linux/arch/x86/kernel/genx2apic_uv_x.c
Marcin Slusarz c4bd1fdab0 x86: fix section mismatch warning - uv_cpu_init
WARNING: vmlinux.o(.cpuinit.text+0x3cc4): Section mismatch in reference from the function uv_cpu_init() to the function .init.text:uv_system_init()
The function __cpuinit uv_cpu_init() references
a function __init uv_system_init().
If uv_system_init is only used by uv_cpu_init then
annotate uv_system_init with a matching annotation.

uv_system_init was ment to be called only once, so do it from codepath
(native_smp_prepare_cpus) which is called once, right before activation
of other cpus (smp_init).

Note: old code relied on uv_node_to_blade being initialized to 0,
but it'a not initialized from anywhere.

Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Acked-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-08-22 14:12:20 +02:00

403 lines
11 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* SGI UV APIC functions (note: not an Intel compatible APIC)
*
* Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/threads.h>
#include <linux/cpumask.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/ctype.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <asm/smp.h>
#include <asm/ipi.h>
#include <asm/genapic.h>
#include <asm/pgtable.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_hub.h>
#include <asm/uv/bios.h>
DEFINE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
EXPORT_PER_CPU_SYMBOL_GPL(__uv_hub_info);
struct uv_blade_info *uv_blade_info;
EXPORT_SYMBOL_GPL(uv_blade_info);
short *uv_node_to_blade;
EXPORT_SYMBOL_GPL(uv_node_to_blade);
short *uv_cpu_to_blade;
EXPORT_SYMBOL_GPL(uv_cpu_to_blade);
short uv_possible_blades;
EXPORT_SYMBOL_GPL(uv_possible_blades);
unsigned long sn_rtc_cycles_per_second;
EXPORT_SYMBOL(sn_rtc_cycles_per_second);
/* Start with all IRQs pointing to boot CPU. IRQ balancing will shift them. */
static cpumask_t uv_target_cpus(void)
{
return cpumask_of_cpu(0);
}
static cpumask_t uv_vector_allocation_domain(int cpu)
{
cpumask_t domain = CPU_MASK_NONE;
cpu_set(cpu, domain);
return domain;
}
int uv_wakeup_secondary(int phys_apicid, unsigned int start_rip)
{
unsigned long val;
int pnode;
pnode = uv_apicid_to_pnode(phys_apicid);
val = (1UL << UVH_IPI_INT_SEND_SHFT) |
(phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
(((long)start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
APIC_DM_INIT;
uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
mdelay(10);
val = (1UL << UVH_IPI_INT_SEND_SHFT) |
(phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
(((long)start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
APIC_DM_STARTUP;
uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
return 0;
}
static void uv_send_IPI_one(int cpu, int vector)
{
unsigned long val, apicid, lapicid;
int pnode;
apicid = per_cpu(x86_cpu_to_apicid, cpu); /* ZZZ - cache node-local ? */
lapicid = apicid & 0x3f; /* ZZZ macro needed */
pnode = uv_apicid_to_pnode(apicid);
val =
(1UL << UVH_IPI_INT_SEND_SHFT) | (lapicid <<
UVH_IPI_INT_APIC_ID_SHFT) |
(vector << UVH_IPI_INT_VECTOR_SHFT);
uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
}
static void uv_send_IPI_mask(cpumask_t mask, int vector)
{
unsigned int cpu;
for_each_possible_cpu(cpu)
if (cpu_isset(cpu, mask))
uv_send_IPI_one(cpu, vector);
}
static void uv_send_IPI_allbutself(int vector)
{
cpumask_t mask = cpu_online_map;
cpu_clear(smp_processor_id(), mask);
if (!cpus_empty(mask))
uv_send_IPI_mask(mask, vector);
}
static void uv_send_IPI_all(int vector)
{
uv_send_IPI_mask(cpu_online_map, vector);
}
static int uv_apic_id_registered(void)
{
return 1;
}
static unsigned int uv_cpu_mask_to_apicid(cpumask_t cpumask)
{
int cpu;
/*
* We're using fixed IRQ delivery, can only return one phys APIC ID.
* May as well be the first.
