linux/drivers/scsi/qla4xxx/ql4_83xx.c
Tej Parkash 546fef27c3 [SCSI] qla4xxx: Disable generating pause frames for ISP83XX
In case of FW hung ISP83XX generates continuous pause frames
which causes switch to disable port.
Added fix to disable generating pause frames in case of
FW hung

Signed-off-by: Tej Parkash <tej.parkash@qlogic.com>
Signed-off-by: Vikas Chaudhary <vikas.chaudhary@qlogic.com>
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-09-24 12:49:00 +04:00

1611 lines
44 KiB
C

/*
* QLogic iSCSI HBA Driver
* Copyright (c) 2003-2012 QLogic Corporation
*
* See LICENSE.qla4xxx for copyright and licensing details.
*/
#include <linux/ratelimit.h>
#include "ql4_def.h"
#include "ql4_version.h"
#include "ql4_glbl.h"
#include "ql4_dbg.h"
#include "ql4_inline.h"
uint32_t qla4_83xx_rd_reg(struct scsi_qla_host *ha, ulong addr)
{
return readl((void __iomem *)(ha->nx_pcibase + addr));
}
void qla4_83xx_wr_reg(struct scsi_qla_host *ha, ulong addr, uint32_t val)
{
writel(val, (void __iomem *)(ha->nx_pcibase + addr));
}
static int qla4_83xx_set_win_base(struct scsi_qla_host *ha, uint32_t addr)
{
uint32_t val;
int ret_val = QLA_SUCCESS;
qla4_83xx_wr_reg(ha, QLA83XX_CRB_WIN_FUNC(ha->func_num), addr);
val = qla4_83xx_rd_reg(ha, QLA83XX_CRB_WIN_FUNC(ha->func_num));
if (val != addr) {
ql4_printk(KERN_ERR, ha, "%s: Failed to set register window : addr written 0x%x, read 0x%x!\n",
__func__, addr, val);
ret_val = QLA_ERROR;
}
return ret_val;
}
int qla4_83xx_rd_reg_indirect(struct scsi_qla_host *ha, uint32_t addr,
uint32_t *data)
{
int ret_val;
ret_val = qla4_83xx_set_win_base(ha, addr);
if (ret_val == QLA_SUCCESS)
*data = qla4_83xx_rd_reg(ha, QLA83XX_WILDCARD);
else
ql4_printk(KERN_ERR, ha, "%s: failed read of addr 0x%x!\n",
__func__, addr);
return ret_val;
}
int qla4_83xx_wr_reg_indirect(struct scsi_qla_host *ha, uint32_t addr,
uint32_t data)
{
int ret_val;
ret_val = qla4_83xx_set_win_base(ha, addr);
if (ret_val == QLA_SUCCESS)
qla4_83xx_wr_reg(ha, QLA83XX_WILDCARD, data);
else
ql4_printk(KERN_ERR, ha, "%s: failed wrt to addr 0x%x, data 0x%x\n",
__func__, addr, data);
return ret_val;
}
static int qla4_83xx_flash_lock(struct scsi_qla_host *ha)
{
int lock_owner;
int timeout = 0;
uint32_t lock_status = 0;
int ret_val = QLA_SUCCESS;
while (lock_status == 0) {
lock_status = qla4_83xx_rd_reg(ha, QLA83XX_FLASH_LOCK);
if (lock_status)
break;
if (++timeout >= QLA83XX_FLASH_LOCK_TIMEOUT / 20) {
lock_owner = qla4_83xx_rd_reg(ha,
QLA83XX_FLASH_LOCK_ID);
ql4_printk(KERN_ERR, ha, "%s: flash lock by func %d failed, held by func %d\n",
__func__, ha->func_num, lock_owner);
ret_val = QLA_ERROR;
break;
}
msleep(20);
}
qla4_83xx_wr_reg(ha, QLA83XX_FLASH_LOCK_ID, ha->func_num);
return ret_val;
}
static void qla4_83xx_flash_unlock(struct scsi_qla_host *ha)
{
/* Reading FLASH_UNLOCK register unlocks the Flash */
qla4_83xx_wr_reg(ha, QLA83XX_FLASH_LOCK_ID, 0xFF);
qla4_83xx_rd_reg(ha, QLA83XX_FLASH_UNLOCK);
}
int qla4_83xx_flash_read_u32(struct scsi_qla_host *ha, uint32_t flash_addr,
uint8_t *p_data, int u32_word_count)
{
int i;
uint32_t u32_word;
uint32_t addr = flash_addr;
int ret_val = QLA_SUCCESS;
ret_val = qla4_83xx_flash_lock(ha);
if (ret_val == QLA_ERROR)
goto exit_lock_error;
if (addr & 0x03) {
ql4_printk(KERN_ERR, ha, "%s: Illegal addr = 0x%x\n",
__func__, addr);
ret_val = QLA_ERROR;
goto exit_flash_read;
}
for (i = 0; i < u32_word_count; i++) {
ret_val = qla4_83xx_wr_reg_indirect(ha,
QLA83XX_FLASH_DIRECT_WINDOW,
(addr & 0xFFFF0000));
if (ret_val == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: failed to write addr 0x%x to FLASH_DIRECT_WINDOW\n!",
__func__, addr);
goto exit_flash_read;
}
ret_val = qla4_83xx_rd_reg_indirect(ha,
QLA83XX_FLASH_DIRECT_DATA(addr),
&u32_word);
if (ret_val == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: failed to read addr 0x%x!\n",
__func__, addr);
goto exit_flash_read;
}
*(__le32 *)p_data = le32_to_cpu(u32_word);
p_data = p_data + 4;
addr = addr + 4;
}
exit_flash_read:
qla4_83xx_flash_unlock(ha);
exit_lock_error:
return ret_val;
}
int qla4_83xx_lockless_flash_read_u32(struct scsi_qla_host *ha,
uint32_t flash_addr, uint8_t *p_data,
int u32_word_count)
{
uint32_t i;
uint32_t u32_word;
uint32_t flash_offset;
uint32_t addr = flash_addr;
int ret_val = QLA_SUCCESS;
flash_offset = addr & (QLA83XX_FLASH_SECTOR_SIZE - 1);
if (addr & 0x3) {
ql4_printk(KERN_ERR, ha, "%s: Illegal addr = 0x%x\n",
__func__, addr);
ret_val = QLA_ERROR;
goto exit_lockless_read;
}
ret_val = qla4_83xx_wr_reg_indirect(ha, QLA83XX_FLASH_DIRECT_WINDOW,
addr);
if (ret_val == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: failed to write addr 0x%x to FLASH_DIRECT_WINDOW!\n",
__func__, addr);
goto exit_lockless_read;
}
/* Check if data is spread across multiple sectors */
if ((flash_offset + (u32_word_count * sizeof(uint32_t))) >
(QLA83XX_FLASH_SECTOR_SIZE - 1)) {
/* Multi sector read */
for (i = 0; i < u32_word_count; i++) {
ret_val = qla4_83xx_rd_reg_indirect(ha,
QLA83XX_FLASH_DIRECT_DATA(addr),
&u32_word);
if (ret_val == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: failed to read addr 0x%x!\n",
__func__, addr);
goto exit_lockless_read;
}
*(__le32 *)p_data = le32_to_cpu(u32_word);
p_data = p_data + 4;
addr = addr + 4;
flash_offset = flash_offset + 4;
if (flash_offset > (QLA83XX_FLASH_SECTOR_SIZE - 1)) {
/* This write is needed once for each sector */
ret_val = qla4_83xx_wr_reg_indirect(ha,
QLA83XX_FLASH_DIRECT_WINDOW,
addr);
if (ret_val == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: failed to write addr 0x%x to FLASH_DIRECT_WINDOW!\n",
__func__, addr);
goto exit_lockless_read;
}
flash_offset = 0;
}
}
} else {
/* Single sector read */
for (i = 0; i < u32_word_count; i++) {
ret_val = qla4_83xx_rd_reg_indirect(ha,
QLA83XX_FLASH_DIRECT_DATA(addr),
&u32_word);
if (ret_val == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: failed to read addr 0x%x!\n",
