linux/drivers/scsi/sg.c
be7db055dd [PATCH] remove old scsi data direction macros
these have been wrappers for the generic dma direction bits since 2.5.x.
This patch converts the few remaining drivers and removes the macros.

Arjan noticed there's some hunk in here that shouldn't.  Updated patch
below:

Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-04-18 13:49:58 -05:00

3154 lines
86 KiB
C

/*
* History:
* Started: Aug 9 by Lawrence Foard (entropy@world.std.com),
* to allow user process control of SCSI devices.
* Development Sponsored by Killy Corp. NY NY
*
* Original driver (sg.c):
* Copyright (C) 1992 Lawrence Foard
* Version 2 and 3 extensions to driver:
* Copyright (C) 1998 - 2005 Douglas Gilbert
*
* Modified 19-JAN-1998 Richard Gooch <rgooch@atnf.csiro.au> Devfs support
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
*/
static int sg_version_num = 30533; /* 2 digits for each component */
#define SG_VERSION_STR "3.5.33"
/*
* D. P. Gilbert (dgilbert@interlog.com, dougg@triode.net.au), notes:
* - scsi logging is available via SCSI_LOG_TIMEOUT macros. First
* the kernel/module needs to be built with CONFIG_SCSI_LOGGING
* (otherwise the macros compile to empty statements).
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/errno.h>
#include <linux/mtio.h>
#include <linux/ioctl.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/smp_lock.h>
#include <linux/moduleparam.h>
#include <linux/devfs_fs_kernel.h>
#include <linux/cdev.h>
#include <linux/seq_file.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include "scsi.h"
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_driver.h>
#include <scsi/scsi_ioctl.h>
#include <scsi/sg.h>
#include "scsi_logging.h"
#ifdef CONFIG_SCSI_PROC_FS
#include <linux/proc_fs.h>
static char *sg_version_date = "20050328";
static int sg_proc_init(void);
static void sg_proc_cleanup(void);
#endif
#ifndef LINUX_VERSION_CODE
#include <linux/version.h>
#endif /* LINUX_VERSION_CODE */
#define SG_ALLOW_DIO_DEF 0
#define SG_ALLOW_DIO_CODE /* compile out by commenting this define */
#define SG_MAX_DEVS 32768
/*
* Suppose you want to calculate the formula muldiv(x,m,d)=int(x * m / d)
* Then when using 32 bit integers x * m may overflow during the calculation.
* Replacing muldiv(x) by muldiv(x)=((x % d) * m) / d + int(x / d) * m
* calculates the same, but prevents the overflow when both m and d
* are "small" numbers (like HZ and USER_HZ).
* Of course an overflow is inavoidable if the result of muldiv doesn't fit
* in 32 bits.
*/
#define MULDIV(X,MUL,DIV) ((((X % DIV) * MUL) / DIV) + ((X / DIV) * MUL))
#define SG_DEFAULT_TIMEOUT MULDIV(SG_DEFAULT_TIMEOUT_USER, HZ, USER_HZ)
int sg_big_buff = SG_DEF_RESERVED_SIZE;
/* N.B. This variable is readable and writeable via
/proc/scsi/sg/def_reserved_size . Each time sg_open() is called a buffer
of this size (or less if there is not enough memory) will be reserved
for use by this file descriptor. [Deprecated usage: this variable is also
readable via /proc/sys/kernel/sg-big-buff if the sg driver is built into
the kernel (i.e. it is not a module).] */
static int def_reserved_size = -1; /* picks up init parameter */
static int sg_allow_dio = SG_ALLOW_DIO_DEF;
#define SG_SECTOR_SZ 512
#define SG_SECTOR_MSK (SG_SECTOR_SZ - 1)
#define SG_DEV_ARR_LUMP 32 /* amount to over allocate sg_dev_arr by */
static int sg_add(struct class_device *);
static void sg_remove(struct class_device *);
static Scsi_Request *dummy_cmdp; /* only used for sizeof */
static DEFINE_RWLOCK(sg_dev_arr_lock); /* Also used to lock
file descriptor list for device */
static struct class_interface sg_interface = {
.add = sg_add,
.remove = sg_remove,
};
typedef struct sg_scatter_hold { /* holding area for scsi scatter gather info */
unsigned short k_use_sg; /* Count of kernel scatter-gather pieces */
unsigned short sglist_len; /* size of malloc'd scatter-gather list ++ */
unsigned bufflen; /* Size of (aggregate) data buffer */
unsigned b_malloc_len; /* actual len malloc'ed in buffer */
void *buffer; /* Data buffer or scatter list (k_use_sg>0) */
char dio_in_use; /* 0->indirect IO (or mmap), 1->dio */
unsigned char cmd_opcode; /* first byte of command */
} Sg_scatter_hold;
struct sg_device; /* forward declarations */
struct sg_fd;
typedef struct sg_request { /* SG_MAX_QUEUE requests outstanding per file */
Scsi_Request *my_cmdp; /* != 0 when request with lower levels */
struct sg_request *nextrp; /* NULL -> tail request (slist) */
struct sg_fd *parentfp; /* NULL -> not in use */
Sg_scatter_hold data; /* hold buffer, perhaps scatter list */
sg_io_hdr_t header; /* scsi command+info, see <scsi/sg.h> */
unsigned char sense_b[sizeof (dummy_cmdp->sr_sense_buffer)];
char res_used; /* 1 -> using reserve buffer, 0 -> not ... */
char orphan; /* 1 -> drop on sight, 0 -> normal */
char sg_io_owned; /* 1 -> packet belongs to SG_IO */
volatile char done; /* 0->before bh, 1->before read, 2->read */
} Sg_request;
typedef struct sg_fd { /* holds the state of a file descriptor */
struct sg_fd *nextfp; /* NULL when last opened fd on this device */
struct sg_device *parentdp; /* owning device */
wait_queue_head_t read_wait; /* queue read until command done */
rwlock_t rq_list_lock; /* protect access to list in req_arr */
int timeout; /* defaults to SG_DEFAULT_TIMEOUT */
int timeout_user; /* defaults to SG_DEFAULT_TIMEOUT_USER */
Sg_scatter_hold reserve; /* buffer held for this file descriptor */
unsigned save_scat_len; /* original length of trunc. scat. element */
Sg_request *headrp; /* head of request slist, NULL->empty */
struct fasync_struct *async_qp; /* used by asynchronous notification */
Sg_request req_arr[SG_MAX_QUEUE]; /* used as singly-linked list */
char low_dma; /* as in parent but possibly overridden to 1 */
char force_packid; /* 1 -> pack_id input to read(), 0 -> ignored */
volatile char closed; /* 1 -> fd closed but request(s) outstanding */
char cmd_q; /* 1 -> allow command queuing, 0 -> don't */
char next_cmd_len; /* 0 -> automatic (def), >0 -> use on next write() */
char keep_orphan; /* 0 -> drop orphan (def), 1 -> keep for read() */
char mmap_called; /* 0 -> mmap() never called on this fd */
} Sg_fd;
typedef struct sg_device { /* holds the state of each scsi generic device */
struct scsi_device *device;
wait_queue_head_t o_excl_wait; /* queue open() when O_EXCL in use */
int sg_tablesize; /* adapter's max scatter-gather table size */
Sg_fd *headfp; /* first open fd belonging to this device */
volatile char detached; /* 0->attached, 1->detached pending removal */
volatile char exclude; /* opened for exclusive access */
char sgdebug; /* 0->off, 1->sense, 9->dump dev, 10-> all devs */
struct gendisk *disk;
struct cdev * cdev; /* char_dev [sysfs: /sys/cdev/major/sg<n>] */
} Sg_device;
static int sg_fasync(int fd, struct file *filp, int mode);
static void sg_cmd_done(Scsi_Cmnd * SCpnt); /* tasklet or soft irq callback */
static int sg_start_req(Sg_request * srp);
static void sg_finish_rem_req(Sg_request * srp);
static int sg_build_indirect(Sg_scatter_hold * schp, Sg_fd * sfp, int buff_size);
static int sg_build_sgat(Sg_scatter_hold * schp, const Sg_fd * sfp,
int tablesize);
static ssize_t sg_new_read(Sg_fd * sfp, char __user *buf, size_t count,
Sg_request * srp);
static ssize_t sg_new_write(Sg_fd * sfp, const char __user *buf, size_t count,
int blocking, int read_only, Sg_request ** o_srp);
static int sg_common_write(Sg_fd * sfp, Sg_request * srp,
unsigned char *cmnd, int timeout, int blocking);
static int sg_u_iovec(sg_io_hdr_t * hp, int sg_num, int ind,
int wr_xf, int *countp, unsigned char __user **up);
static int sg_write_xfer(Sg_request * srp);
static int sg_read_xfer(Sg_request * srp);
static int sg_read_oxfer(Sg_request * srp, char __user *outp, int num_read_xfer);
static void sg_remove_scat(Sg_scatter_hold * schp);
static void sg_build_reserve(Sg_fd * sfp, int req_size);
static void sg_link_reserve(Sg_fd * sfp, Sg_request * srp, int size);
static void sg_unlink_reserve(Sg_fd * sfp, Sg_request * srp);
static char *sg_page_malloc(int rqSz, int lowDma, int *retSzp);
static void sg_page_free(char *buff, int size);
static Sg_fd *sg_add_sfp(Sg_device * sdp, int dev);
static int sg_remove_sfp(Sg_device * sdp, Sg_fd * sfp);
static void __sg_remove_sfp(Sg_device * sdp, Sg_fd * sfp);
static Sg_request *sg_get_rq_mark(Sg_fd * sfp, int pack_id);
static Sg_request *sg_add_request(Sg_fd * sfp);
static int sg_remove_request(Sg_fd * sfp, Sg_request * srp);
static int sg_res_in_use(Sg_fd * sfp);
static int sg_allow_access(unsigned char opcode, char dev_type);
static int sg_build_direct(Sg_request * srp, Sg_fd * sfp, int dxfer_len);
static Sg_device *sg_get_dev(int dev);
static inline unsigned char *sg_scatg2virt(const struct scatterlist *sclp);
#ifdef CONFIG_SCSI_PROC_FS
static int sg_last_dev(void);
#endif
static Sg_device **sg_dev_arr = NULL;
static int sg_dev_max;
static int sg_nr_dev;
#define SZ_SG_HEADER sizeof(struct sg_header)
#define SZ_SG_IO_HDR sizeof(sg_io_hdr_t)
#define SZ_SG_IOVEC sizeof(sg_iovec_t)
#define SZ_SG_REQ_INFO sizeof(sg_req_info_t)
static int
sg_open(struct inode *inode, struct file *filp)
{
int dev = iminor(inode);
int flags = filp->f_flags;
Sg_device *sdp;
Sg_fd *sfp;
int res;
int retval;
nonseekable_open(inode, filp);
SCSI_LOG_TIMEOUT(3, printk("sg_open: dev=%d, flags=0x%x\n", dev, flags));
sdp = sg_get_dev(dev);
if ((!sdp) || (!sdp->device))
return -ENXIO;
if (sdp->detached)
return -ENODEV;
