25985edced
Fixes generated by 'codespell' and manually reviewed. Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
518 lines
16 KiB
C
518 lines
16 KiB
C
/*
|
|
* Ultra Wide Band
|
|
* AES-128 CCM Encryption
|
|
*
|
|
* Copyright (C) 2007 Intel Corporation
|
|
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License version
|
|
* 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
* 02110-1301, USA.
|
|
*
|
|
*
|
|
* We don't do any encryption here; we use the Linux Kernel's AES-128
|
|
* crypto modules to construct keys and payload blocks in a way
|
|
* defined by WUSB1.0[6]. Check the erratas, as typos are are patched
|
|
* there.
|
|
*
|
|
* Thanks a zillion to John Keys for his help and clarifications over
|
|
* the designed-by-a-committee text.
|
|
*
|
|
* So the idea is that there is this basic Pseudo-Random-Function
|
|
* defined in WUSB1.0[6.5] which is the core of everything. It works
|
|
* by tweaking some blocks, AES crypting them and then xoring
|
|
* something else with them (this seems to be called CBC(AES) -- can
|
|
* you tell I know jack about crypto?). So we just funnel it into the
|
|
* Linux Crypto API.
|
|
*
|
|
* We leave a crypto test module so we can verify that vectors match,
|
|
* every now and then.
|
|
*
|
|
* Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
|
|
* am learning a lot...
|
|
*
|
|
* Conveniently, some data structures that need to be
|
|
* funneled through AES are...16 bytes in size!
|
|
*/
|
|
|
|
#include <linux/crypto.h>
|
|
#include <linux/module.h>
|
|
#include <linux/err.h>
|
|
#include <linux/uwb.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/usb/wusb.h>
|
|
#include <linux/scatterlist.h>
|
|
|
|
static int debug_crypto_verify = 0;
|
|
|
|
module_param(debug_crypto_verify, int, 0);
|
|
MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
|
|
|
|
static void wusb_key_dump(const void *buf, size_t len)
|
|
{
|
|
print_hex_dump(KERN_ERR, " ", DUMP_PREFIX_OFFSET, 16, 1,
|
|
buf, len, 0);
|
|
}
|
|
|
|
/*
|
|
* Block of data, as understood by AES-CCM
|
|
*
|
|
* The code assumes this structure is nothing but a 16 byte array
|
|
* (packed in a struct to avoid common mess ups that I usually do with
|
|
* arrays and enforcing type checking).
|
|
*/
|
|
struct aes_ccm_block {
|
|
u8 data[16];
|
|
} __attribute__((packed));
|
|
|
|
/*
|
|
* Counter-mode Blocks (WUSB1.0[6.4])
|
|
*
|
|
* According to CCM (or so it seems), for the purpose of calculating
|
|
* the MIC, the message is broken in N counter-mode blocks, B0, B1,
|
|
* ... BN.
|
|
*
|
|
* B0 contains flags, the CCM nonce and l(m).
|
|
*
|
|
* B1 contains l(a), the MAC header, the encryption offset and padding.
|
|
*
|
|
* If EO is nonzero, additional blocks are built from payload bytes
|
|
* until EO is exahusted (FIXME: padding to 16 bytes, I guess). The
|
|
* padding is not xmitted.
|
|
*/
|
|
|
|
/* WUSB1.0[T6.4] */
|
|
struct aes_ccm_b0 {
|
|
u8 flags; /* 0x59, per CCM spec */
|
|
struct aes_ccm_nonce ccm_nonce;
|
|
__be16 lm;
|
|
} __attribute__((packed));
|
|
|
|
/* WUSB1.0[T6.5] */
|
|
struct aes_ccm_b1 {
|
|
__be16 la;
|
|
u8 mac_header[10];
|
|
__le16 eo;
|
|
u8 security_reserved; /* This is always zero */
|
|
u8 padding; /* 0 */
|
|
} __attribute__((packed));
|
|
|
|
/*
|
|
* Encryption Blocks (WUSB1.0[6.4.4])
|
|
*
|
|
* CCM uses Ax blocks to generate a keystream with which the MIC and
|
|
* the message's payload are encoded. A0 always encrypts/decrypts the
|
|
* MIC. Ax (x>0) are used for the successive payload blocks.
|
|
*
|
|
* The x is the counter, and is increased for each block.