__func__, addr);
goto exit_lockless_read;
}
*(__le32 *)p_data = le32_to_cpu(u32_word);
p_data = p_data + 4;
addr = addr + 4;
}
}
exit_lockless_read:
return ret_val;
}
void qla4_83xx_rom_lock_recovery(struct scsi_qla_host *ha)
{
if (qla4_83xx_flash_lock(ha))
ql4_printk(KERN_INFO, ha, "%s: Resetting rom lock\n", __func__);
/*
* We got the lock, or someone else is holding the lock
* since we are restting, forcefully unlock
*/
qla4_83xx_flash_unlock(ha);
}
/**
* qla4_83xx_ms_mem_write_128b - Writes data to MS/off-chip memory
* @ha: Pointer to adapter structure
* @addr: Flash address to write to
* @data: Data to be written
* @count: word_count to be written
*
* Return: On success return QLA_SUCCESS
* On error return QLA_ERROR
**/
static int qla4_83xx_ms_mem_write_128b(struct scsi_qla_host *ha, uint64_t addr,
uint32_t *data, uint32_t count)
{
int i, j;
uint32_t agt_ctrl;
unsigned long flags;
int ret_val = QLA_SUCCESS;
/* Only 128-bit aligned access */
if (addr & 0xF) {
ret_val = QLA_ERROR;
goto exit_ms_mem_write;
}
write_lock_irqsave(&ha->hw_lock, flags);
/* Write address */
ret_val = qla4_83xx_wr_reg_indirect(ha, MD_MIU_TEST_AGT_ADDR_HI, 0);
if (ret_val == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: write to AGT_ADDR_HI failed\n",
__func__);
goto exit_ms_mem_write_unlock;
}
for (i = 0; i < count; i++, addr += 16) {
if (!((QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_QDR_NET,
QLA8XXX_ADDR_QDR_NET_MAX)) ||
(QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_DDR_NET,
QLA8XXX_ADDR_DDR_NET_MAX)))) {
ret_val = QLA_ERROR;
goto exit_ms_mem_write_unlock;
}
ret_val = qla4_83xx_wr_reg_indirect(ha, MD_MIU_TEST_AGT_ADDR_LO,
addr);
/* Write data */
ret_val |= qla4_83xx_wr_reg_indirect(ha,
MD_MIU_TEST_AGT_WRDATA_LO,
*data++);
ret_val |= qla4_83xx_wr_reg_indirect(ha,
MD_MIU_TEST_AGT_WRDATA_HI,
*data++);
ret_val |= qla4_83xx_wr_reg_indirect(ha,
MD_MIU_TEST_AGT_WRDATA_ULO,
*data++);
ret_val |= qla4_83xx_wr_reg_indirect(ha,
MD_MIU_TEST_AGT_WRDATA_UHI,
*data++);
if (ret_val == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: write to AGT_WRDATA failed\n",
__func__);
goto exit_ms_mem_write_unlock;
}
/* Check write status */
ret_val = qla4_83xx_wr_reg_indirect(ha, MD_MIU_TEST_AGT_CTRL,
MIU_TA_CTL_WRITE_ENABLE);
ret_val |= qla4_83xx_wr_reg_indirect(ha, MD_MIU_TEST_AGT_CTRL,
MIU_TA_CTL_WRITE_START);
if (ret_val == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: write to AGT_CTRL failed\n",
__func__);
goto exit_ms_mem_write_unlock;
}
for (j = 0; j < MAX_CTL_CHECK; j++) {
ret_val = qla4_83xx_rd_reg_indirect(ha,
MD_MIU_TEST_AGT_CTRL,
&agt_ctrl);
if (ret_val == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: failed to read MD_MIU_TEST_AGT_CTRL\n",
__func__);
goto exit_ms_mem_write_unlock;
}
if ((agt_ctrl & MIU_TA_CTL_BUSY) == 0)
break;
}
/* Status check failed */
if (j >= MAX_CTL_CHECK) {
printk_ratelimited(KERN_ERR "%s: MS memory write failed!\n",
__func__);
ret_val = QLA_ERROR;
goto exit_ms_mem_write_unlock;
}
}
exit_ms_mem_write_unlock:
write_unlock_irqrestore(&ha->hw_lock, flags);
exit_ms_mem_write:
return ret_val;
}
#define INTENT_TO_RECOVER 0x01
#define PROCEED_TO_RECOVER 0x02
static int qla4_83xx_lock_recovery(struct scsi_qla_host *ha)
{
uint32_t lock = 0, lockid;
int ret_val = QLA_ERROR;
lockid = ha->isp_ops->rd_reg_direct(ha, QLA83XX_DRV_LOCKRECOVERY);
/* Check for other Recovery in progress, go wait */
if ((lockid & 0x3) != 0)
goto exit_lock_recovery;
/* Intent to Recover */
ha->isp_ops->wr_reg_direct(ha, QLA83XX_DRV_LOCKRECOVERY,
(ha->func_num << 2) | INTENT_TO_RECOVER);
msleep(200);
/* Check Intent to Recover is advertised */
lockid = ha->isp_ops->rd_reg_direct(ha, QLA83XX_DRV_LOCKRECOVERY);
if ((lockid & 0x3C) != (ha->func_num << 2))
goto exit_lock_recovery;
ql4_printk(KERN_INFO, ha, "%s: IDC Lock recovery initiated for func %d\n",
__func__, ha->func_num);
/* Proceed to Recover */
ha->isp_ops->wr_reg_direct(ha, QLA83XX_DRV_LOCKRECOVERY,
(ha->func_num << 2) | PROCEED_TO_RECOVER);
/* Force Unlock */
ha->isp_ops->wr_reg_direct(ha, QLA83XX_DRV_LOCK_ID, 0xFF);
ha->isp_ops->rd_reg_direct(ha, QLA83XX_DRV_UNLOCK);
/* Clear bits 0-5 in IDC_RECOVERY register*/
ha->isp_ops->wr_reg_direct(ha, QLA83XX_DRV_LOCKRECOVERY, 0);
/* Get lock */
lock = ha->isp_ops->rd_reg_direct(ha, QLA83XX_DRV_LOCK);
if (lock) {
lockid = ha->isp_ops->rd_reg_direct(ha, QLA83XX_DRV_LOCK_ID);
lockid = ((lockid + (1 << 8)) & ~0xFF) | ha->func_num;
ha->isp_ops->wr_reg_direct(ha, QLA83XX_DRV_LOCK_ID, lockid);
ret_val = QLA_SUCCESS;
}
exit_lock_recovery:
return ret_val;
}
#define QLA83XX_DRV_LOCK_MSLEEP 200
int qla4_83xx_drv_lock(struct scsi_qla_host *ha)
{
int timeout = 0;
uint32_t status = 0;
int ret_val = QLA_SUCCESS;
uint32_t first_owner = 0;
uint32_t tmo_owner = 0;
uint32_t lock_id;
uint32_t func_num;
uint32_t lock_cnt;
while (status == 0) {
status = qla4_83xx_rd_reg(ha, QLA83XX_DRV_LOCK);
if (status) {
/* Increment Counter (8-31) and update func_num (0-7) on
* getting a successful lock */
lock_id = qla4_83xx_rd_reg(ha, QLA83XX_DRV_LOCK_ID);
lock_id = ((lock_id + (1 << 8)) & ~0xFF) | ha->func_num;
qla4_83xx_wr_reg(ha, QLA83XX_DRV_LOCK_ID, lock_id);
break;
}
if (timeout == 0)
/* Save counter + ID of function holding the lock for
* first failure */
first_owner = ha->isp_ops->rd_reg_direct(ha,
QLA83XX_DRV_LOCK_ID);
if (++timeout >=
(QLA83XX_DRV_LOCK_TIMEOUT / QLA83XX_DRV_LOCK_MSLEEP)) {
tmo_owner = qla4_83xx_rd_reg(ha, QLA83XX_DRV_LOCK_ID);
func_num = tmo_owner & 0xFF;
lock_cnt = tmo_owner >> 8;
ql4_printk(KERN_INFO, ha, "%s: Lock by func %d failed after 2s, lock held by func %d, lock count %d, first_owner %d\n",
__func__, ha->func_num, func_num, lock_cnt,
(first_owner & 0xFF));
if (first_owner != tmo_owner) {
/* Some other driver got lock, OR same driver
* got lock again (counter value changed), when
* we were waiting for lock.
