linux/drivers/scsi/stex.c
Jeff Garzik f281233d3e SCSI host lock push-down
Move the mid-layer's ->queuecommand() invocation from being locked
with the host lock to being unlocked to facilitate speeding up the
critical path for drivers who don't need this lock taken anyway.

The patch below presents a simple SCSI host lock push-down as an
equivalent transformation.  No locking or other behavior should change
with this patch.  All existing bugs and locking orders are preserved.

Additionally, add one parameter to queuecommand,
	struct Scsi_Host *
and remove one parameter from queuecommand,
	void (*done)(struct scsi_cmnd *)

Scsi_Host* is a convenient pointer that most host drivers need anyway,
and 'done' is redundant to struct scsi_cmnd->scsi_done.

Minimal code disturbance was attempted with this change.  Most drivers
needed only two one-line modifications for their host lock push-down.

Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
Acked-by: James Bottomley <James.Bottomley@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-11-16 13:33:23 -08:00

1837 lines
43 KiB
C

/*
* SuperTrak EX Series Storage Controller driver for Linux
*
* Copyright (C) 2005-2009 Promise Technology Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Written By:
* Ed Lin <promise_linux@promise.com>
*
*/
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/pci.h>
#include <linux/blkdev.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/byteorder.h>
#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_eh.h>
#define DRV_NAME "stex"
#define ST_DRIVER_VERSION "4.6.0000.4"
#define ST_VER_MAJOR 4
#define ST_VER_MINOR 6
#define ST_OEM 0
#define ST_BUILD_VER 4
enum {
/* MU register offset */
IMR0 = 0x10, /* MU_INBOUND_MESSAGE_REG0 */
IMR1 = 0x14, /* MU_INBOUND_MESSAGE_REG1 */
OMR0 = 0x18, /* MU_OUTBOUND_MESSAGE_REG0 */
OMR1 = 0x1c, /* MU_OUTBOUND_MESSAGE_REG1 */
IDBL = 0x20, /* MU_INBOUND_DOORBELL */
IIS = 0x24, /* MU_INBOUND_INTERRUPT_STATUS */
IIM = 0x28, /* MU_INBOUND_INTERRUPT_MASK */
ODBL = 0x2c, /* MU_OUTBOUND_DOORBELL */
OIS = 0x30, /* MU_OUTBOUND_INTERRUPT_STATUS */
OIM = 0x3c, /* MU_OUTBOUND_INTERRUPT_MASK */
YIOA_STATUS = 0x00,
YH2I_INT = 0x20,
YINT_EN = 0x34,
YI2H_INT = 0x9c,
YI2H_INT_C = 0xa0,
YH2I_REQ = 0xc0,
YH2I_REQ_HI = 0xc4,
/* MU register value */
MU_INBOUND_DOORBELL_HANDSHAKE = (1 << 0),
MU_INBOUND_DOORBELL_REQHEADCHANGED = (1 << 1),
MU_INBOUND_DOORBELL_STATUSTAILCHANGED = (1 << 2),
MU_INBOUND_DOORBELL_HMUSTOPPED = (1 << 3),
MU_INBOUND_DOORBELL_RESET = (1 << 4),
MU_OUTBOUND_DOORBELL_HANDSHAKE = (1 << 0),
MU_OUTBOUND_DOORBELL_REQUESTTAILCHANGED = (1 << 1),
MU_OUTBOUND_DOORBELL_STATUSHEADCHANGED = (1 << 2),
MU_OUTBOUND_DOORBELL_BUSCHANGE = (1 << 3),
MU_OUTBOUND_DOORBELL_HASEVENT = (1 << 4),
MU_OUTBOUND_DOORBELL_REQUEST_RESET = (1 << 27),
/* MU status code */
MU_STATE_STARTING = 1,
MU_STATE_STARTED = 2,
MU_STATE_RESETTING = 3,
MU_STATE_FAILED = 4,
MU_MAX_DELAY = 120,
MU_HANDSHAKE_SIGNATURE = 0x55aaaa55,
MU_HANDSHAKE_SIGNATURE_HALF = 0x5a5a0000,
MU_HARD_RESET_WAIT = 30000,
HMU_PARTNER_TYPE = 2,
/* firmware returned values */
SRB_STATUS_SUCCESS = 0x01,
SRB_STATUS_ERROR = 0x04,
SRB_STATUS_BUSY = 0x05,
SRB_STATUS_INVALID_REQUEST = 0x06,
SRB_STATUS_SELECTION_TIMEOUT = 0x0A,
SRB_SEE_SENSE = 0x80,
/* task attribute */
TASK_ATTRIBUTE_SIMPLE = 0x0,
TASK_ATTRIBUTE_HEADOFQUEUE = 0x1,
TASK_ATTRIBUTE_ORDERED = 0x2,
TASK_ATTRIBUTE_ACA = 0x4,
SS_STS_NORMAL = 0x80000000,
SS_STS_DONE = 0x40000000,
SS_STS_HANDSHAKE = 0x20000000,
SS_HEAD_HANDSHAKE = 0x80,
SS_H2I_INT_RESET = 0x100,
SS_I2H_REQUEST_RESET = 0x2000,
SS_MU_OPERATIONAL = 0x80000000,
STEX_CDB_LENGTH = 16,
STATUS_VAR_LEN = 128,
/* sg flags */
SG_CF_EOT = 0x80, /* end of table */
SG_CF_64B = 0x40, /* 64 bit item */
SG_CF_HOST = 0x20, /* sg in host memory */
MSG_DATA_DIR_ND = 0,
MSG_DATA_DIR_IN = 1,
MSG_DATA_DIR_OUT = 2,
st_shasta = 0,
st_vsc = 1,
st_yosemite = 2,
st_seq = 3,
st_yel = 4,
PASSTHRU_REQ_TYPE = 0x00000001,
PASSTHRU_REQ_NO_WAKEUP = 0x00000100,
ST_INTERNAL_TIMEOUT = 180,
ST_TO_CMD = 0,
ST_FROM_CMD = 1,
/* vendor specific commands of Promise */
MGT_CMD = 0xd8,
SINBAND_MGT_CMD = 0xd9,
ARRAY_CMD = 0xe0,
CONTROLLER_CMD = 0xe1,
DEBUGGING_CMD = 0xe2,
PASSTHRU_CMD = 0xe3,
PASSTHRU_GET_ADAPTER = 0x05,
PASSTHRU_GET_DRVVER = 0x10,
CTLR_CONFIG_CMD = 0x03,
CTLR_SHUTDOWN = 0x0d,
CTLR_POWER_STATE_CHANGE = 0x0e,
CTLR_POWER_SAVING = 0x01,
PASSTHRU_SIGNATURE = 0x4e415041,
MGT_CMD_SIGNATURE = 0xba,
INQUIRY_EVPD = 0x01,
ST_ADDITIONAL_MEM = 0x200000,
ST_ADDITIONAL_MEM_MIN = 0x80000,
};
struct st_sgitem {
u8 ctrl; /* SG_CF_xxx */
u8 reserved[3];
__le32 count;
__le64 addr;
};
struct st_ss_sgitem {
__le32 addr;
__le32 addr_hi;
__le32 count;
};
struct st_sgtable {
__le16 sg_count;
__le16 max_sg_count;
__le32 sz_in_byte;
};
struct st_msg_header {
__le64 handle;
u8 flag;
u8 channel;
__le16 timeout;
u32 reserved;
};
struct handshake_frame {
__le64 rb_phy; /* request payload queue physical address */
__le16 req_sz; /* size of each request payload */
__le16 req_cnt; /* count of reqs the buffer can hold */
__le16 status_sz; /* size of each status payload */
__le16 status_cnt; /* count of status the buffer can hold */
__le64 hosttime; /* seconds from Jan 1, 1970 (GMT) */
u8 partner_type; /* who sends this frame */
