linux/drivers/firewire/net.c
Eric Dumazet 451f144398 drivers: Kill now superfluous ->last_rx stores
The generic packet receive code takes care of setting
netdev->last_rx when necessary, for the sake of the
bonding ARP monitor.

Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Neil Horman <nhorman@txudriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-09-02 23:07:36 -07:00

1653 lines
42 KiB
C

/*
* IPv4 over IEEE 1394, per RFC 2734
*
* Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
*
* based on eth1394 by Ben Collins et al
*/
#include <linux/bug.h>
#include <linux/device.h>
#include <linux/ethtool.h>
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
#include <linux/highmem.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/jiffies.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <asm/unaligned.h>
#include <net/arp.h>
#define FWNET_MAX_FRAGMENTS 25 /* arbitrary limit */
#define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16 * 1024 ? 4 : 2)
#define IEEE1394_BROADCAST_CHANNEL 31
#define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
#define IEEE1394_MAX_PAYLOAD_S100 512
#define FWNET_NO_FIFO_ADDR (~0ULL)
#define IANA_SPECIFIER_ID 0x00005eU
#define RFC2734_SW_VERSION 0x000001U
#define IEEE1394_GASP_HDR_SIZE 8
#define RFC2374_UNFRAG_HDR_SIZE 4
#define RFC2374_FRAG_HDR_SIZE 8
#define RFC2374_FRAG_OVERHEAD 4
#define RFC2374_HDR_UNFRAG 0 /* unfragmented */
#define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
#define RFC2374_HDR_LASTFRAG 2 /* last fragment */
#define RFC2374_HDR_INTFRAG 3 /* interior fragment */
#define RFC2734_HW_ADDR_LEN 16
struct rfc2734_arp {
__be16 hw_type; /* 0x0018 */
__be16 proto_type; /* 0x0806 */
u8 hw_addr_len; /* 16 */
u8 ip_addr_len; /* 4 */
__be16 opcode; /* ARP Opcode */
/* Above is exactly the same format as struct arphdr */
__be64 s_uniq_id; /* Sender's 64bit EUI */
u8 max_rec; /* Sender's max packet size */
u8 sspd; /* Sender's max speed */
__be16 fifo_hi; /* hi 16bits of sender's FIFO addr */
__be32 fifo_lo; /* lo 32bits of sender's FIFO addr */
__be32 sip; /* Sender's IP Address */
__be32 tip; /* IP Address of requested hw addr */
} __attribute__((packed));
/* This header format is specific to this driver implementation. */
#define FWNET_ALEN 8
#define FWNET_HLEN 10
struct fwnet_header {
u8 h_dest[FWNET_ALEN]; /* destination address */
__be16 h_proto; /* packet type ID field */
} __attribute__((packed));
/* IPv4 and IPv6 encapsulation header */
struct rfc2734_header {
u32 w0;
u32 w1;
};
#define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
#define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
#define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16)
#define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
#define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
#define fwnet_set_hdr_lf(lf) ((lf) << 30)
#define fwnet_set_hdr_ether_type(et) (et)
#define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16)
#define fwnet_set_hdr_fg_off(fgo) (fgo)
#define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
unsigned ether_type)
{
hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
| fwnet_set_hdr_ether_type(ether_type);
}
static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
unsigned ether_type, unsigned dg_size, unsigned dgl)
{
hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
| fwnet_set_hdr_dg_size(dg_size)
| fwnet_set_hdr_ether_type(ether_type);
hdr->w1 = fwnet_set_hdr_dgl(dgl);
}
static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
{
hdr->w0 = fwnet_set_hdr_lf(lf)
| fwnet_set_hdr_dg_size(dg_size)
| fwnet_set_hdr_fg_off(fg_off);
hdr->w1 = fwnet_set_hdr_dgl(dgl);
}
/* This list keeps track of what parts of the datagram have been filled in */
struct fwnet_fragment_info {
struct list_head fi_link;
u16 offset;
u16 len;
};
struct fwnet_partial_datagram {
struct list_head pd_link;
struct list_head fi_list;
struct sk_buff *skb;
/* FIXME Why not use skb->data? */
char *pbuf;
u16 datagram_label;
u16 ether_type;
u16 datagram_size;
};
static DEFINE_MUTEX(fwnet_device_mutex);
static LIST_HEAD(fwnet_device_list);
struct fwnet_device {
struct list_head dev_link;
spinlock_t lock;
enum {
FWNET_BROADCAST_ERROR,
FWNET_BROADCAST_RUNNING,
FWNET_BROADCAST_STOPPED,
} broadcast_state;
struct fw_iso_context *broadcast_rcv_context;
struct fw_iso_buffer broadcast_rcv_buffer;
void **broadcast_rcv_buffer_ptrs;
unsigned broadcast_rcv_next_ptr;
unsigned num_broadcast_rcv_ptrs;
unsigned rcv_buffer_size;
/*
* This value is the maximum unfragmented datagram size that can be
* sent by the hardware. It already has the GASP overhead and the
* unfragmented datagram header overhead calculated into it.
*/
unsigned broadcast_xmt_max_payload;
u16 broadcast_xmt_datagramlabel;
/*
* The CSR address that remote nodes must send datagrams to for us to
* receive them.
