linux/drivers/dma/ste_dma40_ll.c
Linus Walleij 8d318a50b3 DMAENGINE: Support for ST-Ericssons DMA40 block v3
This is a straightforward driver for the ST-Ericsson DMA40 DMA
controller found in U8500, implemented akin to the existing
COH 901 318 driver.

Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Acked-by: Srinidh Kasagar <srinidhi.kasagar@stericsson.com>
Cc: STEricsson_nomadik_linux@list.st.com
Cc: Alessandro Rubini <rubini@unipv.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2010-04-14 14:49:20 -07:00

454 lines
12 KiB
C

/*
* driver/dma/ste_dma40_ll.c
*
* Copyright (C) ST-Ericsson 2007-2010
* License terms: GNU General Public License (GPL) version 2
* Author: Per Friden <per.friden@stericsson.com>
* Author: Jonas Aaberg <jonas.aberg@stericsson.com>
*/
#include <linux/kernel.h>
#include <plat/ste_dma40.h>
#include "ste_dma40_ll.h"
/* Sets up proper LCSP1 and LCSP3 register for a logical channel */
void d40_log_cfg(struct stedma40_chan_cfg *cfg,
u32 *lcsp1, u32 *lcsp3)
{
u32 l3 = 0; /* dst */
u32 l1 = 0; /* src */
/* src is mem? -> increase address pos */
if (cfg->dir == STEDMA40_MEM_TO_PERIPH ||
cfg->dir == STEDMA40_MEM_TO_MEM)
l1 |= 1 << D40_MEM_LCSP1_SCFG_INCR_POS;
/* dst is mem? -> increase address pos */
if (cfg->dir == STEDMA40_PERIPH_TO_MEM ||
cfg->dir == STEDMA40_MEM_TO_MEM)
l3 |= 1 << D40_MEM_LCSP3_DCFG_INCR_POS;
/* src is hw? -> master port 1 */
if (cfg->dir == STEDMA40_PERIPH_TO_MEM ||
cfg->dir == STEDMA40_PERIPH_TO_PERIPH)
l1 |= 1 << D40_MEM_LCSP1_SCFG_MST_POS;
/* dst is hw? -> master port 1 */
if (cfg->dir == STEDMA40_MEM_TO_PERIPH ||
cfg->dir == STEDMA40_PERIPH_TO_PERIPH)
l3 |= 1 << D40_MEM_LCSP3_DCFG_MST_POS;
l3 |= 1 << D40_MEM_LCSP3_DCFG_TIM_POS;
l3 |= 1 << D40_MEM_LCSP3_DCFG_EIM_POS;
l3 |= cfg->dst_info.psize << D40_MEM_LCSP3_DCFG_PSIZE_POS;
l3 |= cfg->dst_info.data_width << D40_MEM_LCSP3_DCFG_ESIZE_POS;
l3 |= 1 << D40_MEM_LCSP3_DTCP_POS;
l1 |= 1 << D40_MEM_LCSP1_SCFG_EIM_POS;
l1 |= cfg->src_info.psize << D40_MEM_LCSP1_SCFG_PSIZE_POS;
l1 |= cfg->src_info.data_width << D40_MEM_LCSP1_SCFG_ESIZE_POS;
l1 |= 1 << D40_MEM_LCSP1_STCP_POS;
*lcsp1 = l1;
*lcsp3 = l3;
}
/* Sets up SRC and DST CFG register for both logical and physical channels */
void d40_phy_cfg(struct stedma40_chan_cfg *cfg,
u32 *src_cfg, u32 *dst_cfg, bool is_log)
{
u32 src = 0;
u32 dst = 0;
if (!is_log) {
/* Physical channel */
if ((cfg->dir == STEDMA40_PERIPH_TO_MEM) ||
(cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