u8 reserved0[7];
__le32 partner_ver_major;
__le32 partner_ver_minor;
__le32 partner_ver_oem;
__le32 partner_ver_build;
__le32 extra_offset; /* NEW */
__le32 extra_size; /* NEW */
__le32 scratch_size;
u32 reserved1;
};
struct req_msg {
__le16 tag;
u8 lun;
u8 target;
u8 task_attr;
u8 task_manage;
u8 data_dir;
u8 payload_sz; /* payload size in 4-byte, not used */
u8 cdb[STEX_CDB_LENGTH];
u32 variable[0];
};
struct status_msg {
__le16 tag;
u8 lun;
u8 target;
u8 srb_status;
u8 scsi_status;
u8 reserved;
u8 payload_sz; /* payload size in 4-byte */
u8 variable[STATUS_VAR_LEN];
};
struct ver_info {
u32 major;
u32 minor;
u32 oem;
u32 build;
u32 reserved[2];
};
struct st_frame {
u32 base[6];
u32 rom_addr;
struct ver_info drv_ver;
struct ver_info bios_ver;
u32 bus;
u32 slot;
u32 irq_level;
u32 irq_vec;
u32 id;
u32 subid;
u32 dimm_size;
u8 dimm_type;
u8 reserved[3];
u32 channel;
u32 reserved1;
};
struct st_drvver {
u32 major;
u32 minor;
u32 oem;
u32 build;
u32 signature[2];
u8 console_id;
u8 host_no;
u8 reserved0[2];
u32 reserved[3];
};
struct st_ccb {
struct req_msg *req;
struct scsi_cmnd *cmd;
void *sense_buffer;
unsigned int sense_bufflen;
int sg_count;
u32 req_type;
u8 srb_status;
u8 scsi_status;
u8 reserved[2];
};
struct st_hba {
void __iomem *mmio_base; /* iomapped PCI memory space */
void *dma_mem;
dma_addr_t dma_handle;
size_t dma_size;
struct Scsi_Host *host;
struct pci_dev *pdev;
struct req_msg * (*alloc_rq) (struct st_hba *);
int (*map_sg)(struct st_hba *, struct req_msg *, struct st_ccb *);
void (*send) (struct st_hba *, struct req_msg *, u16);
u32 req_head;
u32 req_tail;
u32 status_head;
u32 status_tail;
struct status_msg *status_buffer;
void *copy_buffer; /* temp buffer for driver-handled commands */
struct st_ccb *ccb;
struct st_ccb *wait_ccb;
__le32 *scratch;
char work_q_name[20];
struct workqueue_struct *work_q;
struct work_struct reset_work;
wait_queue_head_t reset_waitq;
unsigned int mu_status;
unsigned int cardtype;
int msi_enabled;
int out_req_cnt;
u32 extra_offset;
u16 rq_count;
u16 rq_size;
u16 sts_count;
};
struct st_card_info {
struct req_msg * (*alloc_rq) (struct st_hba *);
int (*map_sg)(struct st_hba *, struct req_msg *, struct st_ccb *);
void (*send) (struct st_hba *, struct req_msg *, u16);
unsigned int max_id;
unsigned int max_lun;
unsigned int max_channel;
u16 rq_count;
u16 rq_size;
u16 sts_count;
};
static int msi;
module_param(msi, int, 0);
MODULE_PARM_DESC(msi, "Enable Message Signaled Interrupts(0=off, 1=on)");
static const char console_inq_page[] =
{
0x03,0x00,0x03,0x03,0xFA,0x00,0x00,0x30,
0x50,0x72,0x6F,0x6D,0x69,0x73,0x65,0x20, /* "Promise " */
0x52,0x41,0x49,0x44,0x20,0x43,0x6F,0x6E, /* "RAID Con" */
0x73,0x6F,0x6C,0x65,0x20,0x20,0x20,0x20, /* "sole " */
0x31,0x2E,0x30,0x30,0x20,0x20,0x20,0x20, /* "1.00 " */
0x53,0x58,0x2F,0x52,0x53,0x41,0x46,0x2D, /* "SX/RSAF-" */
0x54,0x45,0x31,0x2E,0x30,0x30,0x20,0x20, /* "TE1.00 " */
0x0C,0x20,0x20,0x20,0x20,0x20,0x20,0x20
};
MODULE_AUTHOR("Ed Lin");
MODULE_DESCRIPTION("Promise Technology SuperTrak EX Controllers");
MODULE_LICENSE("GPL");
MODULE_VERSION(ST_DRIVER_VERSION);
static void stex_gettime(__le64 *time)
{
struct timeval tv;
do_gettimeofday(&tv);
*time = cpu_to_le64(tv.tv_sec);
}
static struct status_msg *stex_get_status(struct st_hba *hba)
{
struct status_msg *status = hba->status_buffer + hba->status_tail;
++hba->status_tail;
hba->status_tail %= hba->sts_count+1;
return status;
}
static void stex_invalid_field(struct scsi_cmnd *cmd,
void (*done)(struct scsi_cmnd *))
{
cmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION;
/* "Invalid field in cdb" */
scsi_build_sense_buffer(0, cmd->sense_buffer, ILLEGAL_REQUEST, 0x24,
0x0);
done(cmd);
}
static struct req_msg *stex_alloc_req(struct st_hba *hba)
{
struct req_msg *req = hba->dma_mem + hba->req_head * hba->rq_size;
++hba->req_head;
hba->req_head %= hba->rq_count+1;
return req;
}
static struct req_msg *stex_ss_alloc_req(struct st_hba *hba)
{
return (struct req_msg *)(hba->dma_mem +
hba->req_head * hba->rq_size + sizeof(struct st_msg_header));
}
static int stex_map_sg(struct st_hba *hba,
struct req_msg *req, struct st_ccb *ccb)
{
struct scsi_cmnd *cmd;
struct scatterlist *sg;
struct st_sgtable *dst;
struct st_sgitem *table;
int i, nseg;
cmd = ccb->cmd;
nseg = scsi_dma_map(cmd);
BUG_ON(nseg < 0);
if (nseg) {
dst = (struct st_sgtable *)req->variable;
ccb->sg_count = nseg;
dst->sg_count = cpu_to_le16((u16)nseg);
dst->max_sg_count = cpu_to_le16(hba->host->sg_tablesize);
dst->sz_in_byte = cpu_to_le32(scsi_bufflen(cmd));
table = (struct st_sgitem *)(dst + 1);
scsi_for_each_sg(cmd, sg, nseg, i) {
table[i].count = cpu_to_le32((u32)sg_dma_len(sg));
table[i].addr = cpu_to_le64(sg_dma_address(sg));
table[i].ctrl = SG_CF_64B | SG_CF_HOST;
}
table[--i].ctrl |= SG_CF_EOT;
}
return nseg;
}
static int stex_ss_map_sg(struct st_hba *hba,