*/
struct fw_address_handler handler;
u64 local_fifo;
/* List of packets to be sent */
struct list_head packet_list;
/*
* List of packets that were broadcasted. When we get an ISO interrupt
* one of them has been sent
*/
struct list_head broadcasted_list;
/* List of packets that have been sent but not yet acked */
struct list_head sent_list;
struct list_head peer_list;
struct fw_card *card;
struct net_device *netdev;
};
struct fwnet_peer {
struct list_head peer_link;
struct fwnet_device *dev;
u64 guid;
u64 fifo;
/* guarded by dev->lock */
struct list_head pd_list; /* received partial datagrams */
unsigned pdg_size; /* pd_list size */
u16 datagram_label; /* outgoing datagram label */
unsigned max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */
int node_id;
int generation;
unsigned speed;
};
/* This is our task struct. It's used for the packet complete callback. */
struct fwnet_packet_task {
/*
* ptask can actually be on dev->packet_list, dev->broadcasted_list,
* or dev->sent_list depending on its current state.
*/
struct list_head pt_link;
struct fw_transaction transaction;
struct rfc2734_header hdr;
struct sk_buff *skb;
struct fwnet_device *dev;
int outstanding_pkts;
unsigned max_payload;
u64 fifo_addr;
u16 dest_node;
u8 generation;
u8 speed;
};
/*
* saddr == NULL means use device source address.
* daddr == NULL means leave destination address (eg unresolved arp).
*/
static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
unsigned short type, const void *daddr,
const void *saddr, unsigned len)
{
struct fwnet_header *h;
h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
put_unaligned_be16(type, &h->h_proto);
if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
memset(h->h_dest, 0, net->addr_len);
return net->hard_header_len;
}
if (daddr) {
memcpy(h->h_dest, daddr, net->addr_len);
return net->hard_header_len;
}
return -net->hard_header_len;
}
static int fwnet_header_rebuild(struct sk_buff *skb)
{
struct fwnet_header *h = (struct fwnet_header *)skb->data;
if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
return arp_find((unsigned char *)&h->h_dest, skb);
fw_notify("%s: unable to resolve type %04x addresses\n",
skb->dev->name, be16_to_cpu(h->h_proto));
return 0;
}
static int fwnet_header_cache(const struct neighbour *neigh,
struct hh_cache *hh)
{
struct net_device *net;
struct fwnet_header *h;
if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
return -1;
net = neigh->dev;
h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
h->h_proto = hh->hh_type;
memcpy(h->h_dest, neigh->ha, net->addr_len);
hh->hh_len = FWNET_HLEN;
return 0;
}
/* Called by Address Resolution module to notify changes in address. */
static void fwnet_header_cache_update(struct hh_cache *hh,
const struct net_device *net, const unsigned char *haddr)
{
memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
}
static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
{
memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
return FWNET_ALEN;
}
static const struct header_ops fwnet_header_ops = {
.create = fwnet_header_create,
.rebuild = fwnet_header_rebuild,
.cache = fwnet_header_cache,
.cache_update = fwnet_header_cache_update,
.parse = fwnet_header_parse,
};
/* FIXME: is this correct for all cases? */
static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
unsigned offset, unsigned len)
{
struct fwnet_fragment_info *fi;
unsigned end = offset + len;
list_for_each_entry(fi, &pd->fi_list, fi_link)
if (offset < fi->offset + fi->len && end > fi->offset)
return true;
return false;
}
/* Assumes that new fragment does not overlap any existing fragments */
static struct fwnet_fragment_info *fwnet_frag_new(
struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
{
struct fwnet_fragment_info *fi, *fi2, *new;
struct list_head *list;
list = &pd->fi_list;
list_for_each_entry(fi, &pd->fi_list, fi_link) {
if (fi->offset + fi->len == offset) {
/* The new fragment can be tacked on to the end */
/* Did the new fragment plug a hole? */
fi2 = list_entry(fi->fi_link.next,
struct fwnet_fragment_info, fi_link);
if (fi->offset + fi->len == fi2->offset) {
/* glue fragments together */
fi->len += len + fi2->len;
list_del(&fi2->fi_link);
kfree(fi2);
} else {
fi->len += len;
}
return fi;
}
if (offset + len == fi->offset) {
/* The new fragment can be tacked on to the beginning */
/* Did the new fragment plug a hole? */
fi2 = list_entry(fi->fi_link.prev,
struct fwnet_fragment_info, fi_link);
if (fi2->offset + fi2->len == fi->offset) {
/* glue fragments together */
fi2->len += fi->len + len;
list_del(&fi->fi_link);
kfree(fi);
return fi2;
}
fi->offset = offset;
fi->len += len;
return fi;
}
if (offset > fi->offset + fi->len) {
list = &fi->fi_link;
break;
}
if (offset + len < fi->offset) {
list = fi->fi_link.prev;
break;
}
}
new = kmalloc(sizeof(*new), GFP_ATOMIC);
if (!new) {
fw_error("out of memory\n");
return NULL;
}
new->offset = offset;
new->len = len;
list_add(&new->fi_link, list);
return new;
}