/* Set master port to 1 */
src |= 1 << D40_SREG_CFG_MST_POS;
src |= D40_TYPE_TO_EVENT(cfg->src_dev_type);
if (cfg->src_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
src |= 1 << D40_SREG_CFG_PHY_TM_POS;
else
src |= 3 << D40_SREG_CFG_PHY_TM_POS;
}
if ((cfg->dir == STEDMA40_MEM_TO_PERIPH) ||
(cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
/* Set master port to 1 */
dst |= 1 << D40_SREG_CFG_MST_POS;
dst |= D40_TYPE_TO_EVENT(cfg->dst_dev_type);
if (cfg->dst_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
dst |= 1 << D40_SREG_CFG_PHY_TM_POS;
else
dst |= 3 << D40_SREG_CFG_PHY_TM_POS;
}
/* Interrupt on end of transfer for destination */
dst |= 1 << D40_SREG_CFG_TIM_POS;
/* Generate interrupt on error */
src |= 1 << D40_SREG_CFG_EIM_POS;
dst |= 1 << D40_SREG_CFG_EIM_POS;
/* PSIZE */
if (cfg->src_info.psize != STEDMA40_PSIZE_PHY_1) {
src |= 1 << D40_SREG_CFG_PHY_PEN_POS;
src |= cfg->src_info.psize << D40_SREG_CFG_PSIZE_POS;
}
if (cfg->dst_info.psize != STEDMA40_PSIZE_PHY_1) {
dst |= 1 << D40_SREG_CFG_PHY_PEN_POS;
dst |= cfg->dst_info.psize << D40_SREG_CFG_PSIZE_POS;
}
/* Element size */
src |= cfg->src_info.data_width << D40_SREG_CFG_ESIZE_POS;
dst |= cfg->dst_info.data_width << D40_SREG_CFG_ESIZE_POS;
} else {
/* Logical channel */
dst |= 1 << D40_SREG_CFG_LOG_GIM_POS;
src |= 1 << D40_SREG_CFG_LOG_GIM_POS;
}
if (cfg->channel_type & STEDMA40_HIGH_PRIORITY_CHANNEL) {
src |= 1 << D40_SREG_CFG_PRI_POS;
dst |= 1 << D40_SREG_CFG_PRI_POS;
}
src |= cfg->src_info.endianess << D40_SREG_CFG_LBE_POS;
dst |= cfg->dst_info.endianess << D40_SREG_CFG_LBE_POS;
*src_cfg = src;
*dst_cfg = dst;
}
int d40_phy_fill_lli(struct d40_phy_lli *lli,
dma_addr_t data,
u32 data_size,
int psize,
dma_addr_t next_lli,
u32 reg_cfg,
bool term_int,
u32 data_width,
bool is_device)
{
int num_elems;
if (psize == STEDMA40_PSIZE_PHY_1)
num_elems = 1;
else
num_elems = 2 << psize;
/*
* Size is 16bit. data_width is 8, 16, 32 or 64 bit
* Block large than 64 KiB must be split.
*/
if (data_size > (0xffff << data_width))
return -EINVAL;
/* Must be aligned */
if (!IS_ALIGNED(data, 0x1 << data_width))
return -EINVAL;
/* Transfer size can't be smaller than (num_elms * elem_size) */
if (data_size < num_elems * (0x1 << data_width))
return -EINVAL;
/* The number of elements. IE now many chunks */
lli->reg_elt = (data_size >> data_width) << D40_SREG_ELEM_PHY_ECNT_POS;
/*
* Distance to next element sized entry.
* Usually the size of the element unless you want gaps.