struct req_msg *req, struct st_ccb *ccb)
{
struct scsi_cmnd *cmd;
struct scatterlist *sg;
struct st_sgtable *dst;
struct st_ss_sgitem *table;
int i, nseg;
cmd = ccb->cmd;
nseg = scsi_dma_map(cmd);
BUG_ON(nseg < 0);
if (nseg) {
dst = (struct st_sgtable *)req->variable;
ccb->sg_count = nseg;
dst->sg_count = cpu_to_le16((u16)nseg);
dst->max_sg_count = cpu_to_le16(hba->host->sg_tablesize);
dst->sz_in_byte = cpu_to_le32(scsi_bufflen(cmd));
table = (struct st_ss_sgitem *)(dst + 1);
scsi_for_each_sg(cmd, sg, nseg, i) {
table[i].count = cpu_to_le32((u32)sg_dma_len(sg));
table[i].addr =
cpu_to_le32(sg_dma_address(sg) & 0xffffffff);
table[i].addr_hi =
cpu_to_le32((sg_dma_address(sg) >> 16) >> 16);
}
}
return nseg;
}
static void stex_controller_info(struct st_hba *hba, struct st_ccb *ccb)
{
struct st_frame *p;
size_t count = sizeof(struct st_frame);
p = hba->copy_buffer;
scsi_sg_copy_to_buffer(ccb->cmd, p, count);
memset(p->base, 0, sizeof(u32)*6);
*(unsigned long *)(p->base) = pci_resource_start(hba->pdev, 0);
p->rom_addr = 0;
p->drv_ver.major = ST_VER_MAJOR;
p->drv_ver.minor = ST_VER_MINOR;
p->drv_ver.oem = ST_OEM;
p->drv_ver.build = ST_BUILD_VER;
p->bus = hba->pdev->bus->number;
p->slot = hba->pdev->devfn;
p->irq_level = 0;
p->irq_vec = hba->pdev->irq;
p->id = hba->pdev->vendor << 16 | hba->pdev->device;
p->subid =
hba->pdev->subsystem_vendor << 16 | hba->pdev->subsystem_device;
scsi_sg_copy_from_buffer(ccb->cmd, p, count);
}
static void
stex_send_cmd(struct st_hba *hba, struct req_msg *req, u16 tag)
{
req->tag = cpu_to_le16(tag);
hba->ccb[tag].req = req;
hba->out_req_cnt++;
writel(hba->req_head, hba->mmio_base + IMR0);
writel(MU_INBOUND_DOORBELL_REQHEADCHANGED, hba->mmio_base + IDBL);
readl(hba->mmio_base + IDBL); /* flush */
}
static void
stex_ss_send_cmd(struct st_hba *hba, struct req_msg *req, u16 tag)
{
struct scsi_cmnd *cmd;
struct st_msg_header *msg_h;
dma_addr_t addr;
req->tag = cpu_to_le16(tag);
hba->ccb[tag].req = req;
hba->out_req_cnt++;
cmd = hba->ccb[tag].cmd;
msg_h = (struct st_msg_header *)req - 1;
if (likely(cmd)) {
msg_h->channel = (u8)cmd->device->channel;
msg_h->timeout = cpu_to_le16(cmd->request->timeout/HZ);
}
addr = hba->dma_handle + hba->req_head * hba->rq_size;
addr += (hba->ccb[tag].sg_count+4)/11;
msg_h->handle = cpu_to_le64(addr);
++hba->req_head;
hba->req_head %= hba->rq_count+1;
writel((addr >> 16) >> 16, hba->mmio_base + YH2I_REQ_HI);
readl(hba->mmio_base + YH2I_REQ_HI); /* flush */
writel(addr, hba->mmio_base + YH2I_REQ);
readl(hba->mmio_base + YH2I_REQ); /* flush */
}
static int
stex_slave_alloc(struct scsi_device *sdev)
{
/* Cheat: usually extracted from Inquiry data */
sdev->tagged_supported = 1;
scsi_activate_tcq(sdev, sdev->host->can_queue);
return 0;
}
static int
stex_slave_config(struct scsi_device *sdev)
{
sdev->use_10_for_rw = 1;
sdev->use_10_for_ms = 1;
blk_queue_rq_timeout(sdev->request_queue, 60 * HZ);
sdev->tagged_supported = 1;
return 0;
}
static void
stex_slave_destroy(struct scsi_device *sdev)
{
scsi_deactivate_tcq(sdev, 1);
}
static int
stex_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
{
struct st_hba *hba;
struct Scsi_Host *host;
unsigned int id, lun;
struct req_msg *req;
u16 tag;
host = cmd->device->host;
id = cmd->device->id;
lun = cmd->device->lun;
hba = (struct st_hba *) &host->hostdata[0];
if (unlikely(hba->mu_status == MU_STATE_RESETTING))
return SCSI_MLQUEUE_HOST_BUSY;
switch (cmd->cmnd[0]) {
case MODE_SENSE_10:
{
static char ms10_caching_page[12] =
{ 0, 0x12, 0, 0, 0, 0, 0, 0, 0x8, 0xa, 0x4, 0 };
unsigned char page;
page = cmd->cmnd[2] & 0x3f;
if (page == 0x8 || page == 0x3f) {
scsi_sg_copy_from_buffer(cmd, ms10_caching_page,
sizeof(ms10_caching_page));
cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
done(cmd);
} else
stex_invalid_field(cmd, done);
return 0;
}
case REPORT_LUNS:
/*
* The shasta firmware does not report actual luns in the
* target, so fail the command to force sequential lun scan.
* Also, the console device does not support this command.
*/
if (hba->cardtype == st_shasta || id == host->max_id - 1) {
stex_invalid_field(cmd, done);
return 0;
}
break;
case TEST_UNIT_READY:
if (id == host->max_id - 1) {
cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
done(cmd);
return 0;
}
break;
case INQUIRY:
if (lun >= host->max_lun) {
cmd->result = DID_NO_CONNECT << 16;
done(cmd);
return 0;
}
if (id != host->max_id - 1)
break;
if (!lun && !cmd->device->channel &&
(cmd->cmnd[1] & INQUIRY_EVPD) == 0) {
scsi_sg_copy_from_buffer(cmd, (void *)console_inq_page,
sizeof(console_inq_page));
cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
done(cmd);
} else
stex_invalid_field(cmd, done);
return 0;
case PASSTHRU_CMD:
if (cmd->cmnd[1] == PASSTHRU_GET_DRVVER) {
struct st_drvver ver;
size_t cp_len = sizeof(ver);
ver.major = ST_VER_MAJOR;
ver.minor = ST_VER_MINOR;
ver.oem = ST_OEM;
ver.build = ST_BUILD_VER;
ver.signature[0] = PASSTHRU_SIGNATURE;
ver.console_id = host->max_id - 1;
ver.host_no = hba->host->host_no;
cp_len = scsi_sg_copy_from_buffer(cmd, &ver, cp_len);
cmd->result = sizeof(ver) == cp_len ?