static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
void *frag_buf, unsigned frag_off, unsigned frag_len)
{
struct fwnet_partial_datagram *new;
struct fwnet_fragment_info *fi;
new = kmalloc(sizeof(*new), GFP_ATOMIC);
if (!new)
goto fail;
INIT_LIST_HEAD(&new->fi_list);
fi = fwnet_frag_new(new, frag_off, frag_len);
if (fi == NULL)
goto fail_w_new;
new->datagram_label = datagram_label;
new->datagram_size = dg_size;
new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
if (new->skb == NULL)
goto fail_w_fi;
skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
new->pbuf = skb_put(new->skb, dg_size);
memcpy(new->pbuf + frag_off, frag_buf, frag_len);
list_add_tail(&new->pd_link, &peer->pd_list);
return new;
fail_w_fi:
kfree(fi);
fail_w_new:
kfree(new);
fail:
fw_error("out of memory\n");
return NULL;
}
static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
u16 datagram_label)
{
struct fwnet_partial_datagram *pd;
list_for_each_entry(pd, &peer->pd_list, pd_link)
if (pd->datagram_label == datagram_label)
return pd;
return NULL;
}
static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
{
struct fwnet_fragment_info *fi, *n;
list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
kfree(fi);
list_del(&old->pd_link);
dev_kfree_skb_any(old->skb);
kfree(old);
}
static bool fwnet_pd_update(struct fwnet_peer *peer,
struct fwnet_partial_datagram *pd, void *frag_buf,
unsigned frag_off, unsigned frag_len)
{
if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
return false;
memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
/*
* Move list entry to beginnig of list so that oldest partial
* datagrams percolate to the end of the list
*/
list_move_tail(&pd->pd_link, &peer->pd_list);
return true;
}
static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
{
struct fwnet_fragment_info *fi;
fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
return fi->len == pd->datagram_size;
}
/* caller must hold dev->lock */
static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
u64 guid)
{
struct fwnet_peer *peer;
list_for_each_entry(peer, &dev->peer_list, peer_link)
if (peer->guid == guid)
return peer;
return NULL;
}
/* caller must hold dev->lock */
static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
int node_id, int generation)
{
struct fwnet_peer *peer;
list_for_each_entry(peer, &dev->peer_list, peer_link)
if (peer->node_id == node_id &&
peer->generation == generation)
return peer;
return NULL;
}
/* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
{
max_rec = min(max_rec, speed + 8);
max_rec = min(max_rec, 0xbU); /* <= 4096 */
if (max_rec < 8) {
fw_notify("max_rec %x out of range\n", max_rec);
max_rec = 8;
}
return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
}
static int fwnet_finish_incoming_packet(struct net_device *net,
struct sk_buff *skb, u16 source_node_id,
bool is_broadcast, u16 ether_type)
{
struct fwnet_device *dev;
static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
int status;
__be64 guid;
dev = netdev_priv(net);
/* Write metadata, and then pass to the receive level */
skb->dev = net;
skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
/*
* Parse the encapsulation header. This actually does the job of
* converting to an ethernet frame header, as well as arp
* conversion if needed. ARP conversion is easier in this
* direction, since we are using ethernet as our backend.
*/
/*
* If this is an ARP packet, convert it. First, we want to make
* use of some of the fields, since they tell us a little bit
* about the sending machine.
*/
if (ether_type == ETH_P_ARP) {
struct rfc2734_arp *arp1394;
struct arphdr *arp;
unsigned char *arp_ptr;
u64 fifo_addr;
u64 peer_guid;
unsigned sspd;
u16 max_payload;
struct fwnet_peer *peer;
unsigned long flags;
arp1394 = (struct rfc2734_arp *)skb->data;
arp = (struct arphdr *)skb->data;
arp_ptr = (unsigned char *)(arp + 1);
peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
| get_unaligned_be32(&arp1394->fifo_lo);
sspd = arp1394->sspd;
/* Sanity check. OS X 10.3 PPC reportedly sends 131. */
if (sspd > SCODE_3200) {
fw_notify("sspd %x out of range\n", sspd);
sspd = SCODE_3200;
}
max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
spin_lock_irqsave(&dev->lock, flags);
peer = fwnet_peer_find_by_guid(dev, peer_guid);
if (peer) {
peer->fifo = fifo_addr;
if (peer->speed > sspd)
peer->speed = sspd;
if (peer->max_payload > max_payload)
peer->max_payload = max_payload;
}
spin_unlock_irqrestore(&dev->lock, flags);
if (!peer) {
fw_notify("No peer for ARP packet from %016llx\n",
(unsigned long long)peer_guid);
goto failed_proto;
}
/*
* Now that we're done with the 1394 specific stuff, we'll
* need to alter some of the data. Believe it or not, all
* that needs to be done is sender_IP_address needs to be
* moved, the destination hardware address get stuffed
* in and the hardware address length set to 8.
*
* IMPORTANT: The code below overwrites 1394 specific data
* needed above so keep the munging of the data for the
* higher level IP stack last.