/* This driver's module count bumped by fops_get in <linux/fs.h> */
/* Prevent the device driver from vanishing while we sleep */
retval = scsi_device_get(sdp->device);
if (retval)
return retval;
if (!((flags & O_NONBLOCK) ||
scsi_block_when_processing_errors(sdp->device))) {
retval = -ENXIO;
/* we are in error recovery for this device */
goto error_out;
}
if (flags & O_EXCL) {
if (O_RDONLY == (flags & O_ACCMODE)) {
retval = -EPERM; /* Can't lock it with read only access */
goto error_out;
}
if (sdp->headfp && (flags & O_NONBLOCK)) {
retval = -EBUSY;
goto error_out;
}
res = 0;
__wait_event_interruptible(sdp->o_excl_wait,
((sdp->headfp || sdp->exclude) ? 0 : (sdp->exclude = 1)), res);
if (res) {
retval = res; /* -ERESTARTSYS because signal hit process */
goto error_out;
}
} else if (sdp->exclude) { /* some other fd has an exclusive lock on dev */
if (flags & O_NONBLOCK) {
retval = -EBUSY;
goto error_out;
}
res = 0;
__wait_event_interruptible(sdp->o_excl_wait, (!sdp->exclude),
res);
if (res) {
retval = res; /* -ERESTARTSYS because signal hit process */
goto error_out;
}
}
if (sdp->detached) {
retval = -ENODEV;
goto error_out;
}
if (!sdp->headfp) { /* no existing opens on this device */
sdp->sgdebug = 0;
sdp->sg_tablesize = sdp->device->host->sg_tablesize;
}
if ((sfp = sg_add_sfp(sdp, dev)))
filp->private_data = sfp;
else {
if (flags & O_EXCL)
sdp->exclude = 0; /* undo if error */
retval = -ENOMEM;
goto error_out;
}
return 0;
error_out:
scsi_device_put(sdp->device);
return retval;
}
/* Following function was formerly called 'sg_close' */
static int
sg_release(struct inode *inode, struct file *filp)
{
Sg_device *sdp;
Sg_fd *sfp;
if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp)))
return -ENXIO;
SCSI_LOG_TIMEOUT(3, printk("sg_release: %s\n", sdp->disk->disk_name));
sg_fasync(-1, filp, 0); /* remove filp from async notification list */
if (0 == sg_remove_sfp(sdp, sfp)) { /* Returns 1 when sdp gone */
if (!sdp->detached) {
scsi_device_put(sdp->device);
}
sdp->exclude = 0;
wake_up_interruptible(&sdp->o_excl_wait);
}
return 0;
}
static ssize_t
sg_read(struct file *filp, char __user *buf, size_t count, loff_t * ppos)
{
Sg_device *sdp;
Sg_fd *sfp;
Sg_request *srp;
int req_pack_id = -1;
sg_io_hdr_t *hp;
struct sg_header *old_hdr = NULL;
int retval = 0;
if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp)))
return -ENXIO;
SCSI_LOG_TIMEOUT(3, printk("sg_read: %s, count=%d\n",
sdp->disk->disk_name, (int) count));
if (!access_ok(VERIFY_WRITE, buf, count))
return -EFAULT;
if (sfp->force_packid && (count >= SZ_SG_HEADER)) {
old_hdr = kmalloc(SZ_SG_HEADER, GFP_KERNEL);
if (!old_hdr)
return -ENOMEM;
if (__copy_from_user(old_hdr, buf, SZ_SG_HEADER)) {
retval = -EFAULT;
goto free_old_hdr;
}
if (old_hdr->reply_len < 0) {
if (count >= SZ_SG_IO_HDR) {
sg_io_hdr_t *new_hdr;
new_hdr = kmalloc(SZ_SG_IO_HDR, GFP_KERNEL);
if (!new_hdr) {
retval = -ENOMEM;
goto free_old_hdr;
}
retval =__copy_from_user
(new_hdr, buf, SZ_SG_IO_HDR);
req_pack_id = new_hdr->pack_id;
kfree(new_hdr);
if (retval) {
retval = -EFAULT;
goto free_old_hdr;
}
}
} else
req_pack_id = old_hdr->pack_id;
}
srp = sg_get_rq_mark(sfp, req_pack_id);
if (!srp) { /* now wait on packet to arrive */
if (sdp->detached) {
retval = -ENODEV;
goto free_old_hdr;
}
if (filp->f_flags & O_NONBLOCK) {
retval = -EAGAIN;
goto free_old_hdr;
}
while (1) {
retval = 0; /* following macro beats race condition */
__wait_event_interruptible(sfp->read_wait,
(sdp->detached ||
(srp = sg_get_rq_mark(sfp, req_pack_id))),
retval);
if (sdp->detached) {
retval = -ENODEV;
goto free_old_hdr;
}
if (0 == retval)
break;
/* -ERESTARTSYS as signal hit process */
goto free_old_hdr;
}
}
if (srp->header.interface_id != '\0') {
retval = sg_new_read(sfp, buf, count, srp);
goto free_old_hdr;
}
hp = &srp->header;
if (old_hdr == NULL) {
old_hdr = kmalloc(SZ_SG_HEADER, GFP_KERNEL);
if (! old_hdr) {
retval = -ENOMEM;
goto free_old_hdr;
}
}
memset(old_hdr, 0, SZ_SG_HEADER);
old_hdr->reply_len = (int) hp->timeout;
old_hdr->pack_len = old_hdr->reply_len; /* old, strange behaviour */
old_hdr->pack_id = hp->pack_id;
old_hdr->twelve_byte =
((srp->data.cmd_opcode >= 0xc0) && (12 == hp->cmd_len)) ? 1 : 0;
old_hdr->target_status = hp->masked_status;
old_hdr->host_status = hp->host_status;
old_hdr->driver_status = hp->driver_status;
if ((CHECK_CONDITION & hp->masked_status) ||
(DRIVER_SENSE & hp->driver_status))
memcpy(old_hdr->sense_buffer, srp->sense_b,
sizeof (old_hdr->sense_buffer));
switch (hp->host_status) {
/* This setup of 'result' is for backward compatibility and is best
ignored by the user who should use target, host + driver status */
case DID_OK:
case DID_PASSTHROUGH:
case DID_SOFT_ERROR:
old_hdr->result = 0;
break;
case DID_NO_CONNECT:
case DID_BUS_BUSY:
case DID_TIME_OUT:
old_hdr->result = EBUSY;
break;
case DID_BAD_TARGET:
case DID_ABORT:
case DID_PARITY:
case DID_RESET:
case DID_BAD_INTR:
old_hdr->result = EIO;
break;
case DID_ERROR:
old_hdr->result = (srp->sense_b[0] == 0 &&
hp->masked_status == GOOD) ? 0 : EIO;
break;
default:
old_hdr->result = EIO;
break;
}
/* Now copy the result back to the user buffer. */
if (count >= SZ_SG_HEADER) {
if (__copy_to_user(buf, old_hdr, SZ_SG_HEADER)) {
retval = -EFAULT;
goto free_old_hdr;
}
buf += SZ_SG_HEADER;
if (count > old_hdr->reply_len)
count = old_hdr->reply_len;
if (count > SZ_SG_HEADER) {
if (sg_read_oxfer(srp, buf, count - SZ_SG_HEADER)) {
retval = -EFAULT;
goto free_old_hdr;
}
}
} else
count = (old_hdr->result == 0) ? 0 : -EIO;
sg_finish_rem_req(srp);
retval = count;
free_old_hdr:
if (old_hdr)
kfree(old_hdr);
return retval;
}
static ssize_t
sg_new_read(Sg_fd * sfp, char __user *buf, size_t count, Sg_request * srp)
{
sg_io_hdr_t *hp = &srp->header;
int err = 0;
int len;
if (count < SZ_SG_IO_HDR) {
err = -EINVAL;
goto err_out;
}
hp->sb_len_wr = 0;
if ((hp->mx_sb_len > 0) && hp->sbp) {
if ((CHECK_CONDITION & hp->masked_status) ||
(DRIVER_SENSE & hp->driver_status)) {
int sb_len = sizeof (dummy_cmdp->sr_sense_buffer);
sb_len = (hp->mx_sb_len > sb_len) ? sb_len : hp->mx_sb_len;
len = 8 + (int) srp->sense_b[7]; /* Additional sense length field */
len = (len > sb_len) ? sb_len : len;
if (copy_to_user(hp->sbp, srp->sense_b, len)) {
err = -EFAULT;
goto err_out;
}
hp->sb_len_wr = len;
}
}
if (hp->masked_status || hp->host_status || hp->driver_status)
hp->info |= SG_INFO_CHECK;
if (copy_to_user(buf, hp, SZ_SG_IO_HDR)) {
err = -EFAULT;
goto err_out;
}
err = sg_read_xfer(srp);
err_out:
sg_finish_rem_req(srp);
return (0 == err) ? count : err;
}
static ssize_t
sg_write(struct file *filp, const char __user *buf, size_t count, loff_t * ppos)
{
int mxsize, cmd_size, k;
int input_size, blocking;
unsigned char opcode;
Sg_device *sdp;
Sg_fd *sfp;
Sg_request *srp;
struct sg_header old_hdr;
sg_io_hdr_t *hp;
unsigned char cmnd[sizeof (dummy_cmdp->sr_cmnd)];
if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp)))
return -ENXIO;
SCSI_LOG_TIMEOUT(3, printk("sg_write: %s, count=%d\n",
sdp->disk->disk_name, (int) count));
if (sdp->detached)
return -ENODEV;
if (!((filp->f_flags & O_NONBLOCK) ||
scsi_block_when_processing_errors(sdp->device)))
return -ENXIO;
if (!access_ok(VERIFY_READ, buf, count))
return -EFAULT; /* protects following copy_from_user()s + get_user()s */
if (count < SZ_SG_HEADER)
return -EIO;
if (__copy_from_user(&old_hdr, buf, SZ_SG_HEADER))
return -EFAULT;
blocking = !(filp->f_flags & O_NONBLOCK);
if (old_hdr.reply_len < 0)
return sg_new_write(sfp, buf, count, blocking, 0, NULL);
if (count < (SZ_SG_HEADER + 6))
return -EIO; /* The minimum scsi command length is 6 bytes. */
if (!(srp = sg_add_request(sfp))) {
SCSI_LOG_TIMEOUT(1, printk("sg_write: queue full\n"));
return -EDOM;
}
buf += SZ_SG_HEADER;
__get_user(opcode, buf);
if (sfp->next_cmd_len > 0) {
if (sfp->next_cmd_len > MAX_COMMAND_SIZE) {
SCSI_LOG_TIMEOUT(1, printk("sg_write: command length too long\n"));
sfp->next_cmd_len = 0;
sg_remove_request(sfp, srp);
return -EIO;
}
cmd_size = sfp->next_cmd_len;
sfp->next_cmd_len = 0; /* reset so only this write() effected */
} else {
cmd_size = COMMAND_SIZE(opcode); /* based on SCSI command group */
if ((opcode >= 0xc0) && old_hdr.twelve_byte)
cmd_size = 12;
}
SCSI_LOG_TIMEOUT(4, printk(
"sg_write: scsi opcode=0x%02x, cmd_size=%d\n", (int) opcode, cmd_size));
/* Determine buffer size. */
input_size = count - cmd_size;
mxsize = (input_size > old_hdr.reply_len) ? input_size : old_hdr.reply_len;
mxsize -= SZ_SG_HEADER;
input_size -= SZ_SG_HEADER;
if (input_size < 0) {
sg_remove_request(sfp, srp);
return -EIO; /* User did not pass enough bytes for this command. */
}
hp = &srp->header;
hp->interface_id = '\0'; /* indicator of old interface tunnelled */
hp->cmd_len = (unsigned char) cmd_size;
hp->iovec_count = 0;
hp->mx_sb_len = 0;
if (input_size > 0)
hp->dxfer_direction = (old_hdr.reply_len > SZ_SG_HEADER) ?
SG_DXFER_TO_FROM_DEV : SG_DXFER_TO_DEV;
else
hp->dxfer_direction = (mxsize > 0) ? SG_DXFER_FROM_DEV : SG_DXFER_NONE;
hp->dxfer_len = mxsize;
hp->dxferp = (char __user *)buf + cmd_size;
hp->sbp = NULL;
hp->timeout = old_hdr.reply_len; /* structure abuse ... */
hp->flags = input_size; /* structure abuse ... */
hp->pack_id = old_hdr.pack_id;
hp->usr_ptr = NULL;
if (__copy_from_user(cmnd, buf, cmd_size))
return -EFAULT;
/*
* SG_DXFER_TO_FROM_DEV is functionally equivalent to SG_DXFER_FROM_DEV,
* but is is possible that the app intended SG_DXFER_TO_DEV, because there
* is a non-zero input_size, so emit a warning.