DID_OK << 16 | COMMAND_COMPLETE << 8 :
DID_ERROR << 16 | COMMAND_COMPLETE << 8;
done(cmd);
return 0;
}
default:
break;
}
cmd->scsi_done = done;
tag = cmd->request->tag;
if (unlikely(tag >= host->can_queue))
return SCSI_MLQUEUE_HOST_BUSY;
req = hba->alloc_rq(hba);
req->lun = lun;
req->target = id;
/* cdb */
memcpy(req->cdb, cmd->cmnd, STEX_CDB_LENGTH);
if (cmd->sc_data_direction == DMA_FROM_DEVICE)
req->data_dir = MSG_DATA_DIR_IN;
else if (cmd->sc_data_direction == DMA_TO_DEVICE)
req->data_dir = MSG_DATA_DIR_OUT;
else
req->data_dir = MSG_DATA_DIR_ND;
hba->ccb[tag].cmd = cmd;
hba->ccb[tag].sense_bufflen = SCSI_SENSE_BUFFERSIZE;
hba->ccb[tag].sense_buffer = cmd->sense_buffer;
if (!hba->map_sg(hba, req, &hba->ccb[tag])) {
hba->ccb[tag].sg_count = 0;
memset(&req->variable[0], 0, 8);
}
hba->send(hba, req, tag);
return 0;
}
static DEF_SCSI_QCMD(stex_queuecommand)
static void stex_scsi_done(struct st_ccb *ccb)
{
struct scsi_cmnd *cmd = ccb->cmd;
int result;
if (ccb->srb_status == SRB_STATUS_SUCCESS || ccb->srb_status == 0) {
result = ccb->scsi_status;
switch (ccb->scsi_status) {
case SAM_STAT_GOOD:
result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
break;
case SAM_STAT_CHECK_CONDITION:
result |= DRIVER_SENSE << 24;
break;
case SAM_STAT_BUSY:
result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
break;
default:
result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8;
break;
}
}
else if (ccb->srb_status & SRB_SEE_SENSE)
result = DRIVER_SENSE << 24 | SAM_STAT_CHECK_CONDITION;
else switch (ccb->srb_status) {
case SRB_STATUS_SELECTION_TIMEOUT:
result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
break;
case SRB_STATUS_BUSY:
result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
break;
case SRB_STATUS_INVALID_REQUEST:
case SRB_STATUS_ERROR:
default:
result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
break;
}
cmd->result = result;
cmd->scsi_done(cmd);
}
static void stex_copy_data(struct st_ccb *ccb,
struct status_msg *resp, unsigned int variable)
{
if (resp->scsi_status != SAM_STAT_GOOD) {
if (ccb->sense_buffer != NULL)
memcpy(ccb->sense_buffer, resp->variable,
min(variable, ccb->sense_bufflen));
return;
}
if (ccb->cmd == NULL)
return;
scsi_sg_copy_from_buffer(ccb->cmd, resp->variable, variable);
}
static void stex_check_cmd(struct st_hba *hba,
struct st_ccb *ccb, struct status_msg *resp)
{
if (ccb->cmd->cmnd[0] == MGT_CMD &&
resp->scsi_status != SAM_STAT_CHECK_CONDITION)
scsi_set_resid(ccb->cmd, scsi_bufflen(ccb->cmd) -
le32_to_cpu(*(__le32 *)&resp->variable[0]));
}
static void stex_mu_intr(struct st_hba *hba, u32 doorbell)
{
void __iomem *base = hba->mmio_base;
struct status_msg *resp;
struct st_ccb *ccb;
unsigned int size;
u16 tag;
if (unlikely(!(doorbell & MU_OUTBOUND_DOORBELL_STATUSHEADCHANGED)))
return;
/* status payloads */
hba->status_head = readl(base + OMR1);
if (unlikely(hba->status_head > hba->sts_count)) {
printk(KERN_WARNING DRV_NAME "(%s): invalid status head\n",
pci_name(hba->pdev));
return;
}
/*
* it's not a valid status payload if:
* 1. there are no pending requests(e.g. during init stage)
* 2. there are some pending requests, but the controller is in
* reset status, and its type is not st_yosemite
* firmware of st_yosemite in reset status will return pending requests
* to driver, so we allow it to pass
*/
if (unlikely(hba->out_req_cnt <= 0 ||
(hba->mu_status == MU_STATE_RESETTING &&
hba->cardtype != st_yosemite))) {
hba->status_tail = hba->status_head;
goto update_status;
}
while (hba->status_tail != hba->status_head) {
resp = stex_get_status(hba);
tag = le16_to_cpu(resp->tag);
if (unlikely(tag >= hba->host->can_queue)) {
printk(KERN_WARNING DRV_NAME
"(%s): invalid tag\n", pci_name(hba->pdev));
continue;
}
hba->out_req_cnt--;
ccb = &hba->ccb[tag];
if (unlikely(hba->wait_ccb == ccb))
hba->wait_ccb = NULL;
if (unlikely(ccb->req == NULL)) {
printk(KERN_WARNING DRV_NAME
"(%s): lagging req\n", pci_name(hba->pdev));
continue;
}
size = resp->payload_sz * sizeof(u32); /* payload size */
if (unlikely(size < sizeof(*resp) - STATUS_VAR_LEN ||
size > sizeof(*resp))) {
printk(KERN_WARNING DRV_NAME "(%s): bad status size\n",
pci_name(hba->pdev));
} else {
size -= sizeof(*resp) - STATUS_VAR_LEN; /* copy size */
if (size)
stex_copy_data(ccb, resp, size);
}
ccb->req = NULL;
ccb->srb_status = resp->srb_status;
ccb->scsi_status = resp->scsi_status;
if (likely(ccb->cmd != NULL)) {
if (hba->cardtype == st_yosemite)
stex_check_cmd(hba, ccb, resp);
if (unlikely(ccb->cmd->cmnd[0] == PASSTHRU_CMD &&
ccb->cmd->cmnd[1] == PASSTHRU_GET_ADAPTER))
stex_controller_info(hba, ccb);
scsi_dma_unmap(ccb->cmd);
stex_scsi_done(ccb);
} else
ccb->req_type = 0;
}
update_status:
writel(hba->status_head, base + IMR1);
readl(base + IMR1); /* flush */
}
static irqreturn_t stex_intr(int irq, void *__hba)
{
struct st_hba *hba = __hba;
void __iomem *base = hba->mmio_base;
u32 data;
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
data = readl(base + ODBL);
if (data && data != 0xffffffff) {
/* clear the interrupt */
writel(data, base + ODBL);
readl(base + ODBL); /* flush */
stex_mu_intr(hba, data);
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (unlikely(data & MU_OUTBOUND_DOORBELL_REQUEST_RESET &&
hba->cardtype == st_shasta))
queue_work(hba->work_q, &hba->reset_work);
return IRQ_HANDLED;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
return IRQ_NONE;
}
static void stex_ss_mu_intr(struct st_hba *hba)
{
struct status_msg *resp;
struct st_ccb *ccb;
__le32 *scratch;
unsigned int size;
int count = 0;
u32 value;
u16 tag;
if (unlikely(hba->out_req_cnt <= 0 ||
hba->mu_status == MU_STATE_RESETTING))
return;
while (count < hba->sts_count) {
scratch = hba->scratch + hba->status_tail;