*/
arp->ar_hln = 8;
/* skip over sender unique id */
arp_ptr += arp->ar_hln;
/* move sender IP addr */
put_unaligned(arp1394->sip, (u32 *)arp_ptr);
/* skip over sender IP addr */
arp_ptr += arp->ar_pln;
if (arp->ar_op == htons(ARPOP_REQUEST))
memset(arp_ptr, 0, sizeof(u64));
else
memcpy(arp_ptr, net->dev_addr, sizeof(u64));
}
/* Now add the ethernet header. */
guid = cpu_to_be64(dev->card->guid);
if (dev_hard_header(skb, net, ether_type,
is_broadcast ? &broadcast_hw : &guid,
NULL, skb->len) >= 0) {
struct fwnet_header *eth;
u16 *rawp;
__be16 protocol;
skb_reset_mac_header(skb);
skb_pull(skb, sizeof(*eth));
eth = (struct fwnet_header *)skb_mac_header(skb);
if (*eth->h_dest & 1) {
if (memcmp(eth->h_dest, net->broadcast,
net->addr_len) == 0)
skb->pkt_type = PACKET_BROADCAST;
#if 0
else
skb->pkt_type = PACKET_MULTICAST;
#endif
} else {
if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
skb->pkt_type = PACKET_OTHERHOST;
}
if (ntohs(eth->h_proto) >= 1536) {
protocol = eth->h_proto;
} else {
rawp = (u16 *)skb->data;
if (*rawp == 0xffff)
protocol = htons(ETH_P_802_3);
else
protocol = htons(ETH_P_802_2);
}
skb->protocol = protocol;
}
status = netif_rx(skb);
if (status == NET_RX_DROP) {
net->stats.rx_errors++;
net->stats.rx_dropped++;
} else {
net->stats.rx_packets++;
net->stats.rx_bytes += skb->len;
}
if (netif_queue_stopped(net))
netif_wake_queue(net);
return 0;
failed_proto:
net->stats.rx_errors++;
net->stats.rx_dropped++;
dev_kfree_skb_any(skb);
if (netif_queue_stopped(net))
netif_wake_queue(net);
return 0;
}
static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
int source_node_id, int generation,
bool is_broadcast)
{
struct sk_buff *skb;
struct net_device *net = dev->netdev;
struct rfc2734_header hdr;
unsigned lf;
unsigned long flags;
struct fwnet_peer *peer;
struct fwnet_partial_datagram *pd;
int fg_off;
int dg_size;
u16 datagram_label;
int retval;
u16 ether_type;
hdr.w0 = be32_to_cpu(buf[0]);
lf = fwnet_get_hdr_lf(&hdr);
if (lf == RFC2374_HDR_UNFRAG) {
/*
* An unfragmented datagram has been received by the ieee1394
* bus. Build an skbuff around it so we can pass it to the
* high level network layer.
*/
ether_type = fwnet_get_hdr_ether_type(&hdr);
buf++;
len -= RFC2374_UNFRAG_HDR_SIZE;
skb = dev_alloc_skb(len + net->hard_header_len + 15);
if (unlikely(!skb)) {
fw_error("out of memory\n");
net->stats.rx_dropped++;
return -1;
}
skb_reserve(skb, (net->hard_header_len + 15) & ~15);
memcpy(skb_put(skb, len), buf, len);
return fwnet_finish_incoming_packet(net, skb, source_node_id,
is_broadcast, ether_type);
}
/* A datagram fragment has been received, now the fun begins. */
hdr.w1 = ntohl(buf[1]);
buf += 2;
len -= RFC2374_FRAG_HDR_SIZE;
if (lf == RFC2374_HDR_FIRSTFRAG) {
ether_type = fwnet_get_hdr_ether_type(&hdr);
fg_off = 0;
} else {
ether_type = 0;
fg_off = fwnet_get_hdr_fg_off(&hdr);
}
datagram_label = fwnet_get_hdr_dgl(&hdr);
dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
spin_lock_irqsave(&dev->lock, flags);
peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
if (!peer)
goto bad_proto;
pd = fwnet_pd_find(peer, datagram_label);
if (pd == NULL) {
while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
/* remove the oldest */
fwnet_pd_delete(list_first_entry(&peer->pd_list,
struct fwnet_partial_datagram, pd_link));
peer->pdg_size--;
}
pd = fwnet_pd_new(net, peer, datagram_label,
dg_size, buf, fg_off, len);
if (pd == NULL) {
retval = -ENOMEM;
goto bad_proto;
}
peer->pdg_size++;
} else {
if (fwnet_frag_overlap(pd, fg_off, len) ||
pd->datagram_size != dg_size) {
/*
* Differing datagram sizes or overlapping fragments,
* discard old datagram and start a new one.
*/
fwnet_pd_delete(pd);
pd = fwnet_pd_new(net, peer, datagram_label,
dg_size, buf, fg_off, len);
if (pd == NULL) {
retval = -ENOMEM;
peer->pdg_size--;
goto bad_proto;
}
} else {
if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
/*
* Couldn't save off fragment anyway
* so might as well obliterate the
* datagram now.
*/
fwnet_pd_delete(pd);
peer->pdg_size--;
goto bad_proto;
}
}
} /* new datagram or add to existing one */
if (lf == RFC2374_HDR_FIRSTFRAG)
pd->ether_type = ether_type;
if (fwnet_pd_is_complete(pd)) {
ether_type = pd->ether_type;
peer->pdg_size--;
skb = skb_get(pd->skb);
fwnet_pd_delete(pd);
spin_unlock_irqrestore(&dev->lock, flags);
return fwnet_finish_incoming_packet(net, skb, source_node_id,
false, ether_type);
}
/*
* Datagram is not complete, we're done for the
* moment.