|
|
*/
|
|
struct aes_ccm_a {
|
|
u8 flags; /* 0x01, per CCM spec */
|
|
struct aes_ccm_nonce ccm_nonce;
|
|
__be16 counter; /* Value of x */
|
|
} __attribute__((packed));
|
|
|
|
static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
|
|
size_t size)
|
|
{
|
|
u8 *bo = _bo;
|
|
const u8 *bi1 = _bi1, *bi2 = _bi2;
|
|
size_t itr;
|
|
for (itr = 0; itr < size; itr++)
|
|
bo[itr] = bi1[itr] ^ bi2[itr];
|
|
}
|
|
|
|
/*
|
|
* CC-MAC function WUSB1.0[6.5]
|
|
*
|
|
* Take a data string and produce the encrypted CBC Counter-mode MIC
|
|
*
|
|
* Note the names for most function arguments are made to (more or
|
|
* less) match those used in the pseudo-function definition given in
|
|
* WUSB1.0[6.5].
|
|
*
|
|
* @tfm_cbc: CBC(AES) blkcipher handle (initialized)
|
|
*
|
|
* @tfm_aes: AES cipher handle (initialized)
|
|
*
|
|
* @mic: buffer for placing the computed MIC (Message Integrity
|
|
* Code). This is exactly 8 bytes, and we expect the buffer to
|
|
* be at least eight bytes in length.
|
|
*
|
|
* @key: 128 bit symmetric key
|
|
*
|
|
* @n: CCM nonce
|
|
*
|
|
* @a: ASCII string, 14 bytes long (I guess zero padded if needed;
|
|
* we use exactly 14 bytes).
|
|
*
|
|
* @b: data stream to be processed; cannot be a global or const local
|
|
* (will confuse the scatterlists)
|
|
*
|
|
* @blen: size of b...
|
|
*
|
|
* Still not very clear how this is done, but looks like this: we
|
|
* create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
|
|
* @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
|
|
* take the payload and divide it in blocks (16 bytes), xor them with
|
|
* the previous crypto result (16 bytes) and crypt it, repeat the next
|
|
* block with the output of the previous one, rinse wash (I guess this
|
|
* is what AES CBC mode means...but I truly have no idea). So we use
|
|
* the CBC(AES) blkcipher, that does precisely that. The IV (Initial
|
|
* Vector) is 16 bytes and is set to zero, so
|
|
*
|
|
* See rfc3610. Linux crypto has a CBC implementation, but the
|
|
* documentation is scarce, to say the least, and the example code is
|
|
* so intricated that is difficult to understand how things work. Most
|
|
* of this is guess work -- bite me.
|
|
*
|
|
* (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
|
|
* using the 14 bytes of @a to fill up
|
|
* b1.{mac_header,e0,security_reserved,padding}.
|
|
*
|
|
* NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
|
|
* l(m) is orthogonal, they bear no relationship, so it is not
|
|
* in conflict with the parameter's relation that
|
|
* WUSB1.0[6.4.2]) defines.
|
|
*
|
|
* NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
|
|
* first errata released on 2005/07.
|
|
*
|
|
* NOTE: we need to clean IV to zero at each invocation to make sure
|
|
* we start with a fresh empty Initial Vector, so that the CBC
|
|
* works ok.
|
|
*
|
|
* NOTE: blen is not aligned to a block size, we'll pad zeros, that's
|
|
* what sg[4] is for. Maybe there is a smarter way to do this.
|
|
*/
|
|
static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc,
|
|
struct crypto_cipher *tfm_aes, void *mic,
|
|
const struct aes_ccm_nonce *n,
|
|
const struct aes_ccm_label *a, const void *b,
|
|
size_t blen)
|
|
{
|
|
int result = 0;
|
|
struct blkcipher_desc desc;
|
|
struct aes_ccm_b0 b0;
|
|
struct aes_ccm_b1 b1;
|
|
struct aes_ccm_a ax;
|
|
struct scatterlist sg[4], sg_dst;
|
|
void *iv, *dst_buf;
|
|
size_t ivsize, dst_size;
|
|
const u8 bzero[16] = { 0 };
|
|
size_t zero_padding;
|
|
|
|
/*
|
|
* These checks should be compile time optimized out
|
|
* ensure @a fills b1's mac_header and following fields
|
|
*/
|
|
WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
|
|
WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
|
|
WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
|
|
WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));
|
|
|
|
result = -ENOMEM;
|
|
zero_padding = sizeof(struct aes_ccm_block)
|
|
- blen % sizeof(struct aes_ccm_block);
|
|
zero_padding = blen % sizeof(struct aes_ccm_block);
|
|
if (zero_padding)
|
|
zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
|
|
dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
|
|
dst_buf = kzalloc(dst_size, GFP_KERNEL);
|
|
if (dst_buf == NULL) {
|
|
printk(KERN_ERR "E: can't alloc destination buffer\n");
|
|
goto error_dst_buf;
|
|
}
|
|
|
|
iv = crypto_blkcipher_crt(tfm_cbc)->iv;
|
|
ivsize = crypto_blkcipher_ivsize(tfm_cbc);
|
|
memset(iv, 0, ivsize);
|
|
|
|
/* Setup B0 */
|
|
b0.flags = 0x59; /* Format B0 */
|
|
b0.ccm_nonce = *n;
|
|
b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */
|
|
|
|
/* Setup B1
|
|
*
|
|
* The WUSB spec is anything but clear! WUSB1.0[6.5]
|
|
* says that to initialize B1 from A with 'l(a) = blen +
|
|
* 14'--after clarification, it means to use A's contents
|
|
* for MAC Header, EO, sec reserved and padding.