value = le32_to_cpu(*scratch);
if (unlikely(!(value & SS_STS_NORMAL)))
return;
resp = hba->status_buffer + hba->status_tail;
*scratch = 0;
++count;
++hba->status_tail;
hba->status_tail %= hba->sts_count+1;
tag = (u16)value;
if (unlikely(tag >= hba->host->can_queue)) {
printk(KERN_WARNING DRV_NAME
"(%s): invalid tag\n", pci_name(hba->pdev));
continue;
}
hba->out_req_cnt--;
ccb = &hba->ccb[tag];
if (unlikely(hba->wait_ccb == ccb))
hba->wait_ccb = NULL;
if (unlikely(ccb->req == NULL)) {
printk(KERN_WARNING DRV_NAME
"(%s): lagging req\n", pci_name(hba->pdev));
continue;
}
ccb->req = NULL;
if (likely(value & SS_STS_DONE)) { /* normal case */
ccb->srb_status = SRB_STATUS_SUCCESS;
ccb->scsi_status = SAM_STAT_GOOD;
} else {
ccb->srb_status = resp->srb_status;
ccb->scsi_status = resp->scsi_status;
size = resp->payload_sz * sizeof(u32);
if (unlikely(size < sizeof(*resp) - STATUS_VAR_LEN ||
size > sizeof(*resp))) {
printk(KERN_WARNING DRV_NAME
"(%s): bad status size\n",
pci_name(hba->pdev));
} else {
size -= sizeof(*resp) - STATUS_VAR_LEN;
if (size)
stex_copy_data(ccb, resp, size);
}
if (likely(ccb->cmd != NULL))
stex_check_cmd(hba, ccb, resp);
}
if (likely(ccb->cmd != NULL)) {
scsi_dma_unmap(ccb->cmd);
stex_scsi_done(ccb);
} else
ccb->req_type = 0;
}
}
static irqreturn_t stex_ss_intr(int irq, void *__hba)
{
struct st_hba *hba = __hba;
void __iomem *base = hba->mmio_base;
u32 data;
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
data = readl(base + YI2H_INT);
if (data && data != 0xffffffff) {
/* clear the interrupt */
writel(data, base + YI2H_INT_C);
stex_ss_mu_intr(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (unlikely(data & SS_I2H_REQUEST_RESET))
queue_work(hba->work_q, &hba->reset_work);
return IRQ_HANDLED;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
return IRQ_NONE;
}
static int stex_common_handshake(struct st_hba *hba)
{
void __iomem *base = hba->mmio_base;
struct handshake_frame *h;
dma_addr_t status_phys;
u32 data;
unsigned long before;
if (readl(base + OMR0) != MU_HANDSHAKE_SIGNATURE) {
writel(MU_INBOUND_DOORBELL_HANDSHAKE, base + IDBL);
readl(base + IDBL);
before = jiffies;
while (readl(base + OMR0) != MU_HANDSHAKE_SIGNATURE) {
if (time_after(jiffies, before + MU_MAX_DELAY * HZ)) {
printk(KERN_ERR DRV_NAME
"(%s): no handshake signature\n",
pci_name(hba->pdev));
return -1;
}
rmb();
msleep(1);
}
}
udelay(10);
data = readl(base + OMR1);
if ((data & 0xffff0000) == MU_HANDSHAKE_SIGNATURE_HALF) {
data &= 0x0000ffff;
if (hba->host->can_queue > data) {
hba->host->can_queue = data;
hba->host->cmd_per_lun = data;
}
}
h = (struct handshake_frame *)hba->status_buffer;
h->rb_phy = cpu_to_le64(hba->dma_handle);
h->req_sz = cpu_to_le16(hba->rq_size);
h->req_cnt = cpu_to_le16(hba->rq_count+1);
h->status_sz = cpu_to_le16(sizeof(struct status_msg));
h->status_cnt = cpu_to_le16(hba->sts_count+1);
stex_gettime(&h->hosttime);
h->partner_type = HMU_PARTNER_TYPE;
if (hba->extra_offset) {
h->extra_offset = cpu_to_le32(hba->extra_offset);
h->extra_size = cpu_to_le32(hba->dma_size - hba->extra_offset);
} else
h->extra_offset = h->extra_size = 0;
status_phys = hba->dma_handle + (hba->rq_count+1) * hba->rq_size;
writel(status_phys, base + IMR0);
readl(base + IMR0);
writel((status_phys >> 16) >> 16, base + IMR1);
readl(base + IMR1);
writel((status_phys >> 16) >> 16, base + OMR0); /* old fw compatible */
readl(base + OMR0);
writel(MU_INBOUND_DOORBELL_HANDSHAKE, base + IDBL);
readl(base + IDBL); /* flush */
udelay(10);
before = jiffies;
while (readl(base + OMR0) != MU_HANDSHAKE_SIGNATURE) {
if (time_after(jiffies, before + MU_MAX_DELAY * HZ)) {
printk(KERN_ERR DRV_NAME
"(%s): no signature after handshake frame\n",
pci_name(hba->pdev));
return -1;
}
rmb();
msleep(1);
}
writel(0, base + IMR0);
readl(base + IMR0);
writel(0, base + OMR0);
readl(base + OMR0);
writel(0, base + IMR1);
readl(base + IMR1);
writel(0, base + OMR1);
readl(base + OMR1); /* flush */
return 0;
}
static int stex_ss_handshake(struct st_hba *hba)
{
void __iomem *base = hba->mmio_base;
struct st_msg_header *msg_h;
struct handshake_frame *h;
__le32 *scratch;
u32 data, scratch_size;
unsigned long before;
int ret = 0;
before = jiffies;
while ((readl(base + YIOA_STATUS) & SS_MU_OPERATIONAL) == 0) {
if (time_after(jiffies, before + MU_MAX_DELAY * HZ)) {
printk(KERN_ERR DRV_NAME
"(%s): firmware not operational\n",
pci_name(hba->pdev));
return -1;
}
msleep(1);
}
msg_h = (struct st_msg_header *)hba->dma_mem;
msg_h->handle = cpu_to_le64(hba->dma_handle);
msg_h->flag = SS_HEAD_HANDSHAKE;
h = (struct handshake_frame *)(msg_h + 1);
h->rb_phy = cpu_to_le64(hba->dma_handle);
h->req_sz = cpu_to_le16(hba->rq_size);
h->req_cnt = cpu_to_le16(hba->rq_count+1);
h->status_sz = cpu_to_le16(sizeof(struct status_msg));
h->status_cnt = cpu_to_le16(hba->sts_count+1);
stex_gettime(&h->hosttime);
h->partner_type = HMU_PARTNER_TYPE;
h->extra_offset = h->extra_size = 0;
scratch_size = (hba->sts_count+1)*sizeof(u32);
h->scratch_size = cpu_to_le32(scratch_size);
data = readl(base + YINT_EN);
data &= ~4;
writel(data, base + YINT_EN);
writel((hba->dma_handle >> 16) >> 16, base + YH2I_REQ_HI);
readl(base + YH2I_REQ_HI);
writel(hba->dma_handle, base + YH2I_REQ);
readl(base + YH2I_REQ); /* flush */
scratch = hba->scratch;
before = jiffies;
while (!(le32_to_cpu(*scratch) & SS_STS_HANDSHAKE)) {
if (time_after(jiffies, before + MU_MAX_DELAY * HZ)) {
printk(KERN_ERR DRV_NAME
"(%s): no signature after handshake frame\n",
pci_name(hba->pdev));
ret = -1;
break;
}
rmb();
msleep(1);
}
memset(scratch, 0, scratch_size);
msg_h->flag = 0;
return ret;
}
static int stex_handshake(struct st_hba *hba)
{
int err;
unsigned long flags;
unsigned int mu_status;
err = (hba->cardtype == st_yel) ?