*/
spin_unlock_irqrestore(&dev->lock, flags);
return 0;
bad_proto:
spin_unlock_irqrestore(&dev->lock, flags);
if (netif_queue_stopped(net))
netif_wake_queue(net);
return 0;
}
static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
int tcode, int destination, int source, int generation,
int speed, unsigned long long offset, void *payload,
size_t length, void *callback_data)
{
struct fwnet_device *dev = callback_data;
int rcode;
if (destination == IEEE1394_ALL_NODES) {
kfree(r);
return;
}
if (offset != dev->handler.offset)
rcode = RCODE_ADDRESS_ERROR;
else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
rcode = RCODE_TYPE_ERROR;
else if (fwnet_incoming_packet(dev, payload, length,
source, generation, false) != 0) {
fw_error("Incoming packet failure\n");
rcode = RCODE_CONFLICT_ERROR;
} else
rcode = RCODE_COMPLETE;
fw_send_response(card, r, rcode);
}
static void fwnet_receive_broadcast(struct fw_iso_context *context,
u32 cycle, size_t header_length, void *header, void *data)
{
struct fwnet_device *dev;
struct fw_iso_packet packet;
struct fw_card *card;
__be16 *hdr_ptr;
__be32 *buf_ptr;
int retval;
u32 length;
u16 source_node_id;
u32 specifier_id;
u32 ver;
unsigned long offset;
unsigned long flags;
dev = data;
card = dev->card;
hdr_ptr = header;
length = be16_to_cpup(hdr_ptr);
spin_lock_irqsave(&dev->lock, flags);
offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
dev->broadcast_rcv_next_ptr = 0;
spin_unlock_irqrestore(&dev->lock, flags);
specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
| (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
buf_ptr += 2;
length -= IEEE1394_GASP_HDR_SIZE;
fwnet_incoming_packet(dev, buf_ptr, length,
source_node_id, -1, true);
}
packet.payload_length = dev->rcv_buffer_size;
packet.interrupt = 1;
packet.skip = 0;
packet.tag = 3;
packet.sy = 0;
packet.header_length = IEEE1394_GASP_HDR_SIZE;
spin_lock_irqsave(&dev->lock, flags);
retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
&dev->broadcast_rcv_buffer, offset);
spin_unlock_irqrestore(&dev->lock, flags);
if (retval < 0)
fw_error("requeue failed\n");
}
static struct kmem_cache *fwnet_packet_task_cache;
static int fwnet_send_packet(struct fwnet_packet_task *ptask);
static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
{
struct fwnet_device *dev;
unsigned long flags;
dev = ptask->dev;
spin_lock_irqsave(&dev->lock, flags);
list_del(&ptask->pt_link);
spin_unlock_irqrestore(&dev->lock, flags);
ptask->outstanding_pkts--; /* FIXME access inside lock */
if (ptask->outstanding_pkts > 0) {
u16 dg_size;
u16 fg_off;
u16 datagram_label;
u16 lf;
struct sk_buff *skb;
/* Update the ptask to point to the next fragment and send it */
lf = fwnet_get_hdr_lf(&ptask->hdr);
switch (lf) {
case RFC2374_HDR_LASTFRAG:
case RFC2374_HDR_UNFRAG:
default:
fw_error("Outstanding packet %x lf %x, header %x,%x\n",
ptask->outstanding_pkts, lf, ptask->hdr.w0,
ptask->hdr.w1);
BUG();
case RFC2374_HDR_FIRSTFRAG:
/* Set frag type here for future interior fragments */
dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
break;
case RFC2374_HDR_INTFRAG:
dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
+ ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
break;
}
skb = ptask->skb;
skb_pull(skb, ptask->max_payload);
if (ptask->outstanding_pkts > 1) {
fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
dg_size, fg_off, datagram_label);
} else {
fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
dg_size, fg_off, datagram_label);
ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
}
fwnet_send_packet(ptask);
} else {
dev_kfree_skb_any(ptask->skb);
kmem_cache_free(fwnet_packet_task_cache, ptask);
}
}
static void fwnet_write_complete(struct fw_card *card, int rcode,
void *payload, size_t length, void *data)
{
struct fwnet_packet_task *ptask;
ptask = data;
if (rcode == RCODE_COMPLETE)
fwnet_transmit_packet_done(ptask);
else
fw_error("fwnet_write_complete: failed: %x\n", rcode);
/* ??? error recovery */
}
static int fwnet_send_packet(struct fwnet_packet_task *ptask)
{
struct fwnet_device *dev;
unsigned tx_len;
struct rfc2734_header *bufhdr;
unsigned long flags;
dev = ptask->dev;
tx_len = ptask->max_payload;
switch (fwnet_get_hdr_lf(&ptask->hdr)) {
case RFC2374_HDR_UNFRAG:
bufhdr = (struct rfc2734_header *)
skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
break;
case RFC2374_HDR_FIRSTFRAG:
case RFC2374_HDR_INTFRAG:
case RFC2374_HDR_LASTFRAG:
bufhdr = (struct rfc2734_header *)
skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
break;
default:
BUG();
}
if (ptask->dest_node == IEEE1394_ALL_NODES) {
u8 *p;
int generation;
int node_id;
/* ptask->generation may not have been set yet */
generation = dev->card->generation;
smp_rmb();
node_id = dev->card->node_id;
p = skb_push(ptask->skb, 8);
put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
| RFC2734_SW_VERSION, &p[4]);
/* We should not transmit if broadcast_channel.valid == 0. */