*/
if (hp->dxfer_direction == SG_DXFER_TO_FROM_DEV)
if (printk_ratelimit())
printk(KERN_WARNING
"sg_write: data in/out %d/%d bytes for SCSI command 0x%x--"
"guessing data in;\n" KERN_WARNING " "
"program %s not setting count and/or reply_len properly\n",
old_hdr.reply_len - (int)SZ_SG_HEADER,
input_size, (unsigned int) cmnd[0],
current->comm);
k = sg_common_write(sfp, srp, cmnd, sfp->timeout, blocking);
return (k < 0) ? k : count;
}
static ssize_t
sg_new_write(Sg_fd * sfp, const char __user *buf, size_t count,
int blocking, int read_only, Sg_request ** o_srp)
{
int k;
Sg_request *srp;
sg_io_hdr_t *hp;
unsigned char cmnd[sizeof (dummy_cmdp->sr_cmnd)];
int timeout;
unsigned long ul_timeout;
if (count < SZ_SG_IO_HDR)
return -EINVAL;
if (!access_ok(VERIFY_READ, buf, count))
return -EFAULT; /* protects following copy_from_user()s + get_user()s */
sfp->cmd_q = 1; /* when sg_io_hdr seen, set command queuing on */
if (!(srp = sg_add_request(sfp))) {
SCSI_LOG_TIMEOUT(1, printk("sg_new_write: queue full\n"));
return -EDOM;
}
hp = &srp->header;
if (__copy_from_user(hp, buf, SZ_SG_IO_HDR)) {
sg_remove_request(sfp, srp);
return -EFAULT;
}
if (hp->interface_id != 'S') {
sg_remove_request(sfp, srp);
return -ENOSYS;
}
if (hp->flags & SG_FLAG_MMAP_IO) {
if (hp->dxfer_len > sfp->reserve.bufflen) {
sg_remove_request(sfp, srp);
return -ENOMEM; /* MMAP_IO size must fit in reserve buffer */
}
if (hp->flags & SG_FLAG_DIRECT_IO) {
sg_remove_request(sfp, srp);
return -EINVAL; /* either MMAP_IO or DIRECT_IO (not both) */
}
if (sg_res_in_use(sfp)) {
sg_remove_request(sfp, srp);
return -EBUSY; /* reserve buffer already being used */
}
}
ul_timeout = msecs_to_jiffies(srp->header.timeout);
timeout = (ul_timeout < INT_MAX) ? ul_timeout : INT_MAX;
if ((!hp->cmdp) || (hp->cmd_len < 6) || (hp->cmd_len > sizeof (cmnd))) {
sg_remove_request(sfp, srp);
return -EMSGSIZE;
}
if (!access_ok(VERIFY_READ, hp->cmdp, hp->cmd_len)) {
sg_remove_request(sfp, srp);
return -EFAULT; /* protects following copy_from_user()s + get_user()s */
}
if (__copy_from_user(cmnd, hp->cmdp, hp->cmd_len)) {
sg_remove_request(sfp, srp);
return -EFAULT;
}
if (read_only &&
(!sg_allow_access(cmnd[0], sfp->parentdp->device->type))) {
sg_remove_request(sfp, srp);
return -EPERM;
}
k = sg_common_write(sfp, srp, cmnd, timeout, blocking);
if (k < 0)
return k;
if (o_srp)
*o_srp = srp;
return count;
}
static int
sg_common_write(Sg_fd * sfp, Sg_request * srp,
unsigned char *cmnd, int timeout, int blocking)
{
int k;
Scsi_Request *SRpnt;
Sg_device *sdp = sfp->parentdp;
sg_io_hdr_t *hp = &srp->header;
request_queue_t *q;
srp->data.cmd_opcode = cmnd[0]; /* hold opcode of command */
hp->status = 0;
hp->masked_status = 0;
hp->msg_status = 0;
hp->info = 0;
hp->host_status = 0;
hp->driver_status = 0;
hp->resid = 0;
SCSI_LOG_TIMEOUT(4, printk("sg_common_write: scsi opcode=0x%02x, cmd_size=%d\n",
(int) cmnd[0], (int) hp->cmd_len));
if ((k = sg_start_req(srp))) {
SCSI_LOG_TIMEOUT(1, printk("sg_write: start_req err=%d\n", k));
sg_finish_rem_req(srp);
return k; /* probably out of space --> ENOMEM */
}
if ((k = sg_write_xfer(srp))) {
SCSI_LOG_TIMEOUT(1, printk("sg_write: write_xfer, bad address\n"));
sg_finish_rem_req(srp);
return k;
}
if (sdp->detached) {
sg_finish_rem_req(srp);
return -ENODEV;
}
SRpnt = scsi_allocate_request(sdp->device, GFP_ATOMIC);
if (SRpnt == NULL) {
SCSI_LOG_TIMEOUT(1, printk("sg_write: no mem\n"));
sg_finish_rem_req(srp);
return -ENOMEM;
}
srp->my_cmdp = SRpnt;
q = SRpnt->sr_device->request_queue;
SRpnt->sr_request->rq_disk = sdp->disk;
SRpnt->sr_sense_buffer[0] = 0;
SRpnt->sr_cmd_len = hp->cmd_len;
SRpnt->sr_use_sg = srp->data.k_use_sg;
SRpnt->sr_sglist_len = srp->data.sglist_len;
SRpnt->sr_bufflen = srp->data.bufflen;
SRpnt->sr_underflow = 0;
SRpnt->sr_buffer = srp->data.buffer;
switch (hp->dxfer_direction) {
case SG_DXFER_TO_FROM_DEV:
case SG_DXFER_FROM_DEV:
SRpnt->sr_data_direction = DMA_FROM_DEVICE;
break;
case SG_DXFER_TO_DEV:
SRpnt->sr_data_direction = DMA_TO_DEVICE;
break;
case SG_DXFER_UNKNOWN:
SRpnt->sr_data_direction = DMA_BIDIRECTIONAL;
break;
default:
SRpnt->sr_data_direction = DMA_NONE;
break;
}
SRpnt->upper_private_data = srp;
srp->data.k_use_sg = 0;
srp->data.sglist_len = 0;
srp->data.bufflen = 0;
srp->data.buffer = NULL;
hp->duration = jiffies_to_msecs(jiffies);
/* Now send everything of to mid-level. The next time we hear about this
packet is when sg_cmd_done() is called (i.e. a callback). */
scsi_do_req(SRpnt, (void *) cmnd,
(void *) SRpnt->sr_buffer, hp->dxfer_len,
sg_cmd_done, timeout, SG_DEFAULT_RETRIES);
/* dxfer_len overwrites SRpnt->sr_bufflen, hence need for b_malloc_len */
return 0;
}
static int
sg_srp_done(Sg_request *srp, Sg_fd *sfp)
{
unsigned long iflags;
int done;
read_lock_irqsave(&sfp->rq_list_lock, iflags);
done = srp->done;
read_unlock_irqrestore(&sfp->rq_list_lock, iflags);
return done;
}
static int
sg_ioctl(struct inode *inode, struct file *filp,
unsigned int cmd_in, unsigned long arg)
{
void __user *p = (void __user *)arg;
int __user *ip = p;
int result, val, read_only;
Sg_device *sdp;
Sg_fd *sfp;
Sg_request *srp;
unsigned long iflags;
if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp)))
return -ENXIO;
SCSI_LOG_TIMEOUT(3, printk("sg_ioctl: %s, cmd=0x%x\n",
sdp->disk->disk_name, (int) cmd_in));
read_only = (O_RDWR != (filp->f_flags & O_ACCMODE));
switch (cmd_in) {
case SG_IO:
{
int blocking = 1; /* ignore O_NONBLOCK flag */
if (sdp->detached)
return -ENODEV;
if (!scsi_block_when_processing_errors(sdp->device))
return -ENXIO;
if (!access_ok(VERIFY_WRITE, p, SZ_SG_IO_HDR))
return -EFAULT;
result =
sg_new_write(sfp, p, SZ_SG_IO_HDR,
blocking, read_only, &srp);
if (result < 0)
return result;
srp->sg_io_owned = 1;
while (1) {
result = 0; /* following macro to beat race condition */
__wait_event_interruptible(sfp->read_wait,
(sdp->detached || sfp->closed || sg_srp_done(srp, sfp)),
result);
if (sdp->detached)
return -ENODEV;
if (sfp->closed)
return 0; /* request packet dropped already */
if (0 == result)
break;
srp->orphan = 1;
return result; /* -ERESTARTSYS because signal hit process */
}
write_lock_irqsave(&sfp->rq_list_lock, iflags);
srp->done = 2;
write_unlock_irqrestore(&sfp->rq_list_lock, iflags);
result = sg_new_read(sfp, p, SZ_SG_IO_HDR, srp);
return (result < 0) ? result : 0;
}
case SG_SET_TIMEOUT:
result = get_user(val, ip);
if (result)
return result;
if (val < 0)
return -EIO;
if (val >= MULDIV (INT_MAX, USER_HZ, HZ))
val = MULDIV (INT_MAX, USER_HZ, HZ);
sfp->timeout_user = val;
sfp->timeout = MULDIV (val, HZ, USER_HZ);
return 0;
case SG_GET_TIMEOUT: /* N.B. User receives timeout as return value */
/* strange ..., for backward compatibility */
return sfp->timeout_user;
case SG_SET_FORCE_LOW_DMA:
result = get_user(val, ip);
if (result)
return result;
if (val) {
sfp->low_dma = 1;
if ((0 == sfp->low_dma) && (0 == sg_res_in_use(sfp))) {
val = (int) sfp->reserve.bufflen;
sg_remove_scat(&sfp->reserve);
sg_build_reserve(sfp, val);
}
} else {
if (sdp->detached)
return -ENODEV;
sfp->low_dma = sdp->device->host->unchecked_isa_dma;
}
return 0;
case SG_GET_LOW_DMA:
return put_user((int) sfp->low_dma, ip);
case SG_GET_SCSI_ID:
if (!access_ok(VERIFY_WRITE, p, sizeof (sg_scsi_id_t)))
return -EFAULT;
else {
sg_scsi_id_t __user *sg_idp = p;
if (sdp->detached)
return -ENODEV;
__put_user((int) sdp->device->host->host_no,
&sg_idp->host_no);
__put_user((int) sdp->device->channel,
&sg_idp->channel);
__put_user((int) sdp->device->id, &sg_idp->scsi_id);
__put_user((int) sdp->device->lun, &sg_idp->lun);
__put_user((int) sdp->device->type, &sg_idp->scsi_type);
__put_user((short) sdp->device->host->cmd_per_lun,
&sg_idp->h_cmd_per_lun);
__put_user((short) sdp->device->queue_depth,
&sg_idp->d_queue_depth);
__put_user(0, &sg_idp->unused[0]);
__put_user(0, &sg_idp->unused[1]);
return 0;
}
case SG_SET_FORCE_PACK_ID:
result = get_user(val, ip);
if (result)
return result;
sfp->force_packid = val ? 1 : 0;
return 0;
case SG_GET_PACK_ID:
if (!access_ok(VERIFY_WRITE, ip, sizeof (int)))
return -EFAULT;
read_lock_irqsave(&sfp->rq_list_lock, iflags);
for (srp = sfp->headrp; srp; srp = srp->nextrp) {
if ((1 == srp->done) && (!srp->sg_io_owned)) {
read_unlock_irqrestore(&sfp->rq_list_lock,
iflags);
__put_user(srp->header.pack_id, ip);
return 0;
}
}
read_unlock_irqrestore(&sfp->rq_list_lock, iflags);
__put_user(-1, ip);
return 0;
case SG_GET_NUM_WAITING:
read_lock_irqsave(&sfp->rq_list_lock, iflags);
for (val = 0, srp = sfp->headrp; srp; srp = srp->nextrp) {
if ((1 == srp->done) && (!srp->sg_io_owned))
++val;
}
read_unlock_irqrestore(&sfp->rq_list_lock, iflags);
return put_user(val, ip);
case SG_GET_SG_TABLESIZE:
return put_user(sdp->sg_tablesize, ip);
case SG_SET_RESERVED_SIZE:
result = get_user(val, ip);
if (result)
return result;
if (val < 0)
return -EINVAL;
if (val != sfp->reserve.bufflen) {
if (sg_res_in_use(sfp) || sfp->mmap_called)
return -EBUSY;
sg_remove_scat(&sfp->reserve);
sg_build_reserve(sfp, val);
}
return 0;
case SG_GET_RESERVED_SIZE:
val = (int) sfp->reserve.bufflen;
return put_user(val, ip);
case SG_SET_COMMAND_Q:
result = get_user(val, ip);
if (result)
return result;
sfp->cmd_q = val ? 1 : 0;
return 0;
case SG_GET_COMMAND_Q:
return put_user((int) sfp->cmd_q, ip);
case SG_SET_KEEP_ORPHAN:
result = get_user(val, ip);
if (result)
return result;
sfp->keep_orphan = val;
return 0;
case SG_GET_KEEP_ORPHAN:
return put_user((int) sfp->keep_orphan, ip);
case SG_NEXT_CMD_LEN:
result = get_user(val, ip);
if (result)
return result;
sfp->next_cmd_len = (val > 0) ? val : 0;
return 0;
case SG_GET_VERSION_NUM:
return put_user(sg_version_num, ip);
case SG_GET_ACCESS_COUNT:
/* faked - we don't have a real access count anymore */
val = (sdp->device ? 1 : 0);
return put_user(val, ip);
case SG_GET_REQUEST_TABLE:
if (!access_ok(VERIFY_WRITE, p, SZ_SG_REQ_INFO * SG_MAX_QUEUE))
return -EFAULT;
else {
sg_req_info_t *rinfo;
unsigned int ms;
rinfo = kmalloc(SZ_SG_REQ_INFO * SG_MAX_QUEUE,
GFP_KERNEL);
if (!rinfo)
return -ENOMEM;
read_lock_irqsave(&sfp->rq_list_lock, iflags);
for (srp = sfp->headrp, val = 0; val < SG_MAX_QUEUE;
++val, srp = srp ? srp->nextrp : srp) {
memset(&rinfo[val], 0, SZ_SG_REQ_INFO);
if (srp) {
rinfo[val].req_state = srp->done + 1;
rinfo[val].problem =
srp->header.masked_status &
srp->header.host_status &
srp->header.driver_status;
if (srp->done)
rinfo[val].duration =
srp->header.duration;
else {
ms = jiffies_to_msecs(jiffies);
rinfo[val].duration =
(ms > srp->header.duration) ?
(ms - srp->header.duration) : 0;
}
rinfo[val].orphan = srp->orphan;
rinfo[val].sg_io_owned =
srp->sg_io_owned;
rinfo[val].pack_id =
srp->header.pack_id;
rinfo[val].usr_ptr =
srp->header.usr_ptr;
}
}
read_unlock_irqrestore(&sfp->rq_list_lock, iflags);
result = __copy_to_user(p, rinfo,
SZ_SG_REQ_INFO * SG_MAX_QUEUE);
result = result ? -EFAULT : 0;
kfree(rinfo);
return result;
}
case SG_EMULATED_HOST:
if (sdp->detached)
return -ENODEV;
return put_user(sdp->device->host->hostt->emulated, ip);
case SG_SCSI_RESET:
if (sdp->detached)
return -ENODEV;
if (filp->f_flags & O_NONBLOCK) {
if (test_bit(SHOST_RECOVERY,
&sdp->device->host->shost_state))
return -EBUSY;
} else if (!scsi_block_when_processing_errors(sdp->device))
return -EBUSY;
result = get_user(val, ip);
if (result)
return result;
if (SG_SCSI_RESET_NOTHING == val)
return 0;
switch (val) {
case SG_SCSI_RESET_DEVICE:
val = SCSI_TRY_RESET_DEVICE;
break;
case SG_SCSI_RESET_BUS:
val = SCSI_TRY_RESET_BUS;
break;
case SG_SCSI_RESET_HOST:
val = SCSI_TRY_RESET_HOST;
break;
default:
return -EINVAL;
}
if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
return -EACCES;
return (scsi_reset_provider(sdp->device, val) ==
SUCCESS) ? 0 : -EIO;
case SCSI_IOCTL_SEND_COMMAND:
if (sdp->detached)
return -ENODEV;
if (read_only) {
unsigned char opcode = WRITE_6;
Scsi_Ioctl_Command __user *siocp = p;
if (copy_from_user(&opcode, siocp->data, 1))
return -EFAULT;
if (!sg_allow_access(opcode, sdp->device->type))
return -EPERM;
}
return scsi_ioctl_send_command(sdp->device, p);
case SG_SET_DEBUG:
result = get_user(val, ip);
if (result)
return result;
sdp->sgdebug = (char) val;
return 0;
case SCSI_IOCTL_GET_IDLUN:
case SCSI_IOCTL_GET_BUS_NUMBER:
case SCSI_IOCTL_PROBE_HOST:
case SG_GET_TRANSFORM:
if (sdp->detached)
return -ENODEV;
return scsi_ioctl(sdp->device, cmd_in, p);
default:
if (read_only)
return -EPERM; /* don't know so take safe approach */
return scsi_ioctl(sdp->device, cmd_in, p);
}
}
#ifdef CONFIG_COMPAT
static long sg_compat_ioctl(struct file *filp, unsigned int cmd_in, unsigned long arg)
{
Sg_device *sdp;
Sg_fd *sfp;
struct scsi_device *sdev;
if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp)))
return -ENXIO;
sdev = sdp->device;
if (sdev->host->hostt->compat_ioctl) {
int ret;
ret = sdev->host->hostt->compat_ioctl(sdev, cmd_in, (void __user *)arg);
return ret;
}
return -ENOIOCTLCMD;
}
#endif
static unsigned int
sg_poll(struct file *filp, poll_table * wait)
{
unsigned int res = 0;
Sg_device *sdp;
Sg_fd *sfp;
Sg_request *srp;
int count = 0;
unsigned long iflags;
if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp))
|| sfp->closed)
return POLLERR;
poll_wait(filp, &sfp->read_wait, wait);
read_lock_irqsave(&sfp->rq_list_lock, iflags);
for (srp = sfp->headrp; srp; srp = srp->nextrp) {
/* if any read waiting, flag it */
if ((0 == res) && (1 == srp->done) && (!srp->sg_io_owned))
res = POLLIN | POLLRDNORM;
++count;
}
read_unlock_irqrestore(&sfp->rq_list_lock, iflags);
if (sdp->detached)
res |= POLLHUP;
else if (!sfp->cmd_q) {
if (0 == count)
res |= POLLOUT | POLLWRNORM;
} else if (count < SG_MAX_QUEUE)
res |= POLLOUT | POLLWRNORM;
SCSI_LOG_TIMEOUT(3, printk("sg_poll: %s, res=0x%x\n",
sdp->disk->disk_name, (int) res));
return res;
}
static int
sg_fasync(int fd, struct file *filp, int mode)
{
int retval;
Sg_device *sdp;
Sg_fd *sfp;
if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp)))
return -ENXIO;
SCSI_LOG_TIMEOUT(3, printk("sg_fasync: %s, mode=%d\n",
sdp->disk->disk_name, mode));
retval = fasync_helper(fd, filp, mode, &sfp->async_qp);
return (retval < 0) ? retval : 0;
}
static inline unsigned char *
sg_scatg2virt(const struct scatterlist *sclp)
{
return (sclp && sclp->page) ?