stex_ss_handshake(hba) : stex_common_handshake(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
mu_status = hba->mu_status;
if (err == 0) {
hba->req_head = 0;
hba->req_tail = 0;
hba->status_head = 0;
hba->status_tail = 0;
hba->out_req_cnt = 0;
hba->mu_status = MU_STATE_STARTED;
} else
hba->mu_status = MU_STATE_FAILED;
if (mu_status == MU_STATE_RESETTING)
wake_up_all(&hba->reset_waitq);
spin_unlock_irqrestore(hba->host->host_lock, flags);
return err;
}
static int stex_abort(struct scsi_cmnd *cmd)
{
struct Scsi_Host *host = cmd->device->host;
struct st_hba *hba = (struct st_hba *)host->hostdata;
u16 tag = cmd->request->tag;
void __iomem *base;
u32 data;
int result = SUCCESS;
unsigned long flags;
printk(KERN_INFO DRV_NAME
"(%s): aborting command\n", pci_name(hba->pdev));
scsi_print_command(cmd);
base = hba->mmio_base;
spin_lock_irqsave(host->host_lock, flags);
if (tag < host->can_queue &&
hba->ccb[tag].req && hba->ccb[tag].cmd == cmd)
hba->wait_ccb = &hba->ccb[tag];
else
goto out;
if (hba->cardtype == st_yel) {
data = readl(base + YI2H_INT);
if (data == 0 || data == 0xffffffff)
goto fail_out;
writel(data, base + YI2H_INT_C);
stex_ss_mu_intr(hba);
} else {
data = readl(base + ODBL);
if (data == 0 || data == 0xffffffff)
goto fail_out;
writel(data, base + ODBL);
readl(base + ODBL); /* flush */
stex_mu_intr(hba, data);
}
if (hba->wait_ccb == NULL) {
printk(KERN_WARNING DRV_NAME
"(%s): lost interrupt\n", pci_name(hba->pdev));
goto out;
}
fail_out:
scsi_dma_unmap(cmd);
hba->wait_ccb->req = NULL; /* nullify the req's future return */
hba->wait_ccb = NULL;
result = FAILED;
out:
spin_unlock_irqrestore(host->host_lock, flags);
return result;
}
static void stex_hard_reset(struct st_hba *hba)
{
struct pci_bus *bus;
int i;
u16 pci_cmd;
u8 pci_bctl;
for (i = 0; i < 16; i++)
pci_read_config_dword(hba->pdev, i * 4,
&hba->pdev->saved_config_space[i]);
/* Reset secondary bus. Our controller(MU/ATU) is the only device on
secondary bus. Consult Intel 80331/3 developer's manual for detail */
bus = hba->pdev->bus;
pci_read_config_byte(bus->self, PCI_BRIDGE_CONTROL, &pci_bctl);
pci_bctl |= PCI_BRIDGE_CTL_BUS_RESET;
pci_write_config_byte(bus->self, PCI_BRIDGE_CONTROL, pci_bctl);
/*
* 1 ms may be enough for 8-port controllers. But 16-port controllers
* require more time to finish bus reset. Use 100 ms here for safety
*/
msleep(100);
pci_bctl &= ~PCI_BRIDGE_CTL_BUS_RESET;
pci_write_config_byte(bus->self, PCI_BRIDGE_CONTROL, pci_bctl);
for (i = 0; i < MU_HARD_RESET_WAIT; i++) {
pci_read_config_word(hba->pdev, PCI_COMMAND, &pci_cmd);
if (pci_cmd != 0xffff && (pci_cmd & PCI_COMMAND_MASTER))
break;
msleep(1);
}
ssleep(5);
for (i = 0; i < 16; i++)
pci_write_config_dword(hba->pdev, i * 4,
hba->pdev->saved_config_space[i]);
}
static int stex_yos_reset(struct st_hba *hba)
{
void __iomem *base;
unsigned long flags, before;
int ret = 0;
base = hba->mmio_base;
writel(MU_INBOUND_DOORBELL_RESET, base + IDBL);
readl(base + IDBL); /* flush */
before = jiffies;
while (hba->out_req_cnt > 0) {
if (time_after(jiffies, before + ST_INTERNAL_TIMEOUT * HZ)) {
printk(KERN_WARNING DRV_NAME
"(%s): reset timeout\n", pci_name(hba->pdev));
ret = -1;
break;
}
msleep(1);
}
spin_lock_irqsave(hba->host->host_lock, flags);
if (ret == -1)
hba->mu_status = MU_STATE_FAILED;
else
hba->mu_status = MU_STATE_STARTED;
wake_up_all(&hba->reset_waitq);
spin_unlock_irqrestore(hba->host->host_lock, flags);
return ret;
}
static void stex_ss_reset(struct st_hba *hba)
{
writel(SS_H2I_INT_RESET, hba->mmio_base + YH2I_INT);
readl(hba->mmio_base + YH2I_INT);
ssleep(5);
}
static int stex_do_reset(struct st_hba *hba)
{
struct st_ccb *ccb;
unsigned long flags;
unsigned int mu_status = MU_STATE_RESETTING;
u16 tag;
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->mu_status == MU_STATE_STARTING) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
printk(KERN_INFO DRV_NAME "(%s): request reset during init\n",
pci_name(hba->pdev));
return 0;
}
while (hba->mu_status == MU_STATE_RESETTING) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
wait_event_timeout(hba->reset_waitq,
hba->mu_status != MU_STATE_RESETTING,
MU_MAX_DELAY * HZ);
spin_lock_irqsave(hba->host->host_lock, flags);
mu_status = hba->mu_status;
}
if (mu_status != MU_STATE_RESETTING) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
return (mu_status == MU_STATE_STARTED) ? 0 : -1;
}
hba->mu_status = MU_STATE_RESETTING;
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (hba->cardtype == st_yosemite)
return stex_yos_reset(hba);
if (hba->cardtype == st_shasta)
stex_hard_reset(hba);
else if (hba->cardtype == st_yel)
stex_ss_reset(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
for (tag = 0; tag < hba->host->can_queue; tag++) {
ccb = &hba->ccb[tag];
if (ccb->req == NULL)
continue;
ccb->req = NULL;
if (ccb->cmd) {
scsi_dma_unmap(ccb->cmd);
ccb->cmd->result = DID_RESET << 16;
ccb->cmd->scsi_done(ccb->cmd);
ccb->cmd = NULL;
}
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (stex_handshake(hba) == 0)
return 0;
printk(KERN_WARNING DRV_NAME "(%s): resetting: handshake failed\n",
pci_name(hba->pdev));
return -1;
}
static int stex_reset(struct scsi_cmnd *cmd)
{
struct st_hba *hba;
hba = (struct st_hba *) &cmd->device->host->hostdata[0];
printk(KERN_INFO DRV_NAME