*/
cpu = first_cpu(cpumask);
if ((unsigned)cpu < nr_cpu_ids)
return per_cpu(x86_cpu_to_apicid, cpu);
else
return BAD_APICID;
}
static unsigned int phys_pkg_id(int index_msb)
{
return GET_APIC_ID(read_apic_id()) >> index_msb;
}
#ifdef ZZZ /* Needs x2apic patch */
static void uv_send_IPI_self(int vector)
{
apic_write(APIC_SELF_IPI, vector);
}
#endif
struct genapic apic_x2apic_uv_x = {
.name = "UV large system",
.int_delivery_mode = dest_Fixed,
.int_dest_mode = (APIC_DEST_PHYSICAL != 0),
.target_cpus = uv_target_cpus,
.vector_allocation_domain = uv_vector_allocation_domain,/* Fixme ZZZ */
.apic_id_registered = uv_apic_id_registered,
.send_IPI_all = uv_send_IPI_all,
.send_IPI_allbutself = uv_send_IPI_allbutself,
.send_IPI_mask = uv_send_IPI_mask,
/* ZZZ.send_IPI_self = uv_send_IPI_self, */
.cpu_mask_to_apicid = uv_cpu_mask_to_apicid,
.phys_pkg_id = phys_pkg_id, /* Fixme ZZZ */
};
static __cpuinit void set_x2apic_extra_bits(int pnode)
{
__get_cpu_var(x2apic_extra_bits) = (pnode << 6);
}
/*
* Called on boot cpu.
*/
static __init int boot_pnode_to_blade(int pnode)
{
int blade;
for (blade = 0; blade < uv_num_possible_blades(); blade++)
if (pnode == uv_blade_info[blade].pnode)
return blade;
BUG();
}
struct redir_addr {
unsigned long redirect;
unsigned long alias;
};
#define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT
static __initdata struct redir_addr redir_addrs[] = {
{UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR, UVH_SI_ALIAS0_OVERLAY_CONFIG},
{UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR, UVH_SI_ALIAS1_OVERLAY_CONFIG},
{UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR, UVH_SI_ALIAS2_OVERLAY_CONFIG},
};
static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
{
union uvh_si_alias0_overlay_config_u alias;
union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect;
int i;
for (i = 0; i < ARRAY_SIZE(redir_addrs); i++) {
alias.v = uv_read_local_mmr(redir_addrs[i].alias);
if (alias.s.base == 0) {
*size = (1UL << alias.s.m_alias);
redirect.v = uv_read_local_mmr(redir_addrs[i].redirect);
*base = (unsigned long)redirect.s.dest_base << DEST_SHIFT;
return;
}
}
BUG();
}
static __init void map_low_mmrs(void)
{
init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE);
init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE);
}
enum map_type {map_wb, map_uc};
static __init void map_high(char *id, unsigned long base, int shift, enum map_type map_type)
{
unsigned long bytes, paddr;
paddr = base << shift;
bytes = (1UL << shift);
printk(KERN_INFO "UV: Map %s_HI 0x%lx - 0x%lx\n", id, paddr,
paddr + bytes);
if (map_type == map_uc)
init_extra_mapping_uc(paddr, bytes);
else
init_extra_mapping_wb(paddr, bytes);
}
static __init void map_gru_high(int max_pnode)
{
union uvh_rh_gam_gru_overlay_config_mmr_u gru;
int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT;
gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR);
if (gru.s.enable)
map_high("GRU", gru.s.base, shift, map_wb);
}
static __init void map_config_high(int max_pnode)
{
union uvh_rh_gam_cfg_overlay_config_mmr_u cfg;
int shift = UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR_BASE_SHFT;
cfg.v = uv_read_local_mmr(UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR);
if (cfg.s.enable)
map_high("CONFIG", cfg.s.base, shift, map_uc);
}
static __init void map_mmr_high(int max_pnode)
{
union uvh_rh_gam_mmr_overlay_config_mmr_u mmr;
int shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR_BASE_SHFT;
mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR);
if (mmr.s.enable)
map_high("MMR", mmr.s.base, shift, map_uc);
}
static __init void map_mmioh_high(int max_pnode)
{
union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh;
int shift = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT;
mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR);