(unsigned char *) page_address(sclp->page) + sclp->offset : NULL;
}
/* When startFinish==1 increments page counts for pages other than the
first of scatter gather elements obtained from __get_free_pages().
When startFinish==0 decrements ... */
static void
sg_rb_correct4mmap(Sg_scatter_hold * rsv_schp, int startFinish)
{
void *page_ptr;
struct page *page;
int k, m;
SCSI_LOG_TIMEOUT(3, printk("sg_rb_correct4mmap: startFinish=%d, scatg=%d\n",
startFinish, rsv_schp->k_use_sg));
/* N.B. correction _not_ applied to base page of each allocation */
if (rsv_schp->k_use_sg) { /* reserve buffer is a scatter gather list */
struct scatterlist *sclp = rsv_schp->buffer;
for (k = 0; k < rsv_schp->k_use_sg; ++k, ++sclp) {
for (m = PAGE_SIZE; m < sclp->length; m += PAGE_SIZE) {
page_ptr = sg_scatg2virt(sclp) + m;
page = virt_to_page(page_ptr);
if (startFinish)
get_page(page);
else {
if (page_count(page) > 0)
__put_page(page);
}
}
}
} else { /* reserve buffer is just a single allocation */
for (m = PAGE_SIZE; m < rsv_schp->bufflen; m += PAGE_SIZE) {
page_ptr = (unsigned char *) rsv_schp->buffer + m;
page = virt_to_page(page_ptr);
if (startFinish)
get_page(page);
else {
if (page_count(page) > 0)
__put_page(page);
}
}
}
}
static struct page *
sg_vma_nopage(struct vm_area_struct *vma, unsigned long addr, int *type)
{
Sg_fd *sfp;
struct page *page = NOPAGE_SIGBUS;
void *page_ptr = NULL;
unsigned long offset;
Sg_scatter_hold *rsv_schp;
if ((NULL == vma) || (!(sfp = (Sg_fd *) vma->vm_private_data)))
return page;
rsv_schp = &sfp->reserve;
offset = addr - vma->vm_start;
if (offset >= rsv_schp->bufflen)
return page;
SCSI_LOG_TIMEOUT(3, printk("sg_vma_nopage: offset=%lu, scatg=%d\n",
offset, rsv_schp->k_use_sg));
if (rsv_schp->k_use_sg) { /* reserve buffer is a scatter gather list */
int k;
unsigned long sa = vma->vm_start;
unsigned long len;
struct scatterlist *sclp = rsv_schp->buffer;
for (k = 0; (k < rsv_schp->k_use_sg) && (sa < vma->vm_end);
++k, ++sclp) {
len = vma->vm_end - sa;
len = (len < sclp->length) ? len : sclp->length;
if (offset < len) {
page_ptr = sg_scatg2virt(sclp) + offset;
page = virt_to_page(page_ptr);
get_page(page); /* increment page count */
break;
}
sa += len;
offset -= len;
}
} else { /* reserve buffer is just a single allocation */
page_ptr = (unsigned char *) rsv_schp->buffer + offset;
page = virt_to_page(page_ptr);
get_page(page); /* increment page count */
}
if (type)
*type = VM_FAULT_MINOR;
return page;
}
static struct vm_operations_struct sg_mmap_vm_ops = {
.nopage = sg_vma_nopage,
};
static int
sg_mmap(struct file *filp, struct vm_area_struct *vma)
{
Sg_fd *sfp;
unsigned long req_sz;
Sg_scatter_hold *rsv_schp;
if ((!filp) || (!vma) || (!(sfp = (Sg_fd *) filp->private_data)))
return -ENXIO;
req_sz = vma->vm_end - vma->vm_start;
SCSI_LOG_TIMEOUT(3, printk("sg_mmap starting, vm_start=%p, len=%d\n",
(void *) vma->vm_start, (int) req_sz));
if (vma->vm_pgoff)
return -EINVAL; /* want no offset */
rsv_schp = &sfp->reserve;
if (req_sz > rsv_schp->bufflen)
return -ENOMEM; /* cannot map more than reserved buffer */
if (rsv_schp->k_use_sg) { /* reserve buffer is a scatter gather list */
int k;
unsigned long sa = vma->vm_start;
unsigned long len;
struct scatterlist *sclp = rsv_schp->buffer;
for (k = 0; (k < rsv_schp->k_use_sg) && (sa < vma->vm_end);
++k, ++sclp) {
if (0 != sclp->offset)
return -EFAULT; /* non page aligned memory ?? */
len = vma->vm_end - sa;
len = (len < sclp->length) ? len : sclp->length;
sa += len;
}
} else { /* reserve buffer is just a single allocation */
if ((unsigned long) rsv_schp->buffer & (PAGE_SIZE - 1))
return -EFAULT; /* non page aligned memory ?? */
}
if (0 == sfp->mmap_called) {
sg_rb_correct4mmap(rsv_schp, 1); /* do only once per fd lifetime */
sfp->mmap_called = 1;
}
vma->vm_flags |= (VM_RESERVED | VM_IO);
vma->vm_private_data = sfp;
vma->vm_ops = &sg_mmap_vm_ops;
return 0;
}
/* This function is a "bottom half" handler that is called by the
* mid level when a command is completed (or has failed). */
static void
sg_cmd_done(Scsi_Cmnd * SCpnt)
{
Scsi_Request *SRpnt = NULL;
Sg_device *sdp = NULL;
Sg_fd *sfp;
Sg_request *srp = NULL;
unsigned long iflags;
unsigned int ms;
if (SCpnt && (SRpnt = SCpnt->sc_request))
srp = (Sg_request *) SRpnt->upper_private_data;
if (NULL == srp) {
printk(KERN_ERR "sg_cmd_done: NULL request\n");
if (SRpnt)
scsi_release_request(SRpnt);
return;
}
sfp = srp->parentfp;
if (sfp)
sdp = sfp->parentdp;
if ((NULL == sdp) || sdp->detached) {
printk(KERN_INFO "sg_cmd_done: device detached\n");
scsi_release_request(SRpnt);
return;
}
/* First transfer ownership of data buffers to sg_device object. */
srp->data.k_use_sg = SRpnt->sr_use_sg;
srp->data.sglist_len = SRpnt->sr_sglist_len;
srp->data.bufflen = SRpnt->sr_bufflen;
srp->data.buffer = SRpnt->sr_buffer;
/* now clear out request structure */
SRpnt->sr_use_sg = 0;
SRpnt->sr_sglist_len = 0;
SRpnt->sr_bufflen = 0;
SRpnt->sr_buffer = NULL;
SRpnt->sr_underflow = 0;
SRpnt->sr_request->rq_disk = NULL; /* "sg" _disowns_ request blk */
srp->my_cmdp = NULL;
SCSI_LOG_TIMEOUT(4, printk("sg_cmd_done: %s, pack_id=%d, res=0x%x\n",
sdp->disk->disk_name, srp->header.pack_id, (int) SRpnt->sr_result));
srp->header.resid = SCpnt->resid;
ms = jiffies_to_msecs(jiffies);
srp->header.duration = (ms > srp->header.duration) ?
(ms - srp->header.duration) : 0;
if (0 != SRpnt->sr_result) {
struct scsi_sense_hdr sshdr;
memcpy(srp->sense_b, SRpnt->sr_sense_buffer,
sizeof (srp->sense_b));
srp->header.status = 0xff & SRpnt->sr_result;
srp->header.masked_status = status_byte(SRpnt->sr_result);
srp->header.msg_status = msg_byte(SRpnt->sr_result);
srp->header.host_status = host_byte(SRpnt->sr_result);
srp->header.driver_status = driver_byte(SRpnt->sr_result);
if ((sdp->sgdebug > 0) &&
((CHECK_CONDITION == srp->header.masked_status) ||
(COMMAND_TERMINATED == srp->header.masked_status)))
scsi_print_req_sense("sg_cmd_done", SRpnt);
/* Following if statement is a patch supplied by Eric Youngdale */
if (driver_byte(SRpnt->sr_result) != 0
&& scsi_command_normalize_sense(SCpnt, &sshdr)
&& !scsi_sense_is_deferred(&sshdr)
&& sshdr.sense_key == UNIT_ATTENTION
&& sdp->device->removable) {
/* Detected possible disc change. Set the bit - this */
/* may be used if there are filesystems using this device */
sdp->device->changed = 1;
}
}
/* Rely on write phase to clean out srp status values, so no "else" */
scsi_release_request(SRpnt);
SRpnt = NULL;
if (sfp->closed) { /* whoops this fd already released, cleanup */
SCSI_LOG_TIMEOUT(1, printk("sg_cmd_done: already closed, freeing ...\n"));
sg_finish_rem_req(srp);
srp = NULL;
if (NULL == sfp->headrp) {
SCSI_LOG_TIMEOUT(1, printk("sg...bh: already closed, final cleanup\n"));
if (0 == sg_remove_sfp(sdp, sfp)) { /* device still present */
scsi_device_put(sdp->device);
}
sfp = NULL;
}
} else if (srp && srp->orphan) {
if (sfp->keep_orphan)
srp->sg_io_owned = 0;
else {
sg_finish_rem_req(srp);
srp = NULL;
}
}
if (sfp && srp) {
/* Now wake up any sg_read() that is waiting for this packet. */
kill_fasync(&sfp->async_qp, SIGPOLL, POLL_IN);
write_lock_irqsave(&sfp->rq_list_lock, iflags);
srp->done = 1;
wake_up_interruptible(&sfp->read_wait);
write_unlock_irqrestore(&sfp->rq_list_lock, iflags);
}
}
static struct file_operations sg_fops = {
.owner = THIS_MODULE,
.read = sg_read,
.write = sg_write,
.poll = sg_poll,
.ioctl = sg_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = sg_compat_ioctl,
#endif
.open = sg_open,
.mmap = sg_mmap,
.release = sg_release,
.fasync = sg_fasync,
};
static struct class_simple * sg_sysfs_class;
static int sg_sysfs_valid = 0;
static int sg_alloc(struct gendisk *disk, struct scsi_device *scsidp)
{
Sg_device *sdp;
unsigned long iflags;
void *old_sg_dev_arr = NULL;
int k, error;
sdp = kmalloc(sizeof(Sg_device), GFP_KERNEL);
if (!sdp) {
printk(KERN_WARNING "kmalloc Sg_device failure\n");
return -ENOMEM;
}
write_lock_irqsave(&sg_dev_arr_lock, iflags);
if (unlikely(sg_nr_dev >= sg_dev_max)) { /* try to resize */
Sg_device **tmp_da;
int tmp_dev_max = sg_nr_dev + SG_DEV_ARR_LUMP;
write_unlock_irqrestore(&sg_dev_arr_lock, iflags);
tmp_da = kmalloc(tmp_dev_max * sizeof(Sg_device *), GFP_KERNEL);
if (unlikely(!tmp_da))
goto expand_failed;
write_lock_irqsave(&sg_dev_arr_lock, iflags);
memset(tmp_da, 0, tmp_dev_max * sizeof(Sg_device *));
memcpy(tmp_da, sg_dev_arr, sg_dev_max * sizeof(Sg_device *));
old_sg_dev_arr = sg_dev_arr;
sg_dev_arr = tmp_da;
sg_dev_max = tmp_dev_max;
}
for (k = 0; k < sg_dev_max; k++)
if (!sg_dev_arr[k])
break;
if (unlikely(k >= SG_MAX_DEVS))
goto overflow;
memset(sdp, 0, sizeof(*sdp));
SCSI_LOG_TIMEOUT(3, printk("sg_alloc: dev=%d \n", k));
sprintf(disk->disk_name, "sg%d", k);
disk->first_minor = k;
sdp->disk = disk;
sdp->device = scsidp;
init_waitqueue_head(&sdp->o_excl_wait);
sdp->sg_tablesize = scsidp->host ? scsidp->host->sg_tablesize : 0;
sg_nr_dev++;
sg_dev_arr[k] = sdp;
write_unlock_irqrestore(&sg_dev_arr_lock, iflags);
error = k;
out:
if (error < 0)
kfree(sdp);
kfree(old_sg_dev_arr);
return error;
expand_failed:
printk(KERN_WARNING "sg_alloc: device array cannot be resized\n");
error = -ENOMEM;
goto out;
overflow:
write_unlock_irqrestore(&sg_dev_arr_lock, iflags);
printk(KERN_WARNING
"Unable to attach sg device <%d, %d, %d, %d> type=%d, minor "
"number exceeds %d\n", scsidp->host->host_no, scsidp->channel,
scsidp->id, scsidp->lun, scsidp->type, SG_MAX_DEVS - 1);
error = -ENODEV;
goto out;
}
static int
sg_add(struct class_device *cl_dev)
{
struct scsi_device *scsidp = to_scsi_device(cl_dev->dev);
struct gendisk *disk;
Sg_device *sdp = NULL;
struct cdev * cdev = NULL;
int error, k;
disk = alloc_disk(1);
if (!disk) {
printk(KERN_WARNING "alloc_disk failed\n");
return -ENOMEM;
}