* Retry for another 2 sec */
ql4_printk(KERN_INFO, ha, "%s: IDC lock failed for func %d\n",
__func__, ha->func_num);
timeout = 0;
} else {
/* Same driver holding lock > 2sec.
* Force Recovery */
ret_val = qla4_83xx_lock_recovery(ha);
if (ret_val == QLA_SUCCESS) {
/* Recovered and got lock */
ql4_printk(KERN_INFO, ha, "%s: IDC lock Recovery by %d successful\n",
__func__, ha->func_num);
break;
}
/* Recovery Failed, some other function
* has the lock, wait for 2secs and retry */
ql4_printk(KERN_INFO, ha, "%s: IDC lock Recovery by %d failed, Retrying timout\n",
__func__, ha->func_num);
timeout = 0;
}
}
msleep(QLA83XX_DRV_LOCK_MSLEEP);
}
return ret_val;
}
void qla4_83xx_drv_unlock(struct scsi_qla_host *ha)
{
int id;
id = qla4_83xx_rd_reg(ha, QLA83XX_DRV_LOCK_ID);
if ((id & 0xFF) != ha->func_num) {
ql4_printk(KERN_ERR, ha, "%s: IDC Unlock by %d failed, lock owner is %d\n",
__func__, ha->func_num, (id & 0xFF));
return;
}
/* Keep lock counter value, update the ha->func_num to 0xFF */
qla4_83xx_wr_reg(ha, QLA83XX_DRV_LOCK_ID, (id | 0xFF));
qla4_83xx_rd_reg(ha, QLA83XX_DRV_UNLOCK);
}
void qla4_83xx_set_idc_dontreset(struct scsi_qla_host *ha)
{
uint32_t idc_ctrl;
idc_ctrl = qla4_83xx_rd_reg(ha, QLA83XX_IDC_DRV_CTRL);
idc_ctrl |= DONTRESET_BIT0;
qla4_83xx_wr_reg(ha, QLA83XX_IDC_DRV_CTRL, idc_ctrl);
DEBUG2(ql4_printk(KERN_INFO, ha, "%s: idc_ctrl = %d\n", __func__,
idc_ctrl));
}
void qla4_83xx_clear_idc_dontreset(struct scsi_qla_host *ha)
{
uint32_t idc_ctrl;
idc_ctrl = qla4_83xx_rd_reg(ha, QLA83XX_IDC_DRV_CTRL);
idc_ctrl &= ~DONTRESET_BIT0;
qla4_83xx_wr_reg(ha, QLA83XX_IDC_DRV_CTRL, idc_ctrl);
DEBUG2(ql4_printk(KERN_INFO, ha, "%s: idc_ctrl = %d\n", __func__,
idc_ctrl));
}
int qla4_83xx_idc_dontreset(struct scsi_qla_host *ha)
{
uint32_t idc_ctrl;
idc_ctrl = qla4_83xx_rd_reg(ha, QLA83XX_IDC_DRV_CTRL);
return idc_ctrl & DONTRESET_BIT0;
}
/*-------------------------IDC State Machine ---------------------*/
enum {
UNKNOWN_CLASS = 0,
NIC_CLASS,
FCOE_CLASS,
ISCSI_CLASS
};
struct device_info {
int func_num;
int device_type;
int port_num;
};
static int qla4_83xx_can_perform_reset(struct scsi_qla_host *ha)
{
uint32_t drv_active;
uint32_t dev_part, dev_part1, dev_part2;
int i;
struct device_info device_map[16];
int func_nibble;
int nibble;
int nic_present = 0;
int iscsi_present = 0;
int iscsi_func_low = 0;
/* Use the dev_partition register to determine the PCI function number
* and then check drv_active register to see which driver is loaded */
dev_part1 = qla4_83xx_rd_reg(ha,
ha->reg_tbl[QLA8XXX_CRB_DEV_PART_INFO]);
dev_part2 = qla4_83xx_rd_reg(ha, QLA83XX_CRB_DEV_PART_INFO2);
drv_active = qla4_83xx_rd_reg(ha, ha->reg_tbl[QLA8XXX_CRB_DRV_ACTIVE]);
/* Each function has 4 bits in dev_partition Info register,
* Lower 2 bits - device type, Upper 2 bits - physical port number */
dev_part = dev_part1;
for (i = nibble = 0; i <= 15; i++, nibble++) {
func_nibble = dev_part & (0xF << (nibble * 4));
func_nibble >>= (nibble * 4);
device_map[i].func_num = i;
device_map[i].device_type = func_nibble & 0x3;
device_map[i].port_num = func_nibble & 0xC;
if (device_map[i].device_type == NIC_CLASS) {
if (drv_active & (1 << device_map[i].func_num)) {
nic_present++;
break;
}
} else if (device_map[i].device_type == ISCSI_CLASS) {
if (drv_active & (1 << device_map[i].func_num)) {
if (!iscsi_present ||
(iscsi_present &&
(iscsi_func_low > device_map[i].func_num)))
iscsi_func_low = device_map[i].func_num;
iscsi_present++;
}
}
/* For function_num[8..15] get info from dev_part2 register */
if (nibble == 7) {
nibble = 0;
dev_part = dev_part2;
}
}
/* NIC, iSCSI and FCOE are the Reset owners based on order, NIC gets
* precedence over iSCSI and FCOE and iSCSI over FCOE, based on drivers
* present. */
if (!nic_present && (ha->func_num == iscsi_func_low)) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: can reset - NIC not present and lower iSCSI function is %d\n",
__func__, ha->func_num));
return 1;
}
return 0;
}
/**
* qla4_83xx_need_reset_handler - Code to start reset sequence
* @ha: pointer to adapter structure
*
* Note: IDC lock must be held upon entry
**/
void qla4_83xx_need_reset_handler(struct scsi_qla_host *ha)
{
uint32_t dev_state, drv_state, drv_active;
unsigned long reset_timeout, dev_init_timeout;
ql4_printk(KERN_INFO, ha, "%s: Performing ISP error recovery\n",
__func__);
if (!test_bit(AF_8XXX_RST_OWNER, &ha->flags)) {
DEBUG2(ql4_printk(KERN_INFO, ha, "%s: reset acknowledged\n",
__func__));
qla4_8xxx_set_rst_ready(ha);
/* Non-reset owners ACK Reset and wait for device INIT state
* as part of Reset Recovery by Reset Owner */
dev_init_timeout = jiffies + (ha->nx_dev_init_timeout * HZ);
do {
if (time_after_eq(jiffies, dev_init_timeout)) {