|
|
*/
|
|
b1.la = cpu_to_be16(blen + 14);
|
|
memcpy(&b1.mac_header, a, sizeof(*a));
|
|
|
|
sg_init_table(sg, ARRAY_SIZE(sg));
|
|
sg_set_buf(&sg[0], &b0, sizeof(b0));
|
|
sg_set_buf(&sg[1], &b1, sizeof(b1));
|
|
sg_set_buf(&sg[2], b, blen);
|
|
/* 0 if well behaved :) */
|
|
sg_set_buf(&sg[3], bzero, zero_padding);
|
|
sg_init_one(&sg_dst, dst_buf, dst_size);
|
|
|
|
desc.tfm = tfm_cbc;
|
|
desc.flags = 0;
|
|
result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size);
|
|
if (result < 0) {
|
|
printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
|
|
result);
|
|
goto error_cbc_crypt;
|
|
}
|
|
|
|
/* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
|
|
* The procedure is to AES crypt the A0 block and XOR the MIC
|
|
* Tag against it; we only do the first 8 bytes and place it
|
|
* directly in the destination buffer.
|
|
*
|
|
* POS Crypto API: size is assumed to be AES's block size.
|
|
* Thanks for documenting it -- tip taken from airo.c
|
|
*/
|
|
ax.flags = 0x01; /* as per WUSB 1.0 spec */
|
|
ax.ccm_nonce = *n;
|
|
ax.counter = 0;
|
|
crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
|
|
bytewise_xor(mic, &ax, iv, 8);
|
|
result = 8;
|
|
error_cbc_crypt:
|
|
kfree(dst_buf);
|
|
error_dst_buf:
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* WUSB Pseudo Random Function (WUSB1.0[6.5])
|
|
*
|
|
* @b: buffer to the source data; cannot be a global or const local
|
|
* (will confuse the scatterlists)
|
|
*/
|
|
ssize_t wusb_prf(void *out, size_t out_size,
|
|
const u8 key[16], const struct aes_ccm_nonce *_n,
|
|
const struct aes_ccm_label *a,
|
|
const void *b, size_t blen, size_t len)
|
|
{
|
|
ssize_t result, bytes = 0, bitr;
|
|
struct aes_ccm_nonce n = *_n;
|
|
struct crypto_blkcipher *tfm_cbc;
|
|
struct crypto_cipher *tfm_aes;
|
|
u64 sfn = 0;
|
|
__le64 sfn_le;
|
|
|
|
tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(tfm_cbc)) {
|
|
result = PTR_ERR(tfm_cbc);
|
|
printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
|
|
goto error_alloc_cbc;
|
|
}
|
|
result = crypto_blkcipher_setkey(tfm_cbc, key, 16);
|
|
if (result < 0) {
|
|
printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
|
|
goto error_setkey_cbc;
|
|
}
|
|
|
|
tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(tfm_aes)) {
|
|
result = PTR_ERR(tfm_aes);
|
|
printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
|
|
goto error_alloc_aes;
|
|
}
|
|
result = crypto_cipher_setkey(tfm_aes, key, 16);
|
|
if (result < 0) {
|
|
printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
|
|
goto error_setkey_aes;
|
|
}
|
|
|
|
for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
|
|
sfn_le = cpu_to_le64(sfn++);
|
|
memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
|
|
result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes,
|
|
&n, a, b, blen);
|
|
if (result < 0)
|
|
goto error_ccm_mac;
|
|
bytes += result;
|
|
}
|
|
result = bytes;
|
|
error_ccm_mac:
|
|
error_setkey_aes:
|
|
crypto_free_cipher(tfm_aes);
|
|
error_alloc_aes:
|
|
error_setkey_cbc:
|
|
crypto_free_blkcipher(tfm_cbc);
|
|
error_alloc_cbc:
|
|
return result;
|
|
}
|
|
|
|
/* WUSB1.0[A.2] test vectors */
|
|
static const u8 stv_hsmic_key[16] = {
|
|
0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
|
|
0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
|
|
};
|
|
|
|
static const struct aes_ccm_nonce stv_hsmic_n = {
|
|
.sfn = { 0 },
|
|
.tkid = { 0x76, 0x98, 0x01, },
|
|
.dest_addr = { .data = { 0xbe, 0x00 } },
|
|
.src_addr = { .data = { 0x76, 0x98 } },
|
|
};
|
|
|
|
/*
|
|
* Out-of-band MIC Generation verification code
|
|
*
|
|
*/
|
|
static int wusb_oob_mic_verify(void)
|
|
{
|
|
int result;
|
|
u8 mic[8];
|
|
/* WUSB1.0[A.2] test vectors
|
|
*
|
|
* Need to keep it in the local stack as GCC 4.1.3something
|
|
* messes up and generates noise.