*/
if (!is_device)
lli->reg_elt |= (0x1 << data_width) <<
D40_SREG_ELEM_PHY_EIDX_POS;
/* Where the data is */
lli->reg_ptr = data;
lli->reg_cfg = reg_cfg;
/* If this scatter list entry is the last one, no next link */
if (next_lli == 0)
lli->reg_lnk = 0x1 << D40_SREG_LNK_PHY_TCP_POS;
else
lli->reg_lnk = next_lli;
/* Set/clear interrupt generation on this link item.*/
if (term_int)
lli->reg_cfg |= 0x1 << D40_SREG_CFG_TIM_POS;
else
lli->reg_cfg &= ~(0x1 << D40_SREG_CFG_TIM_POS);
/* Post link */
lli->reg_lnk |= 0 << D40_SREG_LNK_PHY_PRE_POS;
return 0;
}
int d40_phy_sg_to_lli(struct scatterlist *sg,
int sg_len,
dma_addr_t target,
struct d40_phy_lli *lli,
dma_addr_t lli_phys,
u32 reg_cfg,
u32 data_width,
int psize,
bool term_int)
{
int total_size = 0;
int i;
struct scatterlist *current_sg = sg;
dma_addr_t next_lli_phys;
dma_addr_t dst;
int err = 0;
for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg);
/* If this scatter list entry is the last one, no next link */
if (sg_len - 1 == i)
next_lli_phys = 0;
else
next_lli_phys = ALIGN(lli_phys + (i + 1) *
sizeof(struct d40_phy_lli),
D40_LLI_ALIGN);
if (target)
dst = target;
else
dst = sg_phys(current_sg);
err = d40_phy_fill_lli(&lli[i],
dst,
sg_dma_len(current_sg),
psize,
next_lli_phys,
reg_cfg,
!next_lli_phys,
data_width,
target == dst);
if (err)
goto err;
}
return total_size;
err:
return err;
}
void d40_phy_lli_write(void __iomem *virtbase,
u32 phy_chan_num,
struct d40_phy_lli *lli_dst,
struct d40_phy_lli *lli_src)
{
writel(lli_src->reg_cfg, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSCFG);
writel(lli_src->reg_elt, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
writel(lli_src->reg_ptr, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSPTR);
writel(lli_src->reg_lnk, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSLNK);
writel(lli_dst->reg_cfg, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDCFG);
writel(lli_dst->reg_elt, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
writel(lli_dst->reg_ptr, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDPTR);
writel(lli_dst->reg_lnk, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDLNK);
}
/* DMA logical lli operations */
void d40_log_fill_lli(struct d40_log_lli *lli,
dma_addr_t data, u32 data_size,
u32 lli_next_off, u32 reg_cfg,
u32 data_width,
bool term_int, bool addr_inc)
{
lli->lcsp13 = reg_cfg;
/* The number of elements to transfer */
lli->lcsp02 = ((data_size >> data_width) <<
D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK;
/* 16 LSBs address of the current element */
lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK;
/* 16 MSBs address of the current element */
lli->lcsp13 |= data & D40_MEM_LCSP1_SPTR_MASK;
if (addr_inc)
lli->lcsp13 |= D40_MEM_LCSP1_SCFG_INCR_MASK;
lli->lcsp13 |= D40_MEM_LCSP3_DTCP_MASK;
/* If this scatter list entry is the last one, no next link */
lli->lcsp13 |= (lli_next_off << D40_MEM_LCSP1_SLOS_POS) &
D40_MEM_LCSP1_SLOS_MASK;
if (term_int)
lli->lcsp13 |= D40_MEM_LCSP1_SCFG_TIM_MASK;
else
lli->lcsp13 &= ~D40_MEM_LCSP1_SCFG_TIM_MASK;
}
int d40_log_sg_to_dev(struct d40_lcla_elem *lcla,
struct scatterlist *sg,
int sg_len,
struct d40_log_lli_bidir *lli,
struct d40_def_lcsp *lcsp,
u32 src_data_width,
u32 dst_data_width,
enum dma_data_direction direction,
bool term_int, dma_addr_t dev_addr, int max_len,
int llis_per_log)
{
int total_size = 0;
struct scatterlist *current_sg = sg;
int i;
u32 next_lli_off_dst;
u32 next_lli_off_src;
next_lli_off_src = 0;
next_lli_off_dst = 0;
for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg);
/*
* If this scatter list entry is the last one or
* max length, terminate link.