"(%s): resetting host\n", pci_name(hba->pdev));
scsi_print_command(cmd);
return stex_do_reset(hba) ? FAILED : SUCCESS;
}
static void stex_reset_work(struct work_struct *work)
{
struct st_hba *hba = container_of(work, struct st_hba, reset_work);
stex_do_reset(hba);
}
static int stex_biosparam(struct scsi_device *sdev,
struct block_device *bdev, sector_t capacity, int geom[])
{
int heads = 255, sectors = 63;
if (capacity < 0x200000) {
heads = 64;
sectors = 32;
}
sector_div(capacity, heads * sectors);
geom[0] = heads;
geom[1] = sectors;
geom[2] = capacity;
return 0;
}
static struct scsi_host_template driver_template = {
.module = THIS_MODULE,
.name = DRV_NAME,
.proc_name = DRV_NAME,
.bios_param = stex_biosparam,
.queuecommand = stex_queuecommand,
.slave_alloc = stex_slave_alloc,
.slave_configure = stex_slave_config,
.slave_destroy = stex_slave_destroy,
.eh_abort_handler = stex_abort,
.eh_host_reset_handler = stex_reset,
.this_id = -1,
};
static struct pci_device_id stex_pci_tbl[] = {
/* st_shasta */
{ 0x105a, 0x8350, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
st_shasta }, /* SuperTrak EX8350/8300/16350/16300 */
{ 0x105a, 0xc350, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
st_shasta }, /* SuperTrak EX12350 */
{ 0x105a, 0x4302, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
st_shasta }, /* SuperTrak EX4350 */
{ 0x105a, 0xe350, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
st_shasta }, /* SuperTrak EX24350 */
/* st_vsc */
{ 0x105a, 0x7250, PCI_ANY_ID, PCI_ANY_ID, 0, 0, st_vsc },
/* st_yosemite */
{ 0x105a, 0x8650, 0x105a, PCI_ANY_ID, 0, 0, st_yosemite },
/* st_seq */
{ 0x105a, 0x3360, PCI_ANY_ID, PCI_ANY_ID, 0, 0, st_seq },
/* st_yel */
{ 0x105a, 0x8650, 0x1033, PCI_ANY_ID, 0, 0, st_yel },
{ 0x105a, 0x8760, PCI_ANY_ID, PCI_ANY_ID, 0, 0, st_yel },
{ } /* terminate list */
};
static struct st_card_info stex_card_info[] = {
/* st_shasta */
{
.max_id = 17,
.max_lun = 8,
.max_channel = 0,
.rq_count = 32,
.rq_size = 1048,
.sts_count = 32,
.alloc_rq = stex_alloc_req,
.map_sg = stex_map_sg,
.send = stex_send_cmd,
},
/* st_vsc */
{
.max_id = 129,
.max_lun = 1,
.max_channel = 0,
.rq_count = 32,
.rq_size = 1048,
.sts_count = 32,
.alloc_rq = stex_alloc_req,
.map_sg = stex_map_sg,
.send = stex_send_cmd,
},
/* st_yosemite */
{
.max_id = 2,
.max_lun = 256,
.max_channel = 0,
.rq_count = 256,
.rq_size = 1048,
.sts_count = 256,
.alloc_rq = stex_alloc_req,
.map_sg = stex_map_sg,
.send = stex_send_cmd,
},
/* st_seq */
{
.max_id = 129,
.max_lun = 1,
.max_channel = 0,
.rq_count = 32,
.rq_size = 1048,
.sts_count = 32,
.alloc_rq = stex_alloc_req,
.map_sg = stex_map_sg,
.send = stex_send_cmd,
},
/* st_yel */
{
.max_id = 129,
.max_lun = 256,
.max_channel = 3,
.rq_count = 801,
.rq_size = 512,
.sts_count = 801,
.alloc_rq = stex_ss_alloc_req,
.map_sg = stex_ss_map_sg,
.send = stex_ss_send_cmd,
},
};
static int stex_set_dma_mask(struct pci_dev * pdev)
{
int ret;
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))
&& !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))
return 0;
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (!ret)
ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
return ret;
}
static int stex_request_irq(struct st_hba *hba)
{
struct pci_dev *pdev = hba->pdev;
int status;
if (msi) {
status = pci_enable_msi(pdev);
if (status != 0)
printk(KERN_ERR DRV_NAME
"(%s): error %d setting up MSI\n",
pci_name(pdev), status);
else
hba->msi_enabled = 1;
} else
hba->msi_enabled = 0;
status = request_irq(pdev->irq, hba->cardtype == st_yel ?
stex_ss_intr : stex_intr, IRQF_SHARED, DRV_NAME, hba);
if (status != 0) {
if (hba->msi_enabled)
pci_disable_msi(pdev);
}
return status;
}
static void stex_free_irq(struct st_hba *hba)
{
struct pci_dev *pdev = hba->pdev;
free_irq(pdev->irq, hba);
if (hba->msi_enabled)
pci_disable_msi(pdev);
}
static int __devinit
stex_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct st_hba *hba;
struct Scsi_Host *host;
const struct st_card_info *ci = NULL;
u32 sts_offset, cp_offset, scratch_offset;
int err;
err = pci_enable_device(pdev);
if (err)
return err;
pci_set_master(pdev);
host = scsi_host_alloc(&driver_template, sizeof(struct st_hba));
if (!host) {
printk(KERN_ERR DRV_NAME "(%s): scsi_host_alloc failed\n",
pci_name(pdev));
err = -ENOMEM;
goto out_disable;
}
hba = (struct st_hba *)host->hostdata;
memset(hba, 0, sizeof(struct st_hba));
err = pci_request_regions(pdev, DRV_NAME);
if (err < 0) {
printk(KERN_ERR DRV_NAME "(%s): request regions failed\n",
pci_name(pdev));
goto out_scsi_host_put;
}
hba->mmio_base = pci_ioremap_bar(pdev, 0);
if ( !hba->mmio_base) {
printk(KERN_ERR DRV_NAME "(%s): memory map failed\n",
pci_name(pdev));
err = -ENOMEM;
goto out_release_regions;
}
err = stex_set_dma_mask(pdev);
if (err) {
printk(KERN_ERR DRV_NAME "(%s): set dma mask failed\n",
pci_name(pdev));
goto out_iounmap;
}
hba->cardtype = (unsigned int) id->driver_data;
ci = &stex_card_info[hba->cardtype];
sts_offset = scratch_offset = (ci->rq_count+1) * ci->rq_size;
if (hba->cardtype == st_yel)
sts_offset += (ci->sts_count+1) * sizeof(u32);
cp_offset = sts_offset + (ci->sts_count+1) * sizeof(struct status_msg);
hba->dma_size = cp_offset + sizeof(struct st_frame);
if (hba->cardtype == st_seq ||