ql4_printk(KERN_INFO, ha, "%s: Non Reset owner dev init timeout\n",
__func__);
break;
}
ha->isp_ops->idc_unlock(ha);
msleep(1000);
ha->isp_ops->idc_lock(ha);
dev_state = qla4_8xxx_rd_direct(ha,
QLA8XXX_CRB_DEV_STATE);
} while (dev_state == QLA8XXX_DEV_NEED_RESET);
} else {
qla4_8xxx_set_rst_ready(ha);
reset_timeout = jiffies + (ha->nx_reset_timeout * HZ);
drv_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_STATE);
drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE);
ql4_printk(KERN_INFO, ha, "%s: drv_state = 0x%x, drv_active = 0x%x\n",
__func__, drv_state, drv_active);
while (drv_state != drv_active) {
if (time_after_eq(jiffies, reset_timeout)) {
ql4_printk(KERN_INFO, ha, "%s: %s: RESET TIMEOUT! drv_state: 0x%08x, drv_active: 0x%08x\n",
__func__, DRIVER_NAME, drv_state,
drv_active);
break;
}
ha->isp_ops->idc_unlock(ha);
msleep(1000);
ha->isp_ops->idc_lock(ha);
drv_state = qla4_8xxx_rd_direct(ha,
QLA8XXX_CRB_DRV_STATE);
drv_active = qla4_8xxx_rd_direct(ha,
QLA8XXX_CRB_DRV_ACTIVE);
}
if (drv_state != drv_active) {
ql4_printk(KERN_INFO, ha, "%s: Reset_owner turning off drv_active of non-acking function 0x%x\n",
__func__, (drv_active ^ drv_state));
drv_active = drv_active & drv_state;
qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_ACTIVE,
drv_active);
}
clear_bit(AF_8XXX_RST_OWNER, &ha->flags);
/* Start Reset Recovery */
qla4_8xxx_device_bootstrap(ha);
}
}
void qla4_83xx_get_idc_param(struct scsi_qla_host *ha)
{
uint32_t idc_params, ret_val;
ret_val = qla4_83xx_flash_read_u32(ha, QLA83XX_IDC_PARAM_ADDR,
(uint8_t *)&idc_params, 1);
if (ret_val == QLA_SUCCESS) {
ha->nx_dev_init_timeout = idc_params & 0xFFFF;
ha->nx_reset_timeout = (idc_params >> 16) & 0xFFFF;
} else {
ha->nx_dev_init_timeout = ROM_DEV_INIT_TIMEOUT;
ha->nx_reset_timeout = ROM_DRV_RESET_ACK_TIMEOUT;
}
DEBUG2(ql4_printk(KERN_DEBUG, ha,
"%s: ha->nx_dev_init_timeout = %d, ha->nx_reset_timeout = %d\n",
__func__, ha->nx_dev_init_timeout,
ha->nx_reset_timeout));
}
/*-------------------------Reset Sequence Functions-----------------------*/
static void qla4_83xx_dump_reset_seq_hdr(struct scsi_qla_host *ha)
{
uint8_t *phdr;
if (!ha->reset_tmplt.buff) {
ql4_printk(KERN_ERR, ha, "%s: Error: Invalid reset_seq_template\n",
__func__);
return;
}
phdr = ha->reset_tmplt.buff;
DEBUG2(ql4_printk(KERN_INFO, ha,
"Reset Template: 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n",
*phdr, *(phdr+1), *(phdr+2), *(phdr+3), *(phdr+4),
*(phdr+5), *(phdr+6), *(phdr+7), *(phdr + 8),
*(phdr+9), *(phdr+10), *(phdr+11), *(phdr+12),
*(phdr+13), *(phdr+14), *(phdr+15)));
}
static int qla4_83xx_copy_bootloader(struct scsi_qla_host *ha)
{
uint8_t *p_cache;
uint32_t src, count, size;
uint64_t dest;
int ret_val = QLA_SUCCESS;
src = QLA83XX_BOOTLOADER_FLASH_ADDR;
dest = qla4_83xx_rd_reg(ha, QLA83XX_BOOTLOADER_ADDR);
size = qla4_83xx_rd_reg(ha, QLA83XX_BOOTLOADER_SIZE);
/* 128 bit alignment check */
if (size & 0xF)
size = (size + 16) & ~0xF;
/* 16 byte count */
count = size/16;
p_cache = vmalloc(size);
if (p_cache == NULL) {
ql4_printk(KERN_ERR, ha, "%s: Failed to allocate memory for boot loader cache\n",
__func__);
ret_val = QLA_ERROR;
goto exit_copy_bootloader;
}
ret_val = qla4_83xx_lockless_flash_read_u32(ha, src, p_cache,
size / sizeof(uint32_t));
if (ret_val == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: Error reading firmware from flash\n",
__func__);
goto exit_copy_error;
}
DEBUG2(ql4_printk(KERN_INFO, ha, "%s: Read firmware from flash\n",
__func__));
/* 128 bit/16 byte write to MS memory */
ret_val = qla4_83xx_ms_mem_write_128b(ha, dest, (uint32_t *)p_cache,
count);
if (ret_val == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: Error writing firmware to MS\n",
__func__);
goto exit_copy_error;
}
DEBUG2(ql4_printk(KERN_INFO, ha, "%s: Wrote firmware size %d to MS\n",
__func__, size));
exit_copy_error:
vfree(p_cache);
exit_copy_bootloader:
return ret_val;
}
static int qla4_83xx_check_cmd_peg_status(struct scsi_qla_host *ha)
{
uint32_t val, ret_val = QLA_ERROR;
int retries = CRB_CMDPEG_CHECK_RETRY_COUNT;
do {
val = qla4_83xx_rd_reg(ha, QLA83XX_CMDPEG_STATE);
if (val == PHAN_INITIALIZE_COMPLETE) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: Command Peg initialization complete. State=0x%x\n",
__func__, val));
ret_val = QLA_SUCCESS;
break;
}
msleep(CRB_CMDPEG_CHECK_DELAY);
} while (--retries);
return ret_val;
}
/**
* qla4_83xx_poll_reg - Poll the given CRB addr for duration msecs till
* value read ANDed with test_mask is equal to test_result.
*
* @ha : Pointer to adapter structure
* @addr : CRB register address
* @duration : Poll for total of "duration" msecs
* @test_mask : Mask value read with "test_mask"
* @test_result : Compare (value&test_mask) with test_result.