fw_send_request(dev->card, &ptask->transaction,
TCODE_STREAM_DATA,
fw_stream_packet_destination_id(3,
IEEE1394_BROADCAST_CHANNEL, 0),
generation, SCODE_100, 0ULL, ptask->skb->data,
tx_len + 8, fwnet_write_complete, ptask);
/* FIXME race? */
spin_lock_irqsave(&dev->lock, flags);
list_add_tail(&ptask->pt_link, &dev->broadcasted_list);
spin_unlock_irqrestore(&dev->lock, flags);
return 0;
}
fw_send_request(dev->card, &ptask->transaction,
TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
ptask->generation, ptask->speed, ptask->fifo_addr,
ptask->skb->data, tx_len, fwnet_write_complete, ptask);
/* FIXME race? */
spin_lock_irqsave(&dev->lock, flags);
list_add_tail(&ptask->pt_link, &dev->sent_list);
spin_unlock_irqrestore(&dev->lock, flags);
dev->netdev->trans_start = jiffies;
return 0;
}
static int fwnet_broadcast_start(struct fwnet_device *dev)
{
struct fw_iso_context *context;
int retval;
unsigned num_packets;
unsigned max_receive;
struct fw_iso_packet packet;
unsigned long offset;
unsigned u;
if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
/* outside OHCI posted write area? */
static const struct fw_address_region region = {
.start = 0xffff00000000ULL,
.end = CSR_REGISTER_BASE,
};
dev->handler.length = 4096;
dev->handler.address_callback = fwnet_receive_packet;
dev->handler.callback_data = dev;
retval = fw_core_add_address_handler(&dev->handler, &region);
if (retval < 0)
goto failed_initial;
dev->local_fifo = dev->handler.offset;
}
max_receive = 1U << (dev->card->max_receive + 1);
num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
if (!dev->broadcast_rcv_context) {
void **ptrptr;
context = fw_iso_context_create(dev->card,
FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
if (IS_ERR(context)) {
retval = PTR_ERR(context);
goto failed_context_create;
}
retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
if (retval < 0)
goto failed_buffer_init;
ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
if (!ptrptr) {
retval = -ENOMEM;
goto failed_ptrs_alloc;
}
dev->broadcast_rcv_buffer_ptrs = ptrptr;
for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
void *ptr;
unsigned v;
ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
*ptrptr++ = (void *)
((char *)ptr + v * max_receive);
}
dev->broadcast_rcv_context = context;
} else {
context = dev->broadcast_rcv_context;
}
packet.payload_length = max_receive;
packet.interrupt = 1;
packet.skip = 0;
packet.tag = 3;
packet.sy = 0;
packet.header_length = IEEE1394_GASP_HDR_SIZE;
offset = 0;
for (u = 0; u < num_packets; u++) {
retval = fw_iso_context_queue(context, &packet,
&dev->broadcast_rcv_buffer, offset);
if (retval < 0)
goto failed_rcv_queue;
offset += max_receive;
}
dev->num_broadcast_rcv_ptrs = num_packets;
dev->rcv_buffer_size = max_receive;
dev->broadcast_rcv_next_ptr = 0U;
retval = fw_iso_context_start(context, -1, 0,
FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
if (retval < 0)
goto failed_rcv_queue;
/* FIXME: adjust it according to the min. speed of all known peers? */
dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
- IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
dev->broadcast_state = FWNET_BROADCAST_RUNNING;
return 0;
failed_rcv_queue:
kfree(dev->broadcast_rcv_buffer_ptrs);
dev->broadcast_rcv_buffer_ptrs = NULL;
failed_ptrs_alloc:
fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
failed_buffer_init:
fw_iso_context_destroy(context);
dev->broadcast_rcv_context = NULL;
failed_context_create:
fw_core_remove_address_handler(&dev->handler);
failed_initial:
dev->local_fifo = FWNET_NO_FIFO_ADDR;
return retval;
}
/* ifup */
static int fwnet_open(struct net_device *net)
{
struct fwnet_device *dev = netdev_priv(net);
int ret;
if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
ret = fwnet_broadcast_start(dev);
if (ret)
return ret;
}
netif_start_queue(net);
return 0;
}
/* ifdown */
static int fwnet_stop(struct net_device *net)
{
netif_stop_queue(net);
/* Deallocate iso context for use by other applications? */
return 0;
}
static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
{
struct fwnet_header hdr_buf;
struct fwnet_device *dev = netdev_priv(net);
__be16 proto;
u16 dest_node;
unsigned max_payload;
u16 dg_size;
u16 *datagram_label_ptr;
struct fwnet_packet_task *ptask;
struct fwnet_peer *peer;
unsigned long flags;
ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
if (ptask == NULL)
goto fail;
skb = skb_share_check(skb, GFP_ATOMIC);
if (!skb)
goto fail;
/*
* Make a copy of the driver-specific header.
* We might need to rebuild the header on tx failure.
*/
memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
skb_pull(skb, sizeof(hdr_buf));
proto = hdr_buf.h_proto;
dg_size = skb->len;
/* serialize access to peer, including peer->datagram_label */
spin_lock_irqsave(&dev->lock, flags);
/*
* Set the transmission type for the packet. ARP packets and IP
* broadcast packets are sent via GASP.
