GHZ] =
priv->band_table[IEEE80211_BAND_5GHZ];
if ((synth & PDR_SYNTH_RX_DIV_MASK) == PDR_SYNTH_RX_DIV_SUPPORTED)
priv->rx_diversity_mask = 3;
if ((synth & PDR_SYNTH_TX_DIV_MASK) == PDR_SYNTH_TX_DIV_SUPPORTED)
priv->tx_diversity_mask = 3;
if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
u8 perm_addr[ETH_ALEN];
wiphy_warn(dev->wiphy,
"Invalid hwaddr! Using randomly generated MAC addr\n");
eth_random_addr(perm_addr);
SET_IEEE80211_PERM_ADDR(dev, perm_addr);
}
priv->cur_rssi = &p54_rssi_default;
wiphy_info(dev->wiphy, "hwaddr %pM, MAC:isl38%02x RF:%s\n",
dev->wiphy->perm_addr, priv->version,
p54_rf_chips[priv->rxhw]);
return 0;
err:
kfree(priv->iq_autocal);
kfree(priv->output_limit);
kfree(priv->curve_data);
kfree(priv->rssi_db);
kfree(priv->survey);
priv->iq_autocal = NULL;
priv->output_limit = NULL;
priv->curve_data = NULL;
priv->rssi_db = NULL;
priv->survey = NULL;
wiphy_err(dev->wiphy, "eeprom parse failed!\n");
return err;
}
EXPORT_SYMBOL_GPL(p54_parse_eeprom);
int p54_read_eeprom(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
size_t eeprom_size = 0x2020, offset = 0, blocksize, maxblocksize;
int ret = -ENOMEM;
void *eeprom;
maxblocksize = EEPROM_READBACK_LEN;
if (priv->fw_var >= 0x509)
maxblocksize -= 0xc;
else
maxblocksize -= 0x4;
eeprom = kzalloc(eeprom_size, GFP_KERNEL);
if (unlikely(!eeprom))
goto free;
while (eeprom_size) {
blocksize = min(eeprom_size, maxblocksize);
ret = p54_download_eeprom(priv, eeprom + offset,
offset, blocksize);
if (unlikely(ret))
goto free;
offset += blocksize;
eeprom_size -= blocksize;
}
ret = p54_parse_eeprom(dev, eeprom, offset);
free:
kfree(eeprom);
return ret;
}
EXPORT_SYMBOL_GPL(p54_read_eeprom);