**/
static int qla4_83xx_poll_reg(struct scsi_qla_host *ha, uint32_t addr,
int duration, uint32_t test_mask,
uint32_t test_result)
{
uint32_t value;
uint8_t retries;
int ret_val = QLA_SUCCESS;
ret_val = qla4_83xx_rd_reg_indirect(ha, addr, &value);
if (ret_val == QLA_ERROR)
goto exit_poll_reg;
retries = duration / 10;
do {
if ((value & test_mask) != test_result) {
msleep(duration / 10);
ret_val = qla4_83xx_rd_reg_indirect(ha, addr, &value);
if (ret_val == QLA_ERROR)
goto exit_poll_reg;
ret_val = QLA_ERROR;
} else {
ret_val = QLA_SUCCESS;
break;
}
} while (retries--);
exit_poll_reg:
if (ret_val == QLA_ERROR) {
ha->reset_tmplt.seq_error++;
ql4_printk(KERN_ERR, ha, "%s: Poll Failed: 0x%08x 0x%08x 0x%08x\n",
__func__, value, test_mask, test_result);
}
return ret_val;
}
static int qla4_83xx_reset_seq_checksum_test(struct scsi_qla_host *ha)
{
uint32_t sum = 0;
uint16_t *buff = (uint16_t *)ha->reset_tmplt.buff;
int u16_count = ha->reset_tmplt.hdr->size / sizeof(uint16_t);
int ret_val;
while (u16_count-- > 0)
sum += *buff++;
while (sum >> 16)
sum = (sum & 0xFFFF) + (sum >> 16);
/* checksum of 0 indicates a valid template */
if (~sum) {
ret_val = QLA_SUCCESS;
} else {
ql4_printk(KERN_ERR, ha, "%s: Reset seq checksum failed\n",
__func__);
ret_val = QLA_ERROR;
}
return ret_val;
}
/**
* qla4_83xx_read_reset_template - Read Reset Template from Flash
* @ha: Pointer to adapter structure
**/
void qla4_83xx_read_reset_template(struct scsi_qla_host *ha)
{
uint8_t *p_buff;
uint32_t addr, tmplt_hdr_def_size, tmplt_hdr_size;
uint32_t ret_val;
ha->reset_tmplt.seq_error = 0;
ha->reset_tmplt.buff = vmalloc(QLA83XX_RESTART_TEMPLATE_SIZE);
if (ha->reset_tmplt.buff == NULL) {
ql4_printk(KERN_ERR, ha, "%s: Failed to allocate reset template resources\n",
__func__);
goto exit_read_reset_template;
}
p_buff = ha->reset_tmplt.buff;
addr = QLA83XX_RESET_TEMPLATE_ADDR;
tmplt_hdr_def_size = sizeof(struct qla4_83xx_reset_template_hdr) /
sizeof(uint32_t);
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: Read template hdr size %d from Flash\n",
__func__, tmplt_hdr_def_size));
/* Copy template header from flash */
ret_val = qla4_83xx_flash_read_u32(ha, addr, p_buff,
tmplt_hdr_def_size);
if (ret_val != QLA_SUCCESS) {
ql4_printk(KERN_ERR, ha, "%s: Failed to read reset template\n",
__func__);
goto exit_read_template_error;
}
ha->reset_tmplt.hdr =
(struct qla4_83xx_reset_template_hdr *)ha->reset_tmplt.buff;
/* Validate the template header size and signature */
tmplt_hdr_size = ha->reset_tmplt.hdr->hdr_size/sizeof(uint32_t);
if ((tmplt_hdr_size != tmplt_hdr_def_size) ||
(ha->reset_tmplt.hdr->signature != RESET_TMPLT_HDR_SIGNATURE)) {
ql4_printk(KERN_ERR, ha, "%s: Template Header size %d is invalid, tmplt_hdr_def_size %d\n",
__func__, tmplt_hdr_size, tmplt_hdr_def_size);
goto exit_read_template_error;
}
addr = QLA83XX_RESET_TEMPLATE_ADDR + ha->reset_tmplt.hdr->hdr_size;
p_buff = ha->reset_tmplt.buff + ha->reset_tmplt.hdr->hdr_size;
tmplt_hdr_def_size = (ha->reset_tmplt.hdr->size -
ha->reset_tmplt.hdr->hdr_size) / sizeof(uint32_t);
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: Read rest of the template size %d\n",
__func__, ha->reset_tmplt.hdr->size));
/* Copy rest of the template */
ret_val = qla4_83xx_flash_read_u32(ha, addr, p_buff,
tmplt_hdr_def_size);
if (ret_val != QLA_SUCCESS) {
ql4_printk(KERN_ERR, ha, "%s: Failed to read reset tempelate\n",
__func__);
goto exit_read_template_error;
}
/* Integrity check */
if (qla4_83xx_reset_seq_checksum_test(ha)) {
ql4_printk(KERN_ERR, ha, "%s: Reset Seq checksum failed!\n",
__func__);
goto exit_read_template_error;
}
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: Reset Seq checksum passed, Get stop, start and init seq offsets\n",
__func__));
/* Get STOP, START, INIT sequence offsets */
ha->reset_tmplt.init_offset = ha->reset_tmplt.buff +
ha->reset_tmplt.hdr->init_seq_offset;
ha->reset_tmplt.start_offset = ha->reset_tmplt.buff +
ha->reset_tmplt.hdr->start_seq_offset;
ha->reset_tmplt.stop_offset = ha->reset_tmplt.buff +
ha->reset_tmplt.hdr->hdr_size;
qla4_83xx_dump_reset_seq_hdr(ha);
goto exit_read_reset_template;
exit_read_template_error:
vfree(ha->reset_tmplt.buff);
exit_read_reset_template:
return;
}
/**
* qla4_83xx_read_write_crb_reg - Read from raddr and write value to waddr.
*
* @ha : Pointer to adapter structure
* @raddr : CRB address to read from
* @waddr : CRB address to write to
**/
static void qla4_83xx_read_write_crb_reg(struct scsi_qla_host *ha,
uint32_t raddr, uint32_t waddr)
{
uint32_t value;
qla4_83xx_rd_reg_indirect(ha, raddr, &value);
qla4_83xx_wr_reg_indirect(ha, waddr, value);
}
/**
* qla4_83xx_rmw_crb_reg - Read Modify Write crb register
*
* This function read value from raddr, AND with test_mask,
* Shift Left,Right/OR/XOR with values RMW header and write value to waddr.
*
* @ha : Pointer to adapter structure
* @raddr : CRB address to read from
* @waddr : CRB address to write to
* @p_rmw_hdr : header with shift/or/xor values.