*/
if (sg_len - 1 == i || ((i+1) % max_len == 0)) {
next_lli_off_src = 0;
next_lli_off_dst = 0;
} else {
if (next_lli_off_dst == 0 &&
next_lli_off_src == 0) {
/* The first lli will be at next_lli_off */
next_lli_off_dst = (lcla->dst_id *
llis_per_log + 1);
next_lli_off_src = (lcla->src_id *
llis_per_log + 1);
} else {
next_lli_off_dst++;
next_lli_off_src++;
}
}
if (direction == DMA_TO_DEVICE) {
d40_log_fill_lli(&lli->src[i],
sg_phys(current_sg),
sg_dma_len(current_sg),
next_lli_off_src,
lcsp->lcsp1, src_data_width,
term_int && !next_lli_off_src,
true);
d40_log_fill_lli(&lli->dst[i],
dev_addr,
sg_dma_len(current_sg),
next_lli_off_dst,
lcsp->lcsp3, dst_data_width,
/* No next == terminal interrupt */
term_int && !next_lli_off_dst,
false);
} else {
d40_log_fill_lli(&lli->dst[i],
sg_phys(current_sg),
sg_dma_len(current_sg),
next_lli_off_dst,
lcsp->lcsp3, dst_data_width,
/* No next == terminal interrupt */
term_int && !next_lli_off_dst,
true);
d40_log_fill_lli(&lli->src[i],
dev_addr,
sg_dma_len(current_sg),
next_lli_off_src,
lcsp->lcsp1, src_data_width,
term_int && !next_lli_off_src,
false);
}
}
return total_size;
}
int d40_log_sg_to_lli(int lcla_id,
struct scatterlist *sg,
int sg_len,
struct d40_log_lli *lli_sg,
u32 lcsp13, /* src or dst*/
u32 data_width,
bool term_int, int max_len, int llis_per_log)
{
int total_size = 0;
struct scatterlist *current_sg = sg;
int i;
u32 next_lli_off = 0;
for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg);
/*
* If this scatter list entry is the last one or
* max length, terminate link.
*/
if (sg_len - 1 == i || ((i+1) % max_len == 0))
next_lli_off = 0;
else {
if (next_lli_off == 0)
/* The first lli will be at next_lli_off */
next_lli_off = lcla_id * llis_per_log + 1;
else
next_lli_off++;
}
d40_log_fill_lli(&lli_sg[i],
sg_phys(current_sg),
sg_dma_len(current_sg),
next_lli_off,
lcsp13, data_width,
term_int && !next_lli_off,
true);
}
return total_size;
}
void d40_log_lli_write(struct d40_log_lli_full *lcpa,
struct d40_log_lli *lcla_src,
struct d40_log_lli *lcla_dst,
struct d40_log_lli *lli_dst,
struct d40_log_lli *lli_src,
int llis_per_log)
{
u32 slos = 0;
u32 dlos = 0;
int i;
lcpa->lcsp0 = lli_src->lcsp02;
lcpa->lcsp1 = lli_src->lcsp13;
lcpa->lcsp2 = lli_dst->lcsp02;
lcpa->lcsp3 = lli_dst->lcsp13;
slos = lli_src->lcsp13 & D40_MEM_LCSP1_SLOS_MASK;
dlos = lli_dst->lcsp13 & D40_MEM_LCSP3_DLOS_MASK;
for (i = 0; (i < llis_per_log) && slos && dlos; i++) {
writel(lli_src[i+1].lcsp02, &lcla_src[i].lcsp02);
writel(lli_src[i+1].lcsp13, &lcla_src[i].lcsp13);
writel(lli_dst[i+1].lcsp02, &lcla_dst[i].lcsp02);
writel(lli_dst[i+1].lcsp13, &lcla_dst[i].lcsp13);
slos = lli_src[i+1].lcsp13 & D40_MEM_LCSP1_SLOS_MASK;
dlos = lli_dst[i+1].lcsp13 & D40_MEM_LCSP3_DLOS_MASK;
}
}