*/
if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
|| proto == htons(ETH_P_ARP)
|| (proto == htons(ETH_P_IP)
&& IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
max_payload = dev->broadcast_xmt_max_payload;
datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
ptask->generation = 0;
ptask->dest_node = IEEE1394_ALL_NODES;
ptask->speed = SCODE_100;
} else {
__be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
u8 generation;
peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
goto fail_unlock;
generation = peer->generation;
dest_node = peer->node_id;
max_payload = peer->max_payload;
datagram_label_ptr = &peer->datagram_label;
ptask->fifo_addr = peer->fifo;
ptask->generation = generation;
ptask->dest_node = dest_node;
ptask->speed = peer->speed;
}
/* If this is an ARP packet, convert it */
if (proto == htons(ETH_P_ARP)) {
struct arphdr *arp = (struct arphdr *)skb->data;
unsigned char *arp_ptr = (unsigned char *)(arp + 1);
struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
__be32 ipaddr;
ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN;
arp1394->max_rec = dev->card->max_receive;
arp1394->sspd = dev->card->link_speed;
put_unaligned_be16(dev->local_fifo >> 32,
&arp1394->fifo_hi);
put_unaligned_be32(dev->local_fifo & 0xffffffff,
&arp1394->fifo_lo);
put_unaligned(ipaddr, &arp1394->sip);
}
ptask->hdr.w0 = 0;
ptask->hdr.w1 = 0;
ptask->skb = skb;
ptask->dev = dev;
/* Does it all fit in one packet? */
if (dg_size <= max_payload) {
fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
ptask->outstanding_pkts = 1;
max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
} else {
u16 datagram_label;
max_payload -= RFC2374_FRAG_OVERHEAD;
datagram_label = (*datagram_label_ptr)++;
fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
datagram_label);
ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
max_payload += RFC2374_FRAG_HDR_SIZE;
}
spin_unlock_irqrestore(&dev->lock, flags);
ptask->max_payload = max_payload;
fwnet_send_packet(ptask);
return NETDEV_TX_OK;
fail_unlock:
spin_unlock_irqrestore(&dev->lock, flags);
fail:
if (ptask)
kmem_cache_free(fwnet_packet_task_cache, ptask);
if (skb != NULL)
dev_kfree_skb(skb);
net->stats.tx_dropped++;
net->stats.tx_errors++;
/*
* FIXME: According to a patch from 2003-02-26, "returning non-zero
* causes serious problems" here, allegedly. Before that patch,
* -ERRNO was returned which is not appropriate under Linux 2.6.
* Perhaps more needs to be done? Stop the queue in serious
* conditions and restart it elsewhere?
*/
return NETDEV_TX_OK;
}
static int fwnet_change_mtu(struct net_device *net, int new_mtu)
{
if (new_mtu < 68)
return -EINVAL;
net->mtu = new_mtu;
return 0;
}
static void fwnet_get_drvinfo(struct net_device *net,
struct ethtool_drvinfo *info)
{
strcpy(info->driver, KBUILD_MODNAME);
strcpy(info->bus_info, "ieee1394");
}
static const struct ethtool_ops fwnet_ethtool_ops = {
.get_drvinfo = fwnet_get_drvinfo,
};
static const struct net_device_ops fwnet_netdev_ops = {
.ndo_open = fwnet_open,
.ndo_stop = fwnet_stop,
.ndo_start_xmit = fwnet_tx,
.ndo_change_mtu = fwnet_change_mtu,
};
static void fwnet_init_dev(struct net_device *net)
{
net->header_ops = &fwnet_header_ops;
net->netdev_ops = &fwnet_netdev_ops;
net->watchdog_timeo = 2 * HZ;
net->flags = IFF_BROADCAST | IFF_MULTICAST;
net->features = NETIF_F_HIGHDMA;
net->addr_len = FWNET_ALEN;
net->hard_header_len = FWNET_HLEN;
net->type = ARPHRD_IEEE1394;
net->tx_queue_len = 10;
SET_ETHTOOL_OPS(net, &fwnet_ethtool_ops);
}
/* caller must hold fwnet_device_mutex */
static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
{
struct fwnet_device *dev;
list_for_each_entry(dev, &fwnet_device_list, dev_link)
if (dev->card == card)
return dev;
return NULL;
}
static int fwnet_add_peer(struct fwnet_device *dev,
struct fw_unit *unit, struct fw_device *device)
{
struct fwnet_peer *peer;
peer = kmalloc(sizeof(*peer), GFP_KERNEL);
if (!peer)
return -ENOMEM;
dev_set_drvdata(&unit->device, peer);
peer->dev = dev;
peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
peer->fifo = FWNET_NO_FIFO_ADDR;
INIT_LIST_HEAD(&peer->pd_list);
peer->pdg_size = 0;
peer->datagram_label = 0;
peer->speed = device->max_speed;
peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
peer->generation = device->generation;
smp_rmb();
peer->node_id = device->node_id;
spin_lock_irq(&dev->lock);
list_add_tail(&peer->peer_link, &dev->peer_list);
spin_unlock_irq(&dev->lock);
return 0;
}
static int fwnet_probe(struct device *_dev)
{
struct fw_unit *unit = fw_unit(_dev);
struct fw_device *device = fw_parent_device(unit);
struct fw_card *card = device->card;
struct net_device *net;
bool allocated_netdev = false;
struct fwnet_device *dev;
unsigned max_mtu;
int ret;
mutex_lock(&fwnet_device_mutex);
dev = fwnet_dev_find(card);
if (dev) {
net = dev->netdev;
goto have_dev;
}
net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
if (net == NULL) {
ret = -ENOMEM;
goto out;
}
allocated_netdev = true;
SET_NETDEV_DEV(net, card->device);
dev = netdev_priv(net);