**/
static void qla4_83xx_rmw_crb_reg(struct scsi_qla_host *ha, uint32_t raddr,
uint32_t waddr,
struct qla4_83xx_rmw *p_rmw_hdr)
{
uint32_t value;
if (p_rmw_hdr->index_a)
value = ha->reset_tmplt.array[p_rmw_hdr->index_a];
else
qla4_83xx_rd_reg_indirect(ha, raddr, &value);
value &= p_rmw_hdr->test_mask;
value <<= p_rmw_hdr->shl;
value >>= p_rmw_hdr->shr;
value |= p_rmw_hdr->or_value;
value ^= p_rmw_hdr->xor_value;
qla4_83xx_wr_reg_indirect(ha, waddr, value);
return;
}
static void qla4_83xx_write_list(struct scsi_qla_host *ha,
struct qla4_83xx_reset_entry_hdr *p_hdr)
{
struct qla4_83xx_entry *p_entry;
uint32_t i;
p_entry = (struct qla4_83xx_entry *)
((char *)p_hdr + sizeof(struct qla4_83xx_reset_entry_hdr));
for (i = 0; i < p_hdr->count; i++, p_entry++) {
qla4_83xx_wr_reg_indirect(ha, p_entry->arg1, p_entry->arg2);
if (p_hdr->delay)
udelay((uint32_t)(p_hdr->delay));
}
}
static void qla4_83xx_read_write_list(struct scsi_qla_host *ha,
struct qla4_83xx_reset_entry_hdr *p_hdr)
{
struct qla4_83xx_entry *p_entry;
uint32_t i;
p_entry = (struct qla4_83xx_entry *)
((char *)p_hdr + sizeof(struct qla4_83xx_reset_entry_hdr));
for (i = 0; i < p_hdr->count; i++, p_entry++) {
qla4_83xx_read_write_crb_reg(ha, p_entry->arg1, p_entry->arg2);
if (p_hdr->delay)
udelay((uint32_t)(p_hdr->delay));
}
}
static void qla4_83xx_poll_list(struct scsi_qla_host *ha,
struct qla4_83xx_reset_entry_hdr *p_hdr)
{
long delay;
struct qla4_83xx_entry *p_entry;
struct qla4_83xx_poll *p_poll;
uint32_t i;
uint32_t value;
p_poll = (struct qla4_83xx_poll *)
((char *)p_hdr + sizeof(struct qla4_83xx_reset_entry_hdr));
/* Entries start after 8 byte qla4_83xx_poll, poll header contains
* the test_mask, test_value. */
p_entry = (struct qla4_83xx_entry *)((char *)p_poll +
sizeof(struct qla4_83xx_poll));
delay = (long)p_hdr->delay;
if (!delay) {
for (i = 0; i < p_hdr->count; i++, p_entry++) {
qla4_83xx_poll_reg(ha, p_entry->arg1, delay,
p_poll->test_mask,
p_poll->test_value);
}
} else {
for (i = 0; i < p_hdr->count; i++, p_entry++) {
if (qla4_83xx_poll_reg(ha, p_entry->arg1, delay,
p_poll->test_mask,
p_poll->test_value)) {
qla4_83xx_rd_reg_indirect(ha, p_entry->arg1,
&value);
qla4_83xx_rd_reg_indirect(ha, p_entry->arg2,
&value);
}
}
}
}
static void qla4_83xx_poll_write_list(struct scsi_qla_host *ha,
struct qla4_83xx_reset_entry_hdr *p_hdr)
{
long delay;
struct qla4_83xx_quad_entry *p_entry;
struct qla4_83xx_poll *p_poll;
uint32_t i;
p_poll = (struct qla4_83xx_poll *)
((char *)p_hdr + sizeof(struct qla4_83xx_reset_entry_hdr));
p_entry = (struct qla4_83xx_quad_entry *)
((char *)p_poll + sizeof(struct qla4_83xx_poll));
delay = (long)p_hdr->delay;
for (i = 0; i < p_hdr->count; i++, p_entry++) {
qla4_83xx_wr_reg_indirect(ha, p_entry->dr_addr,
p_entry->dr_value);
qla4_83xx_wr_reg_indirect(ha, p_entry->ar_addr,
p_entry->ar_value);
if (delay) {
if (qla4_83xx_poll_reg(ha, p_entry->ar_addr, delay,
p_poll->test_mask,
p_poll->test_value)) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: Timeout Error: poll list, item_num %d, entry_num %d\n",
__func__, i,
ha->reset_tmplt.seq_index));
}
}
}
}
static void qla4_83xx_read_modify_write(struct scsi_qla_host *ha,
struct qla4_83xx_reset_entry_hdr *p_hdr)
{
struct qla4_83xx_entry *p_entry;
struct qla4_83xx_rmw *p_rmw_hdr;
uint32_t i;
p_rmw_hdr = (struct qla4_83xx_rmw *)
((char *)p_hdr + sizeof(struct qla4_83xx_reset_entry_hdr));
p_entry = (struct qla4_83xx_entry *)
((char *)p_rmw_hdr + sizeof(struct qla4_83xx_rmw));
for (i = 0; i < p_hdr->count; i++, p_entry++) {
qla4_83xx_rmw_crb_reg(ha, p_entry->arg1, p_entry->arg2,
p_rmw_hdr);
if (p_hdr->delay)
udelay((uint32_t)(p_hdr->delay));
}
}
static void qla4_83xx_pause(struct scsi_qla_host *ha,
struct qla4_83xx_reset_entry_hdr *p_hdr)
{
if (p_hdr->delay)
mdelay((uint32_t)((long)p_hdr->delay));
}
static void qla4_83xx_poll_read_list(struct scsi_qla_host *ha,
struct qla4_83xx_reset_entry_hdr *p_hdr)
{
long delay;
int index;
struct qla4_83xx_quad_entry *p_entry;
struct qla4_83xx_poll *p_poll;
uint32_t i;
uint32_t value;
p_poll = (struct qla4_83xx_poll *)
((char *)p_hdr + sizeof(struct qla4_83xx_reset_entry_hdr));
p_entry = (struct qla4_83xx_quad_entry *)
((char *)p_poll + sizeof(struct qla4_83xx_poll));
delay = (long)p_hdr->delay;
for (i = 0; i < p_hdr->count; i++, p_entry++) {
qla4_83xx_wr_reg_indirect(ha, p_entry->ar_addr,
p_entry->ar_value);
if (delay) {
if (qla4_83xx_poll_reg(ha, p_entry->ar_addr, delay,
p_poll->test_mask,
p_poll->test_value)) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: Timeout Error: poll list, Item_num %d, entry_num %d\n",
__func__, i,
ha->reset_tmplt.seq_index));
} else {
index = ha->reset_tmplt.array_index;
qla4_83xx_rd_reg_indirect(ha, p_entry->dr_addr,
&value);
ha->reset_tmplt.array[index++] = value;
if (index == QLA83XX_MAX_RESET_SEQ_ENTRIES)
ha->reset_tmplt.array_index = 1;
}
}
}
}
static void qla4_83xx_seq_end(struct scsi_qla_host *ha,
struct qla4_83xx_reset_entry_hdr *p_hdr)
{
ha->reset_tmplt.seq_end = 1;
}
static void qla4_83xx_template_end(struct scsi_qla_host *ha,
struct qla4_83xx_reset_entry_hdr *p_hdr)
{
ha->reset_tmplt.template_end = 1;
if (ha->reset_tmplt.seq_error == 0) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: Reset sequence completed SUCCESSFULLY.\n",
__func__));
} else {
ql4_printk(KERN_ERR, ha, "%s: Reset sequence completed with some timeout errors.\n",
__func__);
}
}
/**
* qla4_83xx_process_reset_template - Process reset template.
*
* Process all entries in reset template till entry with SEQ_END opcode,
* which indicates end of the reset template processing. Each entry has a
* Reset Entry header, entry opcode/command, with size of the entry, number
* of entries in sub-sequence and delay in microsecs or timeout in millisecs.
*
* @ha : Pointer to adapter structure
* @p_buff : Common reset entry header.