(hba->cardtype == st_vsc && (pdev->subsystem_device & 1))) {
hba->extra_offset = hba->dma_size;
hba->dma_size += ST_ADDITIONAL_MEM;
}
hba->dma_mem = dma_alloc_coherent(&pdev->dev,
hba->dma_size, &hba->dma_handle, GFP_KERNEL);
if (!hba->dma_mem) {
/* Retry minimum coherent mapping for st_seq and st_vsc */
if (hba->cardtype == st_seq ||
(hba->cardtype == st_vsc && (pdev->subsystem_device & 1))) {
printk(KERN_WARNING DRV_NAME
"(%s): allocating min buffer for controller\n",
pci_name(pdev));
hba->dma_size = hba->extra_offset
+ ST_ADDITIONAL_MEM_MIN;
hba->dma_mem = dma_alloc_coherent(&pdev->dev,
hba->dma_size, &hba->dma_handle, GFP_KERNEL);
}
if (!hba->dma_mem) {
err = -ENOMEM;
printk(KERN_ERR DRV_NAME "(%s): dma mem alloc failed\n",
pci_name(pdev));
goto out_iounmap;
}
}
hba->ccb = kcalloc(ci->rq_count, sizeof(struct st_ccb), GFP_KERNEL);
if (!hba->ccb) {
err = -ENOMEM;
printk(KERN_ERR DRV_NAME "(%s): ccb alloc failed\n",
pci_name(pdev));
goto out_pci_free;
}
if (hba->cardtype == st_yel)
hba->scratch = (__le32 *)(hba->dma_mem + scratch_offset);
hba->status_buffer = (struct status_msg *)(hba->dma_mem + sts_offset);
hba->copy_buffer = hba->dma_mem + cp_offset;
hba->rq_count = ci->rq_count;
hba->rq_size = ci->rq_size;
hba->sts_count = ci->sts_count;
hba->alloc_rq = ci->alloc_rq;
hba->map_sg = ci->map_sg;
hba->send = ci->send;
hba->mu_status = MU_STATE_STARTING;
if (hba->cardtype == st_yel)
host->sg_tablesize = 38;
else
host->sg_tablesize = 32;
host->can_queue = ci->rq_count;
host->cmd_per_lun = ci->rq_count;
host->max_id = ci->max_id;
host->max_lun = ci->max_lun;
host->max_channel = ci->max_channel;
host->unique_id = host->host_no;
host->max_cmd_len = STEX_CDB_LENGTH;
hba->host = host;
hba->pdev = pdev;
init_waitqueue_head(&hba->reset_waitq);
snprintf(hba->work_q_name, sizeof(hba->work_q_name),
"stex_wq_%d", host->host_no);
hba->work_q = create_singlethread_workqueue(hba->work_q_name);
if (!hba->work_q) {
printk(KERN_ERR DRV_NAME "(%s): create workqueue failed\n",
pci_name(pdev));
err = -ENOMEM;
goto out_ccb_free;
}
INIT_WORK(&hba->reset_work, stex_reset_work);
err = stex_request_irq(hba);
if (err) {
printk(KERN_ERR DRV_NAME "(%s): request irq failed\n",
pci_name(pdev));
goto out_free_wq;
}
err = stex_handshake(hba);
if (err)
goto out_free_irq;
err = scsi_init_shared_tag_map(host, host->can_queue);
if (err) {
printk(KERN_ERR DRV_NAME "(%s): init shared queue failed\n",
pci_name(pdev));
goto out_free_irq;
}
pci_set_drvdata(pdev, hba);
err = scsi_add_host(host, &pdev->dev);
if (err) {
printk(KERN_ERR DRV_NAME "(%s): scsi_add_host failed\n",
pci_name(pdev));
goto out_free_irq;
}
scsi_scan_host(host);
return 0;
out_free_irq:
stex_free_irq(hba);
out_free_wq:
destroy_workqueue(hba->work_q);
out_ccb_free:
kfree(hba->ccb);
out_pci_free:
dma_free_coherent(&pdev->dev, hba->dma_size,
hba->dma_mem, hba->dma_handle);
out_iounmap:
iounmap(hba->mmio_base);
out_release_regions:
pci_release_regions(pdev);
out_scsi_host_put:
scsi_host_put(host);
out_disable:
pci_disable_device(pdev);
return err;
}
static void stex_hba_stop(struct st_hba *hba)
{
struct req_msg *req;
struct st_msg_header *msg_h;
unsigned long flags;
unsigned long before;
u16 tag = 0;
spin_lock_irqsave(hba->host->host_lock, flags);
req = hba->alloc_rq(hba);
if (hba->cardtype == st_yel) {
msg_h = (struct st_msg_header *)req - 1;
memset(msg_h, 0, hba->rq_size);
} else
memset(req, 0, hba->rq_size);
if (hba->cardtype == st_yosemite || hba->cardtype == st_yel) {
req->cdb[0] = MGT_CMD;
req->cdb[1] = MGT_CMD_SIGNATURE;
req->cdb[2] = CTLR_CONFIG_CMD;
req->cdb[3] = CTLR_SHUTDOWN;
} else {
req->cdb[0] = CONTROLLER_CMD;
req->cdb[1] = CTLR_POWER_STATE_CHANGE;
req->cdb[2] = CTLR_POWER_SAVING;
}
hba->ccb[tag].cmd = NULL;
hba->ccb[tag].sg_count = 0;
hba->ccb[tag].sense_bufflen = 0;
hba->ccb[tag].sense_buffer = NULL;
hba->ccb[tag].req_type = PASSTHRU_REQ_TYPE;
hba->send(hba, req, tag);
spin_unlock_irqrestore(hba->host->host_lock, flags);
before = jiffies;
while (hba->ccb[tag].req_type & PASSTHRU_REQ_TYPE) {
if (time_after(jiffies, before + ST_INTERNAL_TIMEOUT * HZ)) {
hba->ccb[tag].req_type = 0;
return;
}
msleep(1);
}
}
static void stex_hba_free(struct st_hba *hba)
{
stex_free_irq(hba);
destroy_workqueue(hba->work_q);
iounmap(hba->mmio_base);
pci_release_regions(hba->pdev);
kfree(hba->ccb);
dma_free_coherent(&hba->pdev->dev, hba->dma_size,
hba->dma_mem, hba->dma_handle);
}
static void stex_remove(struct pci_dev *pdev)
{
struct st_hba *hba = pci_get_drvdata(pdev);
scsi_remove_host(hba->host);
pci_set_drvdata(pdev, NULL);
stex_hba_stop(hba);
stex_hba_free(hba);
scsi_host_put(hba->host);
pci_disable_device(pdev);
}
static void stex_shutdown(struct pci_dev *pdev)
{
struct st_hba *hba = pci_get_drvdata(pdev);
stex_hba_stop(hba);
}
MODULE_DEVICE_TABLE(pci, stex_pci_tbl);
static struct pci_driver stex_pci_driver = {
.name = DRV_NAME,
.id_table = stex_pci_tbl,
.probe = stex_probe,
.remove = __devexit_p(stex_remove),
.shutdown = stex_shutdown,
};
static int __init stex_init(void)
{
printk(KERN_INFO DRV_NAME
": Promise SuperTrak EX Driver version: %s\n",
ST_DRIVER_VERSION);
return pci_register_driver(&stex_pci_driver);
}
static void __exit stex_exit(void)
{
pci_unregister_driver(&stex_pci_driver);
}
module_init(stex_init);
module_exit(stex_exit);