|
|
*/
|
|
struct usb_handshake stv_hsmic_hs = {
|
|
.bMessageNumber = 2,
|
|
.bStatus = 00,
|
|
.tTKID = { 0x76, 0x98, 0x01 },
|
|
.bReserved = 00,
|
|
.CDID = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
|
|
0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
|
|
0x3c, 0x3d, 0x3e, 0x3f },
|
|
.nonce = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
|
|
0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
|
|
0x2c, 0x2d, 0x2e, 0x2f },
|
|
.MIC = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
|
|
0x14, 0x7b } ,
|
|
};
|
|
size_t hs_size;
|
|
|
|
result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
|
|
if (result < 0)
|
|
printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
|
|
else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
|
|
printk(KERN_ERR "E: OOB MIC test: "
|
|
"mismatch between MIC result and WUSB1.0[A2]\n");
|
|
hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
|
|
printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
|
|
wusb_key_dump(&stv_hsmic_hs, hs_size);
|
|
printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
|
|
sizeof(stv_hsmic_n));
|
|
wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
|
|
printk(KERN_ERR "E: MIC out:\n");
|
|
wusb_key_dump(mic, sizeof(mic));
|
|
printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
|
|
wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
|
|
result = -EINVAL;
|
|
} else
|
|
result = 0;
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Test vectors for Key derivation
|
|
*
|
|
* These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
|
|
* (errata corrected in 2005/07).
|
|
*/
|
|
static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
|
|
0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
|
|
0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
|
|
};
|
|
|
|
static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
|
|
.sfn = { 0 },
|
|
.tkid = { 0x76, 0x98, 0x01, },
|
|
.dest_addr = { .data = { 0xbe, 0x00 } },
|
|
.src_addr = { .data = { 0x76, 0x98 } },
|
|
};
|
|
|
|
static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
|
|
.kck = {
|
|
0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
|
|
0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
|
|
},
|
|
.ptk = {
|
|
0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
|
|
0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
|
|
}
|
|
};
|
|
|
|
/*
|
|
* Performa a test to make sure we match the vectors defined in
|
|
* WUSB1.0[A.1](Errata2006/12)
|
|
*/
|
|
static int wusb_key_derive_verify(void)
|
|
{
|
|
int result = 0;
|
|
struct wusb_keydvt_out keydvt_out;
|
|
/* These come from WUSB1.0[A.1] + 2006/12 errata
|
|
* NOTE: can't make this const or global -- somehow it seems
|
|
* the scatterlists for crypto get confused and we get
|
|
* bad data. There is no doc on this... */
|
|
struct wusb_keydvt_in stv_keydvt_in_a1 = {
|
|
.hnonce = {
|
|
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
|
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
|
|
},
|
|
.dnonce = {
|
|
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
|
|
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
|
|
}
|
|
};
|
|
|
|
result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
|
|
&stv_keydvt_in_a1);
|
|
if (result < 0)
|
|
printk(KERN_ERR "E: WUSB key derivation test: "
|
|
"derivation failed: %d\n", result);
|
|
if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
|
|
printk(KERN_ERR "E: WUSB key derivation test: "
|
|
"mismatch between key derivation result "
|
|
"and WUSB1.0[A1] Errata 2006/12\n");
|
|
printk(KERN_ERR "E: keydvt in: key\n");
|
|
wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
|
|
printk(KERN_ERR "E: keydvt in: nonce\n");
|
|
wusb_key_dump( &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
|
|
printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
|
|
wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
|
|
printk(KERN_ERR "E: keydvt out: KCK\n");
|
|
wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
|
|
printk(KERN_ERR "E: keydvt out: PTK\n");
|
|
wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
|
|
result = -EINVAL;
|
|
} else
|
|
result = 0;
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Initialize crypto system
|
|
*
|
|
* FIXME: we do nothing now, other than verifying. Later on we'll
|
|
* cache the encryption stuff, so that's why we have a separate init.
|
|
*/
|
|
int wusb_crypto_init(void)
|
|
{
|
|
int result;
|
|
|
|
if (debug_crypto_verify) {
|
|
result = wusb_key_derive_verify();
|
|
if (result < 0)
|
|
return result;
|
|
return wusb_oob_mic_verify();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void wusb_crypto_exit(void)
|
|
{
|
|
/* FIXME: free cached crypto transforms */
|
|
}
|