**/
static void qla4_83xx_process_reset_template(struct scsi_qla_host *ha,
char *p_buff)
{
int index, entries;
struct qla4_83xx_reset_entry_hdr *p_hdr;
char *p_entry = p_buff;
ha->reset_tmplt.seq_end = 0;
ha->reset_tmplt.template_end = 0;
entries = ha->reset_tmplt.hdr->entries;
index = ha->reset_tmplt.seq_index;
for (; (!ha->reset_tmplt.seq_end) && (index < entries); index++) {
p_hdr = (struct qla4_83xx_reset_entry_hdr *)p_entry;
switch (p_hdr->cmd) {
case OPCODE_NOP:
break;
case OPCODE_WRITE_LIST:
qla4_83xx_write_list(ha, p_hdr);
break;
case OPCODE_READ_WRITE_LIST:
qla4_83xx_read_write_list(ha, p_hdr);
break;
case OPCODE_POLL_LIST:
qla4_83xx_poll_list(ha, p_hdr);
break;
case OPCODE_POLL_WRITE_LIST:
qla4_83xx_poll_write_list(ha, p_hdr);
break;
case OPCODE_READ_MODIFY_WRITE:
qla4_83xx_read_modify_write(ha, p_hdr);
break;
case OPCODE_SEQ_PAUSE:
qla4_83xx_pause(ha, p_hdr);
break;
case OPCODE_SEQ_END:
qla4_83xx_seq_end(ha, p_hdr);
break;
case OPCODE_TMPL_END:
qla4_83xx_template_end(ha, p_hdr);
break;
case OPCODE_POLL_READ_LIST:
qla4_83xx_poll_read_list(ha, p_hdr);
break;
default:
ql4_printk(KERN_ERR, ha, "%s: Unknown command ==> 0x%04x on entry = %d\n",
__func__, p_hdr->cmd, index);
break;
}
/* Set pointer to next entry in the sequence. */
p_entry += p_hdr->size;
}
ha->reset_tmplt.seq_index = index;
}
static void qla4_83xx_process_stop_seq(struct scsi_qla_host *ha)
{
ha->reset_tmplt.seq_index = 0;
qla4_83xx_process_reset_template(ha, ha->reset_tmplt.stop_offset);
if (ha->reset_tmplt.seq_end != 1)
ql4_printk(KERN_ERR, ha, "%s: Abrupt STOP Sub-Sequence end.\n",
__func__);
}
static void qla4_83xx_process_start_seq(struct scsi_qla_host *ha)
{
qla4_83xx_process_reset_template(ha, ha->reset_tmplt.start_offset);
if (ha->reset_tmplt.template_end != 1)
ql4_printk(KERN_ERR, ha, "%s: Abrupt START Sub-Sequence end.\n",
__func__);
}
static void qla4_83xx_process_init_seq(struct scsi_qla_host *ha)
{
qla4_83xx_process_reset_template(ha, ha->reset_tmplt.init_offset);
if (ha->reset_tmplt.seq_end != 1)
ql4_printk(KERN_ERR, ha, "%s: Abrupt INIT Sub-Sequence end.\n",
__func__);
}
static int qla4_83xx_restart(struct scsi_qla_host *ha)
{
int ret_val = QLA_SUCCESS;
qla4_83xx_process_stop_seq(ha);
/* Collect minidump*/
if (!test_and_clear_bit(AF_83XX_NO_FW_DUMP, &ha->flags))
qla4_8xxx_get_minidump(ha);
qla4_83xx_process_init_seq(ha);
if (qla4_83xx_copy_bootloader(ha)) {
ql4_printk(KERN_ERR, ha, "%s: Copy bootloader, firmware restart failed!\n",
__func__);
ret_val = QLA_ERROR;
goto exit_restart;
}
qla4_83xx_wr_reg(ha, QLA83XX_FW_IMAGE_VALID, QLA83XX_BOOT_FROM_FLASH);
qla4_83xx_process_start_seq(ha);
exit_restart:
return ret_val;
}
int qla4_83xx_start_firmware(struct scsi_qla_host *ha)
{
int ret_val = QLA_SUCCESS;
ret_val = qla4_83xx_restart(ha);
if (ret_val == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: Restart error\n", __func__);
goto exit_start_fw;
} else {
DEBUG2(ql4_printk(KERN_INFO, ha, "%s: Restart done\n",
__func__));
}
ret_val = qla4_83xx_check_cmd_peg_status(ha);
if (ret_val == QLA_ERROR)
ql4_printk(KERN_ERR, ha, "%s: Peg not initialized\n",
__func__);
exit_start_fw:
return ret_val;
}
/*----------------------Interrupt Related functions ---------------------*/
void qla4_83xx_disable_intrs(struct scsi_qla_host *ha)
{
uint32_t mb_int, ret;
if (test_and_clear_bit(AF_INTERRUPTS_ON, &ha->flags))
qla4_8xxx_mbx_intr_disable(ha);
ret = readl(&ha->qla4_83xx_reg->mbox_int);
mb_int = ret & ~INT_ENABLE_FW_MB;
writel(mb_int, &ha->qla4_83xx_reg->mbox_int);
writel(1, &ha->qla4_83xx_reg->leg_int_mask);
}
void qla4_83xx_enable_intrs(struct scsi_qla_host *ha)
{
uint32_t mb_int;
qla4_8xxx_mbx_intr_enable(ha);
mb_int = INT_ENABLE_FW_MB;
writel(mb_int, &ha->qla4_83xx_reg->mbox_int);
writel(0, &ha->qla4_83xx_reg->leg_int_mask);
set_bit(AF_INTERRUPTS_ON, &ha->flags);
}
void qla4_83xx_queue_mbox_cmd(struct scsi_qla_host *ha, uint32_t *mbx_cmd,
int incount)
{
int i;
/* Load all mailbox registers, except mailbox 0. */
for (i = 1; i < incount; i++)
writel(mbx_cmd[i], &ha->qla4_83xx_reg->mailbox_in[i]);
writel(mbx_cmd[0], &ha->qla4_83xx_reg->mailbox_in[0]);
/* Set Host Interrupt register to 1, to tell the firmware that
* a mailbox command is pending. Firmware after reading the
* mailbox command, clears the host interrupt register */
writel(HINT_MBX_INT_PENDING, &ha->qla4_83xx_reg->host_intr);
}
void qla4_83xx_process_mbox_intr(struct scsi_qla_host *ha, int outcount)
{
int intr_status;
intr_status = readl(&ha->qla4_83xx_reg->risc_intr);
if (intr_status) {
ha->mbox_status_count = outcount;
ha->isp_ops->interrupt_service_routine(ha, intr_status);
}
}
/**
* qla4_83xx_isp_reset - Resets ISP and aborts all outstanding commands.
* @ha: pointer to host adapter structure.