disk->major = SCSI_GENERIC_MAJOR;
error = -ENOMEM;
cdev = cdev_alloc();
if (!cdev) {
printk(KERN_WARNING "cdev_alloc failed\n");
goto out;
}
cdev->owner = THIS_MODULE;
cdev->ops = &sg_fops;
error = sg_alloc(disk, scsidp);
if (error < 0) {
printk(KERN_WARNING "sg_alloc failed\n");
goto out;
}
k = error;
sdp = sg_dev_arr[k];
devfs_mk_cdev(MKDEV(SCSI_GENERIC_MAJOR, k),
S_IFCHR | S_IRUSR | S_IWUSR | S_IRGRP,
"%s/generic", scsidp->devfs_name);
error = cdev_add(cdev, MKDEV(SCSI_GENERIC_MAJOR, k), 1);
if (error) {
devfs_remove("%s/generic", scsidp->devfs_name);
goto out;
}
sdp->cdev = cdev;
if (sg_sysfs_valid) {
struct class_device * sg_class_member;
sg_class_member = class_simple_device_add(sg_sysfs_class,
MKDEV(SCSI_GENERIC_MAJOR, k),
cl_dev->dev, "%s",
disk->disk_name);
if (IS_ERR(sg_class_member))
printk(KERN_WARNING "sg_add: "
"class_simple_device_add failed\n");
class_set_devdata(sg_class_member, sdp);
error = sysfs_create_link(&scsidp->sdev_gendev.kobj,
&sg_class_member->kobj, "generic");
if (error)
printk(KERN_ERR "sg_add: unable to make symlink "
"'generic' back to sg%d\n", k);
} else
printk(KERN_WARNING "sg_add: sg_sys INvalid\n");
printk(KERN_NOTICE
"Attached scsi generic sg%d at scsi%d, channel"
" %d, id %d, lun %d, type %d\n", k,
scsidp->host->host_no, scsidp->channel, scsidp->id,
scsidp->lun, scsidp->type);
return 0;
out:
put_disk(disk);
if (cdev)
cdev_del(cdev);
return error;
}
static void
sg_remove(struct class_device *cl_dev)
{
struct scsi_device *scsidp = to_scsi_device(cl_dev->dev);
Sg_device *sdp = NULL;
unsigned long iflags;
Sg_fd *sfp;
Sg_fd *tsfp;
Sg_request *srp;
Sg_request *tsrp;
int k, delay;
if (NULL == sg_dev_arr)
return;
delay = 0;
write_lock_irqsave(&sg_dev_arr_lock, iflags);
for (k = 0; k < sg_dev_max; k++) {
sdp = sg_dev_arr[k];
if ((NULL == sdp) || (sdp->device != scsidp))
continue; /* dirty but lowers nesting */
if (sdp->headfp) {
sdp->detached = 1;
for (sfp = sdp->headfp; sfp; sfp = tsfp) {
tsfp = sfp->nextfp;
for (srp = sfp->headrp; srp; srp = tsrp) {
tsrp = srp->nextrp;
if (sfp->closed || (0 == sg_srp_done(srp, sfp)))
sg_finish_rem_req(srp);
}
if (sfp->closed) {
scsi_device_put(sdp->device);
__sg_remove_sfp(sdp, sfp);
} else {
delay = 1;
wake_up_interruptible(&sfp->read_wait);
kill_fasync(&sfp->async_qp, SIGPOLL,
POLL_HUP);
}
}
SCSI_LOG_TIMEOUT(3, printk("sg_detach: dev=%d, dirty\n", k));
if (NULL == sdp->headfp) {
sg_dev_arr[k] = NULL;
}
} else { /* nothing active, simple case */
SCSI_LOG_TIMEOUT(3, printk("sg_detach: dev=%d\n", k));
sg_dev_arr[k] = NULL;
}
sg_nr_dev--;
break;
}
write_unlock_irqrestore(&sg_dev_arr_lock, iflags);
if (sdp) {
sysfs_remove_link(&scsidp->sdev_gendev.kobj, "generic");
class_simple_device_remove(MKDEV(SCSI_GENERIC_MAJOR, k));
cdev_del(sdp->cdev);
sdp->cdev = NULL;
devfs_remove("%s/generic", scsidp->devfs_name);
put_disk(sdp->disk);
sdp->disk = NULL;
if (NULL == sdp->headfp)
kfree((char *) sdp);
}
if (delay)
msleep(10); /* dirty detach so delay device destruction */
}
/* Set 'perm' (4th argument) to 0 to disable module_param's definition
* of sysfs parameters (which module_param doesn't yet support).
* Sysfs parameters defined explicitly below.
*/
module_param_named(def_reserved_size, def_reserved_size, int, S_IRUGO);
module_param_named(allow_dio, sg_allow_dio, int, S_IRUGO | S_IWUSR);
MODULE_AUTHOR("Douglas Gilbert");
MODULE_DESCRIPTION("SCSI generic (sg) driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(SG_VERSION_STR);
MODULE_PARM_DESC(def_reserved_size, "size of buffer reserved for each fd");
MODULE_PARM_DESC(allow_dio, "allow direct I/O (default: 0 (disallow))");
static int __init
init_sg(void)
{
int rc;
if (def_reserved_size >= 0)
sg_big_buff = def_reserved_size;
rc = register_chrdev_region(MKDEV(SCSI_GENERIC_MAJOR, 0),
SG_MAX_DEVS, "sg");
if (rc)
return rc;
sg_sysfs_class = class_simple_create(THIS_MODULE, "scsi_generic");
if ( IS_ERR(sg_sysfs_class) ) {
rc = PTR_ERR(sg_sysfs_class);
goto err_out;
}
sg_sysfs_valid = 1;
rc = scsi_register_interface(&sg_interface);
if (0 == rc) {
#ifdef CONFIG_SCSI_PROC_FS
sg_proc_init();
#endif /* CONFIG_SCSI_PROC_FS */
return 0;
}
class_simple_destroy(sg_sysfs_class);
err_out:
unregister_chrdev_region(MKDEV(SCSI_GENERIC_MAJOR, 0), SG_MAX_DEVS);
return rc;
}
static void __exit
exit_sg(void)
{
#ifdef CONFIG_SCSI_PROC_FS
sg_proc_cleanup();
#endif /* CONFIG_SCSI_PROC_FS */
scsi_unregister_interface(&sg_interface);
class_simple_destroy(sg_sysfs_class);
sg_sysfs_valid = 0;
unregister_chrdev_region(MKDEV(SCSI_GENERIC_MAJOR, 0),
SG_MAX_DEVS);
if (sg_dev_arr != NULL) {
kfree((char *) sg_dev_arr);
sg_dev_arr = NULL;
}
sg_dev_max = 0;
}
static int
sg_start_req(Sg_request * srp)
{
int res;
Sg_fd *sfp = srp->parentfp;
sg_io_hdr_t *hp = &srp->header;
int dxfer_len = (int) hp->dxfer_len;
int dxfer_dir = hp->dxfer_direction;
Sg_scatter_hold *req_schp = &srp->data;
Sg_scatter_hold *rsv_schp = &sfp->reserve;
SCSI_LOG_TIMEOUT(4, printk("sg_start_req: dxfer_len=%d\n", dxfer_len));
if ((dxfer_len <= 0) || (dxfer_dir == SG_DXFER_NONE))
return 0;
if (sg_allow_dio && (hp->flags & SG_FLAG_DIRECT_IO) &&
(dxfer_dir != SG_DXFER_UNKNOWN) && (0 == hp->iovec_count) &&
(!sfp->parentdp->device->host->unchecked_isa_dma)) {
res = sg_build_direct(srp, sfp, dxfer_len);
if (res <= 0) /* -ve -> error, 0 -> done, 1 -> try indirect */
return res;
}
if ((!sg_res_in_use(sfp)) && (dxfer_len <= rsv_schp->bufflen))
sg_link_reserve(sfp, srp, dxfer_len);
else {
res = sg_build_indirect(req_schp, sfp, dxfer_len);
if (res) {
sg_remove_scat(req_schp);
return res;
}
}
return 0;
}
static void
sg_finish_rem_req(Sg_request * srp)
{
Sg_fd *sfp = srp->parentfp;
Sg_scatter_hold *req_schp = &srp->data;
SCSI_LOG_TIMEOUT(4, printk("sg_finish_rem_req: res_used=%d\n", (int) srp->res_used));
if (srp->res_used)
sg_unlink_reserve(sfp, srp);
else
sg_remove_scat(req_schp);
sg_remove_request(sfp, srp);
}
static int
sg_build_sgat(Sg_scatter_hold * schp, const Sg_fd * sfp, int tablesize)
{
int ret_sz;
int elem_sz = sizeof (struct scatterlist);
int sg_bufflen = tablesize * elem_sz;
int mx_sc_elems = tablesize;
schp->buffer = sg_page_malloc(sg_bufflen, sfp->low_dma, &ret_sz);
if (!schp->buffer)
return -ENOMEM;
else if (ret_sz != sg_bufflen) {
sg_bufflen = ret_sz;
mx_sc_elems = sg_bufflen / elem_sz;
}
schp->sglist_len = sg_bufflen;
memset(schp->buffer, 0, sg_bufflen);
return mx_sc_elems; /* number of scat_gath elements allocated */
}
#ifdef SG_ALLOW_DIO_CODE
/* vvvvvvvv following code borrowed from st driver's direct IO vvvvvvvvv */
/* hopefully this generic code will moved to a library */
/* Pin down user pages and put them into a scatter gather list. Returns <= 0 if
- mapping of all pages not successful
- any page is above max_pfn
(i.e., either completely successful or fails)
*/
static int
st_map_user_pages(struct scatterlist *sgl, const unsigned int max_pages,
unsigned long uaddr, size_t count, int rw,
unsigned long max_pfn)
{
int res, i, j;
unsigned int nr_pages;
struct page **pages;
nr_pages = ((uaddr & ~PAGE_MASK) + count + ~PAGE_MASK) >> PAGE_SHIFT;
/* User attempted Overflow! */
if ((uaddr + count) < uaddr)
return -EINVAL;
/* Too big */
if (nr_pages > max_pages)
return -ENOMEM;
/* Hmm? */
if (count == 0)
return 0;
if ((pages = kmalloc(max_pages * sizeof(*pages), GFP_ATOMIC)) == NULL)
return -ENOMEM;
/* Try to fault in all of the necessary pages */
down_read(&current->mm->mmap_sem);
/* rw==READ means read from drive, write into memory area */
res = get_user_pages(
current,
current->mm,
uaddr,
nr_pages,
rw == READ,
0, /* don't force */
pages,
NULL);
up_read(&current->mm->mmap_sem);
/* Errors and no page mapped should return here */
if (res < nr_pages)
goto out_unmap;
for (i=0; i < nr_pages; i++) {
/* FIXME: flush superflous for rw==READ,
* probably wrong function for rw==WRITE
*/
flush_dcache_page(pages[i]);
if (page_to_pfn(pages[i]) > max_pfn)
goto out_unlock;
/* ?? Is locking needed? I don't think so */
/* if (TestSetPageLocked(pages[i]))
goto out_unlock; */
}
/* Populate the scatter/gather list */
sgl[0].page = pages[0];
sgl[0].offset = uaddr & ~PAGE_MASK;
if (nr_pages > 1) {
sgl[0].length = PAGE_SIZE - sgl[0].offset;
count -= sgl[0].length;
for (i=1; i < nr_pages ; i++) {
sgl[i].offset = 0;
sgl[i].page = pages[i];
sgl[i].length = count < PAGE_SIZE ? count : PAGE_SIZE;
count -= PAGE_SIZE;
}
}
else {
sgl[0].length = count;
}
kfree(pages);
return nr_pages;
out_unlock:
/* for (j=0; j < i; j++)
unlock_page(pages[j]); */
res = 0;
out_unmap:
if (res > 0)
for (j=0; j < res; j++)
page_cache_release(pages[j]);
kfree(pages);
return res;
}
/* And unmap them... */
static int
st_unmap_user_pages(struct scatterlist *sgl, const unsigned int nr_pages,
int dirtied)
{
int i;
for (i=0; i < nr_pages; i++) {
if (dirtied && !PageReserved(sgl[i].page))
SetPageDirty(sgl[i].page);
/* unlock_page(sgl[i].page); */
/* FIXME: cache flush missing for rw==READ
* FIXME: call the correct reference counting function
*/
page_cache_release(sgl[i].page);
}
return 0;
}
/* ^^^^^^^^ above code borrowed from st driver's direct IO ^^^^^^^^^ */
#endif
/* Returns: -ve -> error, 0 -> done, 1 -> try indirect */
static int
sg_build_direct(Sg_request * srp, Sg_fd * sfp, int dxfer_len)
{
#ifdef SG_ALLOW_DIO_CODE
sg_io_hdr_t *hp = &srp->header;
Sg_scatter_hold *schp = &srp->data;
int sg_tablesize = sfp->parentdp->sg_tablesize;
struct scatterlist *sgl;
int mx_sc_elems, res;
struct scsi_device *sdev = sfp->parentdp->device;
if (((unsigned long)hp->dxferp &
queue_dma_alignment(sdev->request_queue)) != 0)
return 1;
mx_sc_elems = sg_build_sgat(schp, sfp, sg_tablesize);
if (mx_sc_elems <= 0) {
return 1;
}
sgl = (struct scatterlist *)schp->buffer;
res = st_map_user_pages(sgl, mx_sc_elems, (unsigned long)hp->dxferp, dxfer_len,