spin_lock_init(&dev->lock);
dev->broadcast_state = FWNET_BROADCAST_ERROR;
dev->broadcast_rcv_context = NULL;
dev->broadcast_xmt_max_payload = 0;
dev->broadcast_xmt_datagramlabel = 0;
dev->local_fifo = FWNET_NO_FIFO_ADDR;
INIT_LIST_HEAD(&dev->packet_list);
INIT_LIST_HEAD(&dev->broadcasted_list);
INIT_LIST_HEAD(&dev->sent_list);
INIT_LIST_HEAD(&dev->peer_list);
dev->card = card;
dev->netdev = net;
/*
* Use the RFC 2734 default 1500 octets or the maximum payload
* as initial MTU
*/
max_mtu = (1 << (card->max_receive + 1))
- sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
net->mtu = min(1500U, max_mtu);
/* Set our hardware address while we're at it */
put_unaligned_be64(card->guid, net->dev_addr);
put_unaligned_be64(~0ULL, net->broadcast);
ret = register_netdev(net);
if (ret) {
fw_error("Cannot register the driver\n");
goto out;
}
list_add_tail(&dev->dev_link, &fwnet_device_list);
fw_notify("%s: IPv4 over FireWire on device %016llx\n",
net->name, (unsigned long long)card->guid);
have_dev:
ret = fwnet_add_peer(dev, unit, device);
if (ret && allocated_netdev) {
unregister_netdev(net);
list_del(&dev->dev_link);
}
out:
if (ret && allocated_netdev)
free_netdev(net);
mutex_unlock(&fwnet_device_mutex);
return ret;
}
static void fwnet_remove_peer(struct fwnet_peer *peer)
{
struct fwnet_partial_datagram *pd, *pd_next;
spin_lock_irq(&peer->dev->lock);
list_del(&peer->peer_link);
spin_unlock_irq(&peer->dev->lock);
list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
fwnet_pd_delete(pd);
kfree(peer);
}
static int fwnet_remove(struct device *_dev)
{
struct fwnet_peer *peer = dev_get_drvdata(_dev);
struct fwnet_device *dev = peer->dev;
struct net_device *net;
struct fwnet_packet_task *ptask, *pt_next;
mutex_lock(&fwnet_device_mutex);
fwnet_remove_peer(peer);
if (list_empty(&dev->peer_list)) {
net = dev->netdev;
unregister_netdev(net);
if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
fw_core_remove_address_handler(&dev->handler);
if (dev->broadcast_rcv_context) {
fw_iso_context_stop(dev->broadcast_rcv_context);
fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
dev->card);
fw_iso_context_destroy(dev->broadcast_rcv_context);
}
list_for_each_entry_safe(ptask, pt_next,
&dev->packet_list, pt_link) {
dev_kfree_skb_any(ptask->skb);
kmem_cache_free(fwnet_packet_task_cache, ptask);
}
list_for_each_entry_safe(ptask, pt_next,
&dev->broadcasted_list, pt_link) {
dev_kfree_skb_any(ptask->skb);
kmem_cache_free(fwnet_packet_task_cache, ptask);
}
list_for_each_entry_safe(ptask, pt_next,
&dev->sent_list, pt_link) {
dev_kfree_skb_any(ptask->skb);
kmem_cache_free(fwnet_packet_task_cache, ptask);
}
list_del(&dev->dev_link);
free_netdev(net);
}
mutex_unlock(&fwnet_device_mutex);
return 0;
}
/*
* FIXME abort partially sent fragmented datagrams,
* discard partially received fragmented datagrams
*/
static void fwnet_update(struct fw_unit *unit)
{
struct fw_device *device = fw_parent_device(unit);
struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
int generation;
generation = device->generation;
spin_lock_irq(&peer->dev->lock);
peer->node_id = device->node_id;
peer->generation = generation;
spin_unlock_irq(&peer->dev->lock);
}
static const struct ieee1394_device_id fwnet_id_table[] = {
{
.match_flags = IEEE1394_MATCH_SPECIFIER_ID |
IEEE1394_MATCH_VERSION,
.specifier_id = IANA_SPECIFIER_ID,
.version = RFC2734_SW_VERSION,
},
{ }
};
static struct fw_driver fwnet_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "net",
.bus = &fw_bus_type,
.probe = fwnet_probe,
.remove = fwnet_remove,
},
.update = fwnet_update,
.id_table = fwnet_id_table,
};
static const u32 rfc2374_unit_directory_data[] = {
0x00040000, /* directory_length */
0x1200005e, /* unit_specifier_id: IANA */
0x81000003, /* textual descriptor offset */
0x13000001, /* unit_sw_version: RFC 2734 */
0x81000005, /* textual descriptor offset */
0x00030000, /* descriptor_length */
0x00000000, /* text */
0x00000000, /* minimal ASCII, en */
0x49414e41, /* I A N A */
0x00030000, /* descriptor_length */
0x00000000, /* text */
0x00000000, /* minimal ASCII, en */
0x49507634, /* I P v 4 */
};
static struct fw_descriptor rfc2374_unit_directory = {
.length = ARRAY_SIZE(rfc2374_unit_directory_data),
.key = (CSR_DIRECTORY | CSR_UNIT) << 24,
.data = rfc2374_unit_directory_data
};
static int __init fwnet_init(void)
{
int err;
err = fw_core_add_descriptor(&rfc2374_unit_directory);
if (err)
return err;
fwnet_packet_task_cache = kmem_cache_create("packet_task",
sizeof(struct fwnet_packet_task), 0, 0, NULL);
if (!fwnet_packet_task_cache) {
err = -ENOMEM;
goto out;
}
err = driver_register(&fwnet_driver.driver);
if (!err)
return 0;
kmem_cache_destroy(fwnet_packet_task_cache);
out:
fw_core_remove_descriptor(&rfc2374_unit_directory);
return err;
}
module_init(fwnet_init);
static void __exit fwnet_cleanup(void)
{
driver_unregister(&fwnet_driver.driver);
kmem_cache_destroy(fwnet_packet_task_cache);
fw_core_remove_descriptor(&rfc2374_unit_directory);
}
module_exit(fwnet_cleanup);
MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);