**/
int qla4_83xx_isp_reset(struct scsi_qla_host *ha)
{
int rval;
uint32_t dev_state;
ha->isp_ops->idc_lock(ha);
dev_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DEV_STATE);
if (ql4xdontresethba)
qla4_83xx_set_idc_dontreset(ha);
if (dev_state == QLA8XXX_DEV_READY) {
/* If IDC_CTRL DONTRESETHBA_BIT0 is set dont do reset
* recovery */
if (qla4_83xx_idc_dontreset(ha) == DONTRESET_BIT0) {
ql4_printk(KERN_ERR, ha, "%s: Reset recovery disabled\n",
__func__);
rval = QLA_ERROR;
goto exit_isp_reset;
}
DEBUG2(ql4_printk(KERN_INFO, ha, "%s: HW State: NEED RESET\n",
__func__));
qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DEV_STATE,
QLA8XXX_DEV_NEED_RESET);
} else {
/* If device_state is NEED_RESET, go ahead with
* Reset,irrespective of ql4xdontresethba. This is to allow a
* non-reset-owner to force a reset. Non-reset-owner sets
* the IDC_CTRL BIT0 to prevent Reset-owner from doing a Reset
* and then forces a Reset by setting device_state to
* NEED_RESET. */
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: HW state already set to NEED_RESET\n",
__func__));
}
/* For ISP8324, Reset owner is NIC, iSCSI or FCOE based on priority
* and which drivers are present. Unlike ISP8022, the function setting
* NEED_RESET, may not be the Reset owner. */
if (qla4_83xx_can_perform_reset(ha))
set_bit(AF_8XXX_RST_OWNER, &ha->flags);
ha->isp_ops->idc_unlock(ha);
rval = qla4_8xxx_device_state_handler(ha);
ha->isp_ops->idc_lock(ha);
qla4_8xxx_clear_rst_ready(ha);
exit_isp_reset:
ha->isp_ops->idc_unlock(ha);
if (rval == QLA_SUCCESS)
clear_bit(AF_FW_RECOVERY, &ha->flags);
return rval;
}
static void qla4_83xx_dump_pause_control_regs(struct scsi_qla_host *ha)
{
u32 val = 0, val1 = 0;
int i, status = QLA_SUCCESS;
status = qla4_83xx_rd_reg_indirect(ha, QLA83XX_SRE_SHIM_CONTROL, &val);
DEBUG2(ql4_printk(KERN_INFO, ha, "SRE-Shim Ctrl:0x%x\n", val));
/* Port 0 Rx Buffer Pause Threshold Registers. */
DEBUG2(ql4_printk(KERN_INFO, ha,
"Port 0 Rx Buffer Pause Threshold Registers[TC7..TC0]:"));
for (i = 0; i < 8; i++) {
status = qla4_83xx_rd_reg_indirect(ha,
QLA83XX_PORT0_RXB_PAUSE_THRS + (i * 0x4), &val);
DEBUG2(pr_info("0x%x ", val));
}
DEBUG2(pr_info("\n"));
/* Port 1 Rx Buffer Pause Threshold Registers. */
DEBUG2(ql4_printk(KERN_INFO, ha,
"Port 1 Rx Buffer Pause Threshold Registers[TC7..TC0]:"));
for (i = 0; i < 8; i++) {
status = qla4_83xx_rd_reg_indirect(ha,
QLA83XX_PORT1_RXB_PAUSE_THRS + (i * 0x4), &val);
DEBUG2(pr_info("0x%x ", val));
}
DEBUG2(pr_info("\n"));
/* Port 0 RxB Traffic Class Max Cell Registers. */
DEBUG2(ql4_printk(KERN_INFO, ha,
"Port 0 RxB Traffic Class Max Cell Registers[3..0]:"));
for (i = 0; i < 4; i++) {
status = qla4_83xx_rd_reg_indirect(ha,
QLA83XX_PORT0_RXB_TC_MAX_CELL + (i * 0x4), &val);
DEBUG2(pr_info("0x%x ", val));
}
DEBUG2(pr_info("\n"));
/* Port 1 RxB Traffic Class Max Cell Registers. */
DEBUG2(ql4_printk(KERN_INFO, ha,
"Port 1 RxB Traffic Class Max Cell Registers[3..0]:"));
for (i = 0; i < 4; i++) {
status = qla4_83xx_rd_reg_indirect(ha,
QLA83XX_PORT1_RXB_TC_MAX_CELL + (i * 0x4), &val);
DEBUG2(pr_info("0x%x ", val));
}
DEBUG2(pr_info("\n"));
/* Port 0 RxB Rx Traffic Class Stats. */
DEBUG2(ql4_printk(KERN_INFO, ha,
"Port 0 RxB Rx Traffic Class Stats [TC7..TC0]"));
for (i = 7; i >= 0; i--) {
status = qla4_83xx_rd_reg_indirect(ha,
QLA83XX_PORT0_RXB_TC_STATS,
&val);
val &= ~(0x7 << 29); /* Reset bits 29 to 31 */
qla4_83xx_wr_reg_indirect(ha, QLA83XX_PORT0_RXB_TC_STATS,
(val | (i << 29)));
status = qla4_83xx_rd_reg_indirect(ha,
QLA83XX_PORT0_RXB_TC_STATS,
&val);
DEBUG2(pr_info("0x%x ", val));
}
DEBUG2(pr_info("\n"));
/* Port 1 RxB Rx Traffic Class Stats. */
DEBUG2(ql4_printk(KERN_INFO, ha,
"Port 1 RxB Rx Traffic Class Stats [TC7..TC0]"));
for (i = 7; i >= 0; i--) {
status = qla4_83xx_rd_reg_indirect(ha,
QLA83XX_PORT1_RXB_TC_STATS,
&val);
val &= ~(0x7 << 29); /* Reset bits 29 to 31 */
qla4_83xx_wr_reg_indirect(ha, QLA83XX_PORT1_RXB_TC_STATS,
(val | (i << 29)));
status = qla4_83xx_rd_reg_indirect(ha,
QLA83XX_PORT1_RXB_TC_STATS,
&val);
DEBUG2(pr_info("0x%x ", val));
}
DEBUG2(pr_info("\n"));
status = qla4_83xx_rd_reg_indirect(ha, QLA83XX_PORT2_IFB_PAUSE_THRS,
&val);
status = qla4_83xx_rd_reg_indirect(ha, QLA83XX_PORT3_IFB_PAUSE_THRS,
&val1);
DEBUG2(ql4_printk(KERN_INFO, ha,
"IFB-Pause Thresholds: Port 2:0x%x, Port 3:0x%x\n",
val, val1));
}
static void __qla4_83xx_disable_pause(struct scsi_qla_host *ha)
{
int i;
/* set SRE-Shim Control Register */
qla4_83xx_wr_reg_indirect(ha, QLA83XX_SRE_SHIM_CONTROL,
QLA83XX_SET_PAUSE_VAL);
for (i = 0; i < 8; i++) {
/* Port 0 Rx Buffer Pause Threshold Registers. */
qla4_83xx_wr_reg_indirect(ha,
QLA83XX_PORT0_RXB_PAUSE_THRS + (i * 0x4),
QLA83XX_SET_PAUSE_VAL);
/* Port 1 Rx Buffer Pause Threshold Registers. */
qla4_83xx_wr_reg_indirect(ha,
QLA83XX_PORT1_RXB_PAUSE_THRS + (i * 0x4),
QLA83XX_SET_PAUSE_VAL);
}
for (i = 0; i < 4; i++) {
/* Port 0 RxB Traffic Class Max Cell Registers. */
qla4_83xx_wr_reg_indirect(ha,
QLA83XX_PORT0_RXB_TC_MAX_CELL + (i * 0x4),
QLA83XX_SET_TC_MAX_CELL_VAL);
/* Port 1 RxB Traffic Class Max Cell Registers. */
qla4_83xx_wr_reg_indirect(ha,
QLA83XX_PORT1_RXB_TC_MAX_CELL + (i * 0x4),
QLA83XX_SET_TC_MAX_CELL_VAL);
}
qla4_83xx_wr_reg_indirect(ha, QLA83XX_PORT2_IFB_PAUSE_THRS,
QLA83XX_SET_PAUSE_VAL);
qla4_83xx_wr_reg_indirect(ha, QLA83XX_PORT3_IFB_PAUSE_THRS,
QLA83XX_SET_PAUSE_VAL);
ql4_printk(KERN_INFO, ha, "Disabled pause frames successfully.\n");
}
void qla4_83xx_disable_pause(struct scsi_qla_host *ha)
{
ha->isp_ops->idc_lock(ha);
qla4_83xx_dump_pause_control_regs(ha);
__qla4_83xx_disable_pause(ha);
ha->isp_ops->idc_unlock(ha);
}