(SG_DXFER_TO_DEV == hp->dxfer_direction) ? 1 : 0, ULONG_MAX);
if (res <= 0)
return 1;
schp->k_use_sg = res;
schp->dio_in_use = 1;
hp->info |= SG_INFO_DIRECT_IO;
return 0;
#else
return 1;
#endif
}
static int
sg_build_indirect(Sg_scatter_hold * schp, Sg_fd * sfp, int buff_size)
{
int ret_sz;
int blk_size = buff_size;
unsigned char *p = NULL;
if ((blk_size < 0) || (!sfp))
return -EFAULT;
if (0 == blk_size)
++blk_size; /* don't know why */
/* round request up to next highest SG_SECTOR_SZ byte boundary */
blk_size = (blk_size + SG_SECTOR_MSK) & (~SG_SECTOR_MSK);
SCSI_LOG_TIMEOUT(4, printk("sg_build_indirect: buff_size=%d, blk_size=%d\n",
buff_size, blk_size));
if (blk_size <= SG_SCATTER_SZ) {
p = sg_page_malloc(blk_size, sfp->low_dma, &ret_sz);
if (!p)
return -ENOMEM;
if (blk_size == ret_sz) { /* got it on the first attempt */
schp->k_use_sg = 0;
schp->buffer = p;
schp->bufflen = blk_size;
schp->b_malloc_len = blk_size;
return 0;
}
} else {
p = sg_page_malloc(SG_SCATTER_SZ, sfp->low_dma, &ret_sz);
if (!p)
return -ENOMEM;
}
/* Want some local declarations, so start new block ... */
{ /* lets try and build a scatter gather list */
struct scatterlist *sclp;
int k, rem_sz, num;
int mx_sc_elems;
int sg_tablesize = sfp->parentdp->sg_tablesize;
int first = 1;
/* N.B. ret_sz carried into this block ... */
mx_sc_elems = sg_build_sgat(schp, sfp, sg_tablesize);
if (mx_sc_elems < 0)
return mx_sc_elems; /* most likely -ENOMEM */
for (k = 0, sclp = schp->buffer, rem_sz = blk_size;
(rem_sz > 0) && (k < mx_sc_elems);
++k, rem_sz -= ret_sz, ++sclp) {
if (first)
first = 0;
else {
num =
(rem_sz >
SG_SCATTER_SZ) ? SG_SCATTER_SZ : rem_sz;
p = sg_page_malloc(num, sfp->low_dma, &ret_sz);
if (!p)
break;
}
sclp->page = virt_to_page(p);
sclp->offset = offset_in_page(p);
sclp->length = ret_sz;
SCSI_LOG_TIMEOUT(5, printk("sg_build_build: k=%d, a=0x%p, len=%d\n",
k, sg_scatg2virt(sclp), ret_sz));
} /* end of for loop */
schp->k_use_sg = k;
SCSI_LOG_TIMEOUT(5, printk("sg_build_indirect: k_use_sg=%d, rem_sz=%d\n", k, rem_sz));
schp->bufflen = blk_size;
if (rem_sz > 0) /* must have failed */
return -ENOMEM;
}
return 0;
}
static int
sg_write_xfer(Sg_request * srp)
{
sg_io_hdr_t *hp = &srp->header;
Sg_scatter_hold *schp = &srp->data;
int num_xfer = 0;
int j, k, onum, usglen, ksglen, res;
int iovec_count = (int) hp->iovec_count;
int dxfer_dir = hp->dxfer_direction;
unsigned char *p;
unsigned char __user *up;
int new_interface = ('\0' == hp->interface_id) ? 0 : 1;
if ((SG_DXFER_UNKNOWN == dxfer_dir) || (SG_DXFER_TO_DEV == dxfer_dir) ||
(SG_DXFER_TO_FROM_DEV == dxfer_dir)) {
num_xfer = (int) (new_interface ? hp->dxfer_len : hp->flags);
if (schp->bufflen < num_xfer)
num_xfer = schp->bufflen;
}
if ((num_xfer <= 0) || (schp->dio_in_use) ||
(new_interface
&& ((SG_FLAG_NO_DXFER | SG_FLAG_MMAP_IO) & hp->flags)))
return 0;
SCSI_LOG_TIMEOUT(4, printk("sg_write_xfer: num_xfer=%d, iovec_count=%d, k_use_sg=%d\n",
num_xfer, iovec_count, schp->k_use_sg));
if (iovec_count) {
onum = iovec_count;
if (!access_ok(VERIFY_READ, hp->dxferp, SZ_SG_IOVEC * onum))
return -EFAULT;
} else
onum = 1;
if (0 == schp->k_use_sg) { /* kernel has single buffer */
for (j = 0, p = schp->buffer; j < onum; ++j) {
res = sg_u_iovec(hp, iovec_count, j, 1, &usglen, &up);
if (res)
return res;
usglen = (num_xfer > usglen) ? usglen : num_xfer;
if (__copy_from_user(p, up, usglen))
return -EFAULT;
p += usglen;
num_xfer -= usglen;
if (num_xfer <= 0)
return 0;
}
} else { /* kernel using scatter gather list */
struct scatterlist *sclp = (struct scatterlist *) schp->buffer;
ksglen = (int) sclp->length;
p = sg_scatg2virt(sclp);
for (j = 0, k = 0; j < onum; ++j) {
res = sg_u_iovec(hp, iovec_count, j, 1, &usglen, &up);
if (res)
return res;
for (; p; ++sclp, ksglen = (int) sclp->length,
p = sg_scatg2virt(sclp)) {
if (usglen <= 0)
break;
if (ksglen > usglen) {
if (usglen >= num_xfer) {
if (__copy_from_user
(p, up, num_xfer))
return -EFAULT;
return 0;
}
if (__copy_from_user(p, up, usglen))
return -EFAULT;
p += usglen;
ksglen -= usglen;
break;
} else {
if (ksglen >= num_xfer) {
if (__copy_from_user
(p, up, num_xfer))
return -EFAULT;
return 0;
}
if (__copy_from_user(p, up, ksglen))
return -EFAULT;
up += ksglen;
usglen -= ksglen;
}
++k;
if (k >= schp->k_use_sg)
return 0;
}
}
}
return 0;
}
static int
sg_u_iovec(sg_io_hdr_t * hp, int sg_num, int ind,
int wr_xf, int *countp, unsigned char __user **up)
{
int num_xfer = (int) hp->dxfer_len;
unsigned char __user *p = hp->dxferp;
int count;
if (0 == sg_num) {
if (wr_xf && ('\0' == hp->interface_id))
count = (int) hp->flags; /* holds "old" input_size */
else
count = num_xfer;
} else {
sg_iovec_t iovec;
if (__copy_from_user(&iovec, p + ind*SZ_SG_IOVEC, SZ_SG_IOVEC))
return -EFAULT;
p = iovec.iov_base;
count = (int) iovec.iov_len;
}
if (!access_ok(wr_xf ? VERIFY_READ : VERIFY_WRITE, p, count))
return -EFAULT;
if (up)
*up = p;
if (countp)
*countp = count;
return 0;
}
static void
sg_remove_scat(Sg_scatter_hold * schp)
{
SCSI_LOG_TIMEOUT(4, printk("sg_remove_scat: k_use_sg=%d\n", schp->k_use_sg));
if (schp->buffer && (schp->sglist_len > 0)) {
struct scatterlist *sclp = (struct scatterlist *) schp->buffer;
if (schp->dio_in_use) {
#ifdef SG_ALLOW_DIO_CODE
st_unmap_user_pages(sclp, schp->k_use_sg, TRUE);
#endif
} else {
int k;
for (k = 0; (k < schp->k_use_sg) && sg_scatg2virt(sclp);
++k, ++sclp) {
SCSI_LOG_TIMEOUT(5, printk(
"sg_remove_scat: k=%d, a=0x%p, len=%d\n",
k, sg_scatg2virt(sclp), sclp->length));
sg_page_free(sg_scatg2virt(sclp), sclp->length);
sclp->page = NULL;
sclp->offset = 0;
sclp->length = 0;
}
}
sg_page_free(schp->buffer, schp->sglist_len);
} else if (schp->buffer)
sg_page_free(schp->buffer, schp->b_malloc_len);
memset(schp, 0, sizeof (*schp));
}
static int
sg_read_xfer(Sg_request * srp)
{
sg_io_hdr_t *hp = &srp->header;
Sg_scatter_hold *schp = &srp->data;
int num_xfer = 0;
int j, k, onum, usglen, ksglen, res;
int iovec_count = (int) hp->iovec_count;
int dxfer_dir = hp->dxfer_direction;
unsigned char *p;
unsigned char __user *up;
int new_interface = ('\0' == hp->interface_id) ? 0 : 1;
if ((SG_DXFER_UNKNOWN == dxfer_dir) || (SG_DXFER_FROM_DEV == dxfer_dir)
|| (SG_DXFER_TO_FROM_DEV == dxfer_dir)) {
num_xfer = hp->dxfer_len;
if (schp->bufflen < num_xfer)
num_xfer = schp->bufflen;
}
if ((num_xfer <= 0) || (schp->dio_in_use) ||
(new_interface
&& ((SG_FLAG_NO_DXFER | SG_FLAG_MMAP_IO) & hp->flags)))
return 0;
SCSI_LOG_TIMEOUT(4, printk("sg_read_xfer: num_xfer=%d, iovec_count=%d, k_use_sg=%d\n",
num_xfer, iovec_count, schp->k_use_sg));
if (iovec_count) {
onum = iovec_count;
if (!access_ok(VERIFY_READ, hp->dxferp, SZ_SG_IOVEC * onum))
return -EFAULT;
} else
onum = 1;
if (0 == schp->k_use_sg) { /* kernel has single buffer */
for (j = 0, p = schp->buffer; j < onum; ++j) {
res = sg_u_iovec(hp, iovec_count, j, 0, &usglen, &up);
if (res)
return res;
usglen = (num_xfer > usglen) ? usglen : num_xfer;
if (__copy_to_user(up, p, usglen))
return -EFAULT;
p += usglen;
num_xfer -= usglen;
if (num_xfer <= 0)
return 0;
}
} else { /* kernel using scatter gather list */
struct scatterlist *sclp = (struct scatterlist *) schp->buffer;
ksglen = (int) sclp->length;
p = sg_scatg2virt(sclp);
for (j = 0, k = 0; j < onum; ++j) {
res = sg_u_iovec(hp, iovec_count, j, 0, &usglen, &up);
if (res)
return res;
for (; p; ++sclp, ksglen = (int) sclp->length,
p = sg_scatg2virt(sclp)) {
if (usglen <= 0)
break;
if (ksglen > usglen) {
if (usglen >= num_xfer) {
if (__copy_to_user
(up, p, num_xfer))
return -EFAULT;
return 0;
}
if (__copy_to_user(up, p, usglen))
return -EFAULT;
p += usglen;
ksglen -= usglen;
break;
} else {
if (ksglen >= num_xfer) {
if (__copy_to_user
(up, p, num_xfer))
return -EFAULT;
return 0;
}
if (__copy_to_user(up, p, ksglen))
return -EFAULT;
up += ksglen;
usglen -= ksglen;
}
++k;
if (k >= schp->k_use_sg)
return 0;
}
}
}
return 0;
}
static int
sg_read_oxfer(Sg_request * srp, char __user *outp, int num_read_xfer)
{
Sg_scatter_hold *schp = &srp->data;
SCSI_LOG_TIMEOUT(4, printk("sg_read_oxfer: num_read_xfer=%d\n",
num_read_xfer));
if ((!outp) || (num_read_xfer <= 0))
return 0;
if (schp->k_use_sg > 0) {
int k, num;
struct scatterlist *sclp = (struct scatterlist *) schp->buffer;
for (k = 0; (k < schp->k_use_sg) && sg_scatg2virt(sclp);
++k, ++sclp) {
num = (int) sclp->length;
if (num > num_read_xfer) {
if (__copy_to_user
(outp, sg_scatg2virt(sclp), num_read_xfer))
return -EFAULT;
break;
} else {
if (__copy_to_user
(outp, sg_scatg2virt(sclp), num))
return -EFAULT;
num_read_xfer -= num;
if (num_read_xfer <= 0)
break;
outp += num;
}
}
} else {
if (__copy_to_user(outp, schp->buffer, num_read_xfer))
return -EFAULT;
}
return 0;
}
static void
sg_build_reserve(Sg_fd * sfp, int req_size)
{
Sg_scatter_hold *schp = &sfp->reserve;
SCSI_LOG_TIMEOUT(4, printk("sg_build_reserve: req_size=%d\n", req_size));
do {
if (req_size < PAGE_SIZE)
req_size = PAGE_SIZE;
if (0 == sg_build_indirect(schp, sfp, req_size))
return;
else
sg_remove_scat(schp);
req_size >>= 1; /* divide by 2 */
} while (req_size > (PAGE_SIZE / 2));
}
static void
sg_link_reserve(Sg_fd * sfp, Sg_request * srp, int size)
{
Sg_scatter_hold *req_schp = &srp->data;
Sg_scatter_hold *rsv_schp = &sfp->reserve;
srp->res_used = 1;
SCSI_LOG_TIMEOUT(4, printk("sg_link_reserve: size=%d\n", size));
size = (size + 1) & (~1); /* round to even for aha1542 */
if (rsv_schp->k_use_sg > 0) {
int k, num;
int rem = size;
struct scatterlist *sclp =
(struct scatterlist *) rsv_schp->buffer;
for (k = 0; k < rsv_schp->k_use_sg; ++k, ++sclp) {
num = (int) sclp->length;
if (rem <= num) {
if (0 == k) {
req_schp->k_use_sg = 0;
req_schp->buffer = sg_scatg2virt(sclp);
} else {
sfp->save_scat_len = num;
sclp->length = (unsigned) rem;
req_schp->k_use_sg = k + 1;
req_schp->sglist_len =