if (mmioh.s.enable)
map_high("MMIOH", mmioh.s.base, shift, map_uc);
}
static __init void uv_rtc_init(void)
{
long status, ticks_per_sec, drift;
status =
x86_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec,
&drift);
if (status != 0 || ticks_per_sec < 100000) {
printk(KERN_WARNING
"unable to determine platform RTC clock frequency, "
"guessing.\n");
/* BIOS gives wrong value for clock freq. so guess */
sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
} else
sn_rtc_cycles_per_second = ticks_per_sec;
}
static bool uv_system_inited;
void __init uv_system_init(void)
{
union uvh_si_addr_map_config_u m_n_config;
union uvh_node_id_u node_id;
unsigned long gnode_upper, lowmem_redir_base, lowmem_redir_size;
int bytes, nid, cpu, lcpu, pnode, blade, i, j, m_val, n_val;
int max_pnode = 0;
unsigned long mmr_base, present;
map_low_mmrs();
m_n_config.v = uv_read_local_mmr(UVH_SI_ADDR_MAP_CONFIG);
m_val = m_n_config.s.m_skt;
n_val = m_n_config.s.n_skt;
mmr_base =
uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) &
~UV_MMR_ENABLE;
printk(KERN_DEBUG "UV: global MMR base 0x%lx\n", mmr_base);
for(i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++)
uv_possible_blades +=
hweight64(uv_read_local_mmr( UVH_NODE_PRESENT_TABLE + i * 8));
printk(KERN_DEBUG "UV: Found %d blades\n", uv_num_possible_blades());
bytes = sizeof(struct uv_blade_info) * uv_num_possible_blades();
uv_blade_info = alloc_bootmem_pages(bytes);
get_lowmem_redirect(&lowmem_redir_base, &lowmem_redir_size);
bytes = sizeof(uv_node_to_blade[0]) * num_possible_nodes();
uv_node_to_blade = alloc_bootmem_pages(bytes);
memset(uv_node_to_blade, 255, bytes);
bytes = sizeof(uv_cpu_to_blade[0]) * num_possible_cpus();
uv_cpu_to_blade = alloc_bootmem_pages(bytes);
memset(uv_cpu_to_blade, 255, bytes);
blade = 0;
for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) {
present = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8);
for (j = 0; j < 64; j++) {
if (!test_bit(j, &present))
continue;
uv_blade_info[blade].pnode = (i * 64 + j);
uv_blade_info[blade].nr_possible_cpus = 0;
uv_blade_info[blade].nr_online_cpus = 0;
blade++;
}
}
node_id.v = uv_read_local_mmr(UVH_NODE_ID);
gnode_upper = (((unsigned long)node_id.s.node_id) &
~((1 << n_val) - 1)) << m_val;
uv_rtc_init();
for_each_present_cpu(cpu) {
nid = cpu_to_node(cpu);
pnode = uv_apicid_to_pnode(per_cpu(x86_cpu_to_apicid, cpu));
blade = boot_pnode_to_blade(pnode);
lcpu = uv_blade_info[blade].nr_possible_cpus;
uv_blade_info[blade].nr_possible_cpus++;
uv_cpu_hub_info(cpu)->lowmem_remap_base = lowmem_redir_base;
uv_cpu_hub_info(cpu)->lowmem_remap_top =
lowmem_redir_base + lowmem_redir_size;
uv_cpu_hub_info(cpu)->m_val = m_val;
uv_cpu_hub_info(cpu)->n_val = m_val;
uv_cpu_hub_info(cpu)->numa_blade_id = blade;
uv_cpu_hub_info(cpu)->blade_processor_id = lcpu;
uv_cpu_hub_info(cpu)->pnode = pnode;
uv_cpu_hub_info(cpu)->pnode_mask = (1 << n_val) - 1;
uv_cpu_hub_info(cpu)->gpa_mask = (1 << (m_val + n_val)) - 1;
uv_cpu_hub_info(cpu)->gnode_upper = gnode_upper;
uv_cpu_hub_info(cpu)->global_mmr_base = mmr_base;
uv_cpu_hub_info(cpu)->coherency_domain_number = 0;/* ZZZ */
uv_node_to_blade[nid] = blade;
uv_cpu_to_blade[cpu] = blade;
max_pnode = max(pnode, max_pnode);
printk(KERN_DEBUG "UV: cpu %d, apicid 0x%x, pnode %d, nid %d, "
"lcpu %d, blade %d\n",
cpu, per_cpu(x86_cpu_to_apicid, cpu), pnode, nid,
lcpu, blade);
}
map_gru_high(max_pnode);
map_mmr_high(max_pnode);
map_config_high(max_pnode);
map_mmioh_high(max_pnode);
uv_system_inited = true;
}
/*
* Called on each cpu to initialize the per_cpu UV data area.
* ZZZ hotplug not supported yet
*/
void __cpuinit uv_cpu_init(void)
{
BUG_ON(!uv_system_inited);
uv_blade_info[uv_numa_blade_id()].nr_online_cpus++;
if (get_uv_system_type() == UV_NON_UNIQUE_APIC)
set_x2apic_extra_bits(uv_hub_info->pnode);
}