rsv_schp->sglist_len;
req_schp->buffer = rsv_schp->buffer;
}
req_schp->bufflen = size;
req_schp->b_malloc_len = rsv_schp->b_malloc_len;
break;
} else
rem -= num;
}
if (k >= rsv_schp->k_use_sg)
SCSI_LOG_TIMEOUT(1, printk("sg_link_reserve: BAD size\n"));
} else {
req_schp->k_use_sg = 0;
req_schp->bufflen = size;
req_schp->buffer = rsv_schp->buffer;
req_schp->b_malloc_len = rsv_schp->b_malloc_len;
}
}
static void
sg_unlink_reserve(Sg_fd * sfp, Sg_request * srp)
{
Sg_scatter_hold *req_schp = &srp->data;
Sg_scatter_hold *rsv_schp = &sfp->reserve;
SCSI_LOG_TIMEOUT(4, printk("sg_unlink_reserve: req->k_use_sg=%d\n",
(int) req_schp->k_use_sg));
if ((rsv_schp->k_use_sg > 0) && (req_schp->k_use_sg > 0)) {
struct scatterlist *sclp =
(struct scatterlist *) rsv_schp->buffer;
if (sfp->save_scat_len > 0)
(sclp + (req_schp->k_use_sg - 1))->length =
(unsigned) sfp->save_scat_len;
else
SCSI_LOG_TIMEOUT(1, printk ("sg_unlink_reserve: BAD save_scat_len\n"));
}
req_schp->k_use_sg = 0;
req_schp->bufflen = 0;
req_schp->buffer = NULL;
req_schp->sglist_len = 0;
sfp->save_scat_len = 0;
srp->res_used = 0;
}
static Sg_request *
sg_get_rq_mark(Sg_fd * sfp, int pack_id)
{
Sg_request *resp;
unsigned long iflags;
write_lock_irqsave(&sfp->rq_list_lock, iflags);
for (resp = sfp->headrp; resp; resp = resp->nextrp) {
/* look for requests that are ready + not SG_IO owned */
if ((1 == resp->done) && (!resp->sg_io_owned) &&
((-1 == pack_id) || (resp->header.pack_id == pack_id))) {
resp->done = 2; /* guard against other readers */
break;
}
}
write_unlock_irqrestore(&sfp->rq_list_lock, iflags);
return resp;
}
#ifdef CONFIG_SCSI_PROC_FS
static Sg_request *
sg_get_nth_request(Sg_fd * sfp, int nth)
{
Sg_request *resp;
unsigned long iflags;
int k;
read_lock_irqsave(&sfp->rq_list_lock, iflags);
for (k = 0, resp = sfp->headrp; resp && (k < nth);
++k, resp = resp->nextrp) ;
read_unlock_irqrestore(&sfp->rq_list_lock, iflags);
return resp;
}
#endif
/* always adds to end of list */
static Sg_request *
sg_add_request(Sg_fd * sfp)
{
int k;
unsigned long iflags;
Sg_request *resp;
Sg_request *rp = sfp->req_arr;
write_lock_irqsave(&sfp->rq_list_lock, iflags);
resp = sfp->headrp;
if (!resp) {
memset(rp, 0, sizeof (Sg_request));
rp->parentfp = sfp;
resp = rp;
sfp->headrp = resp;
} else {
if (0 == sfp->cmd_q)
resp = NULL; /* command queuing disallowed */
else {
for (k = 0; k < SG_MAX_QUEUE; ++k, ++rp) {
if (!rp->parentfp)
break;
}
if (k < SG_MAX_QUEUE) {
memset(rp, 0, sizeof (Sg_request));
rp->parentfp = sfp;
while (resp->nextrp)
resp = resp->nextrp;
resp->nextrp = rp;
resp = rp;
} else
resp = NULL;
}
}
if (resp) {
resp->nextrp = NULL;
resp->header.duration = jiffies_to_msecs(jiffies);
resp->my_cmdp = NULL;
}
write_unlock_irqrestore(&sfp->rq_list_lock, iflags);
return resp;
}
/* Return of 1 for found; 0 for not found */
static int
sg_remove_request(Sg_fd * sfp, Sg_request * srp)
{
Sg_request *prev_rp;
Sg_request *rp;
unsigned long iflags;
int res = 0;
if ((!sfp) || (!srp) || (!sfp->headrp))
return res;
write_lock_irqsave(&sfp->rq_list_lock, iflags);
prev_rp = sfp->headrp;
if (srp == prev_rp) {
sfp->headrp = prev_rp->nextrp;
prev_rp->parentfp = NULL;
res = 1;
} else {
while ((rp = prev_rp->nextrp)) {
if (srp == rp) {
prev_rp->nextrp = rp->nextrp;
rp->parentfp = NULL;
res = 1;
break;
}
prev_rp = rp;
}
}
write_unlock_irqrestore(&sfp->rq_list_lock, iflags);
return res;
}
#ifdef CONFIG_SCSI_PROC_FS
static Sg_fd *
sg_get_nth_sfp(Sg_device * sdp, int nth)
{
Sg_fd *resp;
unsigned long iflags;
int k;
read_lock_irqsave(&sg_dev_arr_lock, iflags);
for (k = 0, resp = sdp->headfp; resp && (k < nth);
++k, resp = resp->nextfp) ;
read_unlock_irqrestore(&sg_dev_arr_lock, iflags);
return resp;
}
#endif
static Sg_fd *
sg_add_sfp(Sg_device * sdp, int dev)
{
Sg_fd *sfp;
unsigned long iflags;
sfp = (Sg_fd *) sg_page_malloc(sizeof (Sg_fd), 0, NULL);
if (!sfp)
return NULL;
memset(sfp, 0, sizeof (Sg_fd));
init_waitqueue_head(&sfp->read_wait);
rwlock_init(&sfp->rq_list_lock);
sfp->timeout = SG_DEFAULT_TIMEOUT;
sfp->timeout_user = SG_DEFAULT_TIMEOUT_USER;
sfp->force_packid = SG_DEF_FORCE_PACK_ID;
sfp->low_dma = (SG_DEF_FORCE_LOW_DMA == 0) ?
sdp->device->host->unchecked_isa_dma : 1;
sfp->cmd_q = SG_DEF_COMMAND_Q;
sfp->keep_orphan = SG_DEF_KEEP_ORPHAN;
sfp->parentdp = sdp;
write_lock_irqsave(&sg_dev_arr_lock, iflags);
if (!sdp->headfp)
sdp->headfp = sfp;
else { /* add to tail of existing list */
Sg_fd *pfp = sdp->headfp;
while (pfp->nextfp)
pfp = pfp->nextfp;
pfp->nextfp = sfp;
}
write_unlock_irqrestore(&sg_dev_arr_lock, iflags);
SCSI_LOG_TIMEOUT(3, printk("sg_add_sfp: sfp=0x%p\n", sfp));
sg_build_reserve(sfp, sg_big_buff);
SCSI_LOG_TIMEOUT(3, printk("sg_add_sfp: bufflen=%d, k_use_sg=%d\n",
sfp->reserve.bufflen, sfp->reserve.k_use_sg));
return sfp;
}
static void
__sg_remove_sfp(Sg_device * sdp, Sg_fd * sfp)
{
Sg_fd *fp;
Sg_fd *prev_fp;
prev_fp = sdp->headfp;
if (sfp == prev_fp)
sdp->headfp = prev_fp->nextfp;
else {
while ((fp = prev_fp->nextfp)) {
if (sfp == fp) {
prev_fp->nextfp = fp->nextfp;
break;
}
prev_fp = fp;
}
}
if (sfp->reserve.bufflen > 0) {
SCSI_LOG_TIMEOUT(6,
printk("__sg_remove_sfp: bufflen=%d, k_use_sg=%d\n",
(int) sfp->reserve.bufflen, (int) sfp->reserve.k_use_sg));
if (sfp->mmap_called)
sg_rb_correct4mmap(&sfp->reserve, 0); /* undo correction */
sg_remove_scat(&sfp->reserve);
}
sfp->parentdp = NULL;
SCSI_LOG_TIMEOUT(6, printk("__sg_remove_sfp: sfp=0x%p\n", sfp));
sg_page_free((char *) sfp, sizeof (Sg_fd));
}
/* Returns 0 in normal case, 1 when detached and sdp object removed */
static int
sg_remove_sfp(Sg_device * sdp, Sg_fd * sfp)
{
Sg_request *srp;
Sg_request *tsrp;
int dirty = 0;
int res = 0;
for (srp = sfp->headrp; srp; srp = tsrp) {
tsrp = srp->nextrp;
if (sg_srp_done(srp, sfp))
sg_finish_rem_req(srp);
else
++dirty;
}
if (0 == dirty) {
unsigned long iflags;
write_lock_irqsave(&sg_dev_arr_lock, iflags);
__sg_remove_sfp(sdp, sfp);
if (sdp->detached && (NULL == sdp->headfp)) {
int k, maxd;
maxd = sg_dev_max;
for (k = 0; k < maxd; ++k) {
if (sdp == sg_dev_arr[k])
break;
}
if (k < maxd)
sg_dev_arr[k] = NULL;
kfree((char *) sdp);
res = 1;
}
write_unlock_irqrestore(&sg_dev_arr_lock, iflags);
} else {
/* MOD_INC's to inhibit unloading sg and associated adapter driver */
/* only bump the access_count if we actually succeeded in
* throwing another counter on the host module */
scsi_device_get(sdp->device); /* XXX: retval ignored? */
sfp->closed = 1; /* flag dirty state on this fd */
SCSI_LOG_TIMEOUT(1, printk("sg_remove_sfp: worrisome, %d writes pending\n",
dirty));
}
return res;
}
static int
sg_res_in_use(Sg_fd * sfp)
{
const Sg_request *srp;
unsigned long iflags;
read_lock_irqsave(&sfp->rq_list_lock, iflags);
for (srp = sfp->headrp; srp; srp = srp->nextrp)
if (srp->res_used)
break;
read_unlock_irqrestore(&sfp->rq_list_lock, iflags);
return srp ? 1 : 0;
}
/* If retSzp==NULL want exact size or fail */
static char *
sg_page_malloc(int rqSz, int lowDma, int *retSzp)
{
char *resp = NULL;
int page_mask;
int order, a_size;
int resSz = rqSz;
if (rqSz <= 0)
return resp;
if (lowDma)
page_mask = GFP_ATOMIC | GFP_DMA | __GFP_NOWARN;
else
page_mask = GFP_ATOMIC | __GFP_NOWARN;
for (order = 0, a_size = PAGE_SIZE; a_size < rqSz;
order++, a_size <<= 1) ;
resp = (char *) __get_free_pages(page_mask, order);
while ((!resp) && order && retSzp) {
--order;
a_size >>= 1; /* divide by 2, until PAGE_SIZE */
resp = (char *) __get_free_pages(page_mask, order); /* try half */
resSz = a_size;
}
if (resp) {
if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
memset(resp, 0, resSz);
if (retSzp)
*retSzp = resSz;
}
return resp;
}
static void
sg_page_free(char *buff, int size)
{
int order, a_size;
if (!buff)
return;
for (order = 0, a_size = PAGE_SIZE; a_size < size;
order++, a_size <<= 1) ;
free_pages((unsigned long) buff, order);
}
#ifndef MAINTENANCE_IN_CMD
#define MAINTENANCE_IN_CMD 0xa3
#endif
static unsigned char allow_ops[] = { TEST_UNIT_READY, REQUEST_SENSE,
INQUIRY, READ_CAPACITY, READ_BUFFER, READ_6, READ_10, READ_12,
READ_16, MODE_SENSE, MODE_SENSE_10, LOG_SENSE, REPORT_LUNS,
SERVICE_ACTION_IN, RECEIVE_DIAGNOSTIC, READ_LONG, MAINTENANCE_IN_CMD
};
static int
sg_allow_access(unsigned char opcode, char dev_type)
{
int k;
if (TYPE_SCANNER == dev_type) /* TYPE_ROM maybe burner */
return 1;
for (k = 0; k < sizeof (allow_ops); ++k) {
if (opcode == allow_ops[k])
return 1;
}
return 0;
}
#ifdef CONFIG_SCSI_PROC_FS
static int
sg_last_dev(void)
{
int k;
unsigned long iflags;
read_lock_irqsave(&sg_dev_arr_lock, iflags);
for (k = sg_dev_max - 1; k >= 0; --k)
if (sg_dev_arr[k] && sg_dev_arr[k]->device)
break;
read_unlock_irqrestore(&sg_dev_arr_lock, iflags);
return k + 1; /* origin 1 */
}
#endif
static Sg_device *
sg_get_dev(int dev)
{
Sg_device *sdp = NULL;
unsigned long iflags;
if (sg_dev_arr && (dev >= 0)) {
read_lock_irqsave(&sg_dev_arr_lock, iflags);
if (dev < sg_dev_max)
sdp = sg_dev_arr[dev];
read_unlock_irqrestore(&sg_dev_arr_lock, iflags);
}
return sdp;
}
#ifdef CONFIG_SCSI_PROC_FS
static struct proc_dir_entry *sg_proc_sgp = NULL;
static char sg_proc_sg_dirname[] = "scsi/sg";
static int sg_proc_seq_show_int(struct seq_file *s, void *v);
static int sg_proc_single_open_adio(struct inode *inode, struct file *file);
static ssize_t sg_proc_write_adio(struct file *filp, const char __user *buffer,
size_t count, loff_t *off);
static struct file_operations adio_fops = {
/* .owner, .read and .llseek added in sg_proc_init() */
.open = sg_proc_single_open_adio,
.write = sg_proc_write_adio,
.release = single_release,
};
static int sg_proc_single_open_dressz(struct inode *inode, struct file *file);
static ssize_t sg_proc_write_dressz(struct file *filp,
const char __user *buffer, size_t count, loff_t *off);
static struct file_operations dressz_fops = {
.open = sg_proc_single_open_dressz,
.write = sg_proc_write_dressz,
.release = single_release,
};
static int sg_proc_seq_show_version(struct seq_file *s, void *v);
static int sg_proc_single_open_version(struct inode *inode, struct file *file);
static struct file_operations version_fops = {
.open = sg_proc_single_open_version,
.release = single_release,
};
static int sg_proc_seq_show_devhdr(struct seq_file *s, void *v);
static int sg_proc_single_open_devhdr(struct inode *inode, struct file *file);
static struct file_operations devhdr_fops = {
.open = sg_proc_single_open_devhdr,
.release = single_release,
};
static int sg_proc_seq_show_dev(struct seq_file *s, void *v);
static int sg_proc_open_dev(struct inode *inode, struct file *file);
static void * dev_seq_start(struct seq_file *s, loff_t *pos);
static void * dev_seq_next(struct seq_file *s, void *v, loff_t *pos);
static void dev_seq_stop(struct seq_file *s, void *v);
static struct file_operations dev_fops = {
.open = sg_proc_open_dev,
.release = seq_release,
};
static struct seq_operations dev_seq_ops = {
.start = dev_seq_start,
.next = dev_seq_next,
.stop = dev_seq_stop,
.show = sg_proc_seq_show_dev,
};
static int sg_proc_seq_show_devstrs(struct seq_file *s, void *v);
static int sg_proc_open_devstrs(struct inode *inode, struct file *file);
static struct file_operations devstrs_fops = {
.open = sg_proc_open_devstrs,
.release = seq_release,
};
static struct seq_operations devstrs_seq_ops = {
.start = dev_seq_start,
.next = dev_seq_next,
.stop = dev_seq_stop,
.show = sg_proc_seq_show_devstrs,
};
static int sg_proc_seq_show_debug(struct seq_file *s, void *v);
static int sg_proc_open_debug(struct inode *inode, struct file *file);
static struct file_operations debug_fops = {
.open = sg_proc_open_debug,
.release = seq_release,
};
static struct seq_operations debug_seq_ops = {
.start = dev_seq_start,
.next = dev_seq_next,
.stop = dev_seq_stop,
.show = sg_proc_seq_show_debug,
};
struct sg_proc_leaf {
const char * name;
struct file_operations * fops;
};
static struct sg_proc_leaf sg_proc_leaf_arr[] = {
{"allow_dio", &adio_fops},
{"debug", &debug_fops},
{"def_reserved_size", &dressz_fops},
{"device_hdr", &devhdr_fops},
{"devices", &dev_fops},
{"device_strs", &devstrs_fops},
{"version", &version_fops}
};
static int
sg_proc_init(void)
{
int k, mask;
int num_leaves =
sizeof (sg_proc_leaf_arr) / sizeof (sg_proc_leaf_arr[0]);
struct proc_dir_entry *pdep;
struct sg_proc_leaf * leaf;
sg_proc_sgp = create_proc_entry(sg_proc_sg_dirname,
S_IFDIR | S_IRUGO | S_IXUGO, NULL);
if (!sg_proc_sgp)
return 1;
for (k = 0; k < num_leaves; ++k) {
leaf = &sg_proc_leaf_arr[k];
mask = leaf->fops->write ? S_IRUGO | S_IWUSR : S_IRUGO;
pdep = create_proc_entry(leaf->name, mask, sg_proc_sgp);
if (pdep) {
leaf->fops->owner = THIS_MODULE,
leaf->fops->read = seq_read,
leaf->fops->llseek = seq_lseek,
pdep->proc_fops = leaf->fops;
}
}
return 0;
}
static void
sg_proc_cleanup(void)
{
int k;
int num_leaves =
sizeof (sg_proc_leaf_arr) / sizeof (sg_proc_leaf_arr[0]);
if (!sg_proc_sgp)
return;
for (k = 0; k < num_leaves; ++k)
remove_proc_entry(sg_proc_leaf_arr[k].name, sg_proc_sgp);
remove_proc_entry(sg_proc_sg_dirname, NULL);
}
static int sg_proc_seq_show_int(struct seq_file *s, void *v)
{
seq_printf(s, "%d\n", *((int *)s->private));
return 0;
}
static int sg_proc_single_open_adio(struct inode *inode, struct file *file)
{
return single_open(file, sg_proc_seq_show_int, &sg_allow_dio);
}
static ssize_t
sg_proc_write_adio(struct file *filp, const char __user *buffer,
size_t count, loff_t *off)
{
int num;
char buff[11];
if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
return -EACCES;
num = (count < 10) ? count : 10;
if (copy_from_user(buff, buffer, num))
return -EFAULT;
buff[num] = '\0';
sg_allow_dio = simple_strtoul(buff, NULL, 10) ? 1 : 0;
return count;
}
static int sg_proc_single_open_dressz(struct inode *inode, struct file *file)
{
return single_open(file, sg_proc_seq_show_int, &sg_big_buff);
}
static ssize_t
sg_proc_write_dressz(struct file *filp, const char __user *buffer,
size_t count, loff_t *off)
{
int num;
unsigned long k = ULONG_MAX;
char buff[11];
if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
return -EACCES;
num = (count < 10) ? count : 10;
if (copy_from_user(buff, buffer, num))
return -EFAULT;
buff[num] = '\0';
k = simple_strtoul(buff, NULL, 10);
if (k <= 1048576) { /* limit "big buff" to 1 MB */
sg_big_buff = k;
return count;
}
return -ERANGE;
}
static int sg_proc_seq_show_version(struct seq_file *s, void *v)
{
seq_printf(s, "%d\t%s [%s]\n", sg_version_num, SG_VERSION_STR,
sg_version_date);
return 0;
}
static int sg_proc_single_open_version(struct inode *inode, struct file *file)
{
return single_open(file, sg_proc_seq_show_version, NULL);
}
static int sg_proc_seq_show_devhdr(struct seq_file *s, void *v)
{
seq_printf(s, "host\tchan\tid\tlun\ttype\topens\tqdepth\tbusy\t"
"online\n");
return 0;
}
static int sg_proc_single_open_devhdr(struct inode *inode, struct file *file)
{
return single_open(file, sg_proc_seq_show_devhdr, NULL);
}
struct sg_proc_deviter {
loff_t index;
size_t max;
};
static void * dev_seq_start(struct seq_file *s, loff_t *pos)
{
struct sg_proc_deviter * it = kmalloc(sizeof(*it), GFP_KERNEL);
if (! it)
return NULL;
if (NULL == sg_dev_arr)
goto err1;
it->index = *pos;
it->max = sg_last_dev();
if (it->index >= it->max)
goto err1;
return it;
err1:
kfree(it);
return NULL;
}
static void * dev_seq_next(struct seq_file *s, void *v, loff_t *pos)
{
struct sg_proc_deviter * it = (struct sg_proc_deviter *) v;
*pos = ++it->index;
return (it->index < it->max) ? it : NULL;
}
static void dev_seq_stop(struct seq_file *s, void *v)
{
kfree (v);
}
static int sg_proc_open_dev(struct inode *inode, struct file *file)
{
return seq_open(file, &dev_seq_ops);
}
static int sg_proc_seq_show_dev(struct seq_file *s, void *v)
{
struct sg_proc_deviter * it = (struct sg_proc_deviter *) v;
Sg_device *sdp;
struct scsi_device *scsidp;
sdp = it ? sg_get_dev(it->index) : NULL;
if (sdp && (scsidp = sdp->device) && (!sdp->detached))
seq_printf(s, "%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n",
scsidp->host->host_no, scsidp->channel,
scsidp->id, scsidp->lun, (int) scsidp->type,
1,
(int) scsidp->queue_depth,
(int) scsidp->device_busy,
(int) scsi_device_online(scsidp));
else
seq_printf(s, "-1\t-1\t-1\t-1\t-1\t-1\t-1\t-1\t-1\n");
return 0;
}
static int sg_proc_open_devstrs(struct inode *inode, struct file *file)
{
return seq_open(file, &devstrs_seq_ops);
}
static int sg_proc_seq_show_devstrs(struct seq_file *s, void *v)
{
struct sg_proc_deviter * it = (struct sg_proc_deviter *) v;
Sg_device *sdp;
struct scsi_device *scsidp;
sdp = it ? sg_get_dev(it->index) : NULL;
if (sdp && (scsidp = sdp->device) && (!sdp->detached))
seq_printf(s, "%8.8s\t%16.16s\t%4.4s\n",
scsidp->vendor, scsidp->model, scsidp->rev);
else
seq_printf(s, "<no active device>\n");
return 0;
}
static void sg_proc_debug_helper(struct seq_file *s, Sg_device * sdp)
{
int k, m, new_interface, blen, usg;
Sg_request *srp;
Sg_fd *fp;
const sg_io_hdr_t *hp;
const char * cp;
unsigned int ms;
for (k = 0; (fp = sg_get_nth_sfp(sdp, k)); ++k) {
seq_printf(s, " FD(%d): timeout=%dms bufflen=%d "
"(res)sgat=%d low_dma=%d\n", k + 1,
jiffies_to_msecs(fp->timeout),
fp->reserve.bufflen,
(int) fp->reserve.k_use_sg,
(int) fp->low_dma);
seq_printf(s, " cmd_q=%d f_packid=%d k_orphan=%d closed=%d\n",
(int) fp->cmd_q, (int) fp->force_packid,
(int) fp->keep_orphan, (int) fp->closed);
for (m = 0; (srp = sg_get_nth_request(fp, m)); ++m) {
hp = &srp->header;
new_interface = (hp->interface_id == '\0') ? 0 : 1;
if (srp->res_used) {
if (new_interface &&
(SG_FLAG_MMAP_IO & hp->flags))
cp = " mmap>> ";
else
cp = " rb>> ";
} else {
if (SG_INFO_DIRECT_IO_MASK & hp->info)
cp = " dio>> ";
else
cp = " ";
}
seq_printf(s, cp);
blen = srp->my_cmdp ?
srp->my_cmdp->sr_bufflen : srp->data.bufflen;
usg = srp->my_cmdp ?
srp->my_cmdp->sr_use_sg : srp->data.k_use_sg;
seq_printf(s, srp->done ?
((1 == srp->done) ? "rcv:" : "fin:")
: (srp->my_cmdp ? "act:" : "prior:"));
seq_printf(s, " id=%d blen=%d",
srp->header.pack_id, blen);
if (srp->done)
seq_printf(s, " dur=%d", hp->duration);
else {
ms = jiffies_to_msecs(jiffies);
seq_printf(s, " t_o/elap=%d/%d",
(new_interface ? hp->timeout :
jiffies_to_msecs(fp->timeout)),
(ms > hp->duration ? ms - hp->duration : 0));
}
seq_printf(s, "ms sgat=%d op=0x%02x\n", usg,
(int) srp->data.cmd_opcode);
}
if (0 == m)
seq_printf(s, " No requests active\n");
}
}
static int sg_proc_open_debug(struct inode *inode, struct file *file)
{
return seq_open(file, &debug_seq_ops);
}
static int sg_proc_seq_show_debug(struct seq_file *s, void *v)
{
struct sg_proc_deviter * it = (struct sg_proc_deviter *) v;
Sg_device *sdp;
if (it && (0 == it->index)) {
seq_printf(s, "dev_max(currently)=%d max_active_device=%d "
"(origin 1)\n", sg_dev_max, (int)it->max);
seq_printf(s, " def_reserved_size=%d\n", sg_big_buff);
}
sdp = it ? sg_get_dev(it->index) : NULL;
if (sdp) {
struct scsi_device *scsidp = sdp->device;
if (NULL == scsidp) {
seq_printf(s, "device %d detached ??\n",
(int)it->index);
return 0;
}
if (sg_get_nth_sfp(sdp, 0)) {
seq_printf(s, " >>> device=%s ",
sdp->disk->disk_name);
if (sdp->detached)
seq_printf(s, "detached pending close ");
else
seq_printf
(s, "scsi%d chan=%d id=%d lun=%d em=%d",
scsidp->host->host_no,
scsidp->channel, scsidp->id,
scsidp->lun,
scsidp->host->hostt->emulated);
seq_printf(s, " sg_tablesize=%d excl=%d\n",
sdp->sg_tablesize, sdp->exclude);
}
sg_proc_debug_helper(s, sdp);
}
return 0;
}
#endif /* CONFIG_SCSI_PROC_FS */
module_init(init_sg);
module_exit(exit_sg);
MODULE_ALIAS_CHARDEV_MAJOR(SCSI_GENERIC_MAJOR);