linux/arch/arm/include/asm/tlb.h
Aaro Koskinen 7fccfc00c0 [ARM] 5450/1: Flush only the needed range when unmapping a VMA
When unmapping N pages (e.g. shared memory) the amount of TLB flushes
done can be (N*PAGE_SIZE/ZAP_BLOCK_SIZE)*N although it should be N at
maximum. With PREEMPT kernel ZAP_BLOCK_SIZE is 8 pages, so there is a
noticeable performance penalty when unmapping a large VMA and the system
is spending its time in flush_tlb_range().

The problem is that tlb_end_vma() is always flushing the full VMA
range. The subrange that needs to be flushed can be calculated by
tlb_remove_tlb_entry(). This approach was suggested by Hugh Dickins,
and is also used by other arches.

The speed increase is roughly 3x for 8M mappings and for larger mappings
even more.

Signed-off-by: Aaro Koskinen <Aaro.Koskinen@nokia.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-04-15 10:01:02 +01:00

111 lines
2.7 KiB
C

/*
* arch/arm/include/asm/tlb.h
*
* Copyright (C) 2002 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Experimentation shows that on a StrongARM, it appears to be faster
* to use the "invalidate whole tlb" rather than "invalidate single
* tlb" for this.
*
* This appears true for both the process fork+exit case, as well as
* the munmap-large-area case.
*/
#ifndef __ASMARM_TLB_H
#define __ASMARM_TLB_H
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#ifndef CONFIG_MMU
#include <linux/pagemap.h>
#include <asm-generic/tlb.h>
#else /* !CONFIG_MMU */
#include <asm/pgalloc.h>
/*
* TLB handling. This allows us to remove pages from the page
* tables, and efficiently handle the TLB issues.
*/
struct mmu_gather {
struct mm_struct *mm;
unsigned int fullmm;
unsigned long range_start;
unsigned long range_end;
};
DECLARE_PER_CPU(struct mmu_gather, mmu_gathers);
static inline struct mmu_gather *
tlb_gather_mmu(struct mm_struct *mm, unsigned int full_mm_flush)
{
struct mmu_gather *tlb = &get_cpu_var(mmu_gathers);
tlb->mm = mm;
tlb->fullmm = full_mm_flush;
return tlb;
}
static inline void
tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
{
if (tlb->fullmm)
flush_tlb_mm(tlb->mm);
/* keep the page table cache within bounds */
check_pgt_cache();
put_cpu_var(mmu_gathers);
}
/*
* Memorize the range for the TLB flush.
*/
static inline void
tlb_remove_tlb_entry(struct mmu_gather *tlb, pte_t *ptep, unsigned long addr)
{
if (!tlb->fullmm) {
if (addr < tlb->range_start)
tlb->range_start = addr;
if (addr + PAGE_SIZE > tlb->range_end)
tlb->range_end = addr + PAGE_SIZE;
}
}
/*
* In the case of tlb vma handling, we can optimise these away in the
* case where we're doing a full MM flush. When we're doing a munmap,
* the vmas are adjusted to only cover the region to be torn down.
*/
static inline void
tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
{
if (!tlb->fullmm) {
flush_cache_range(vma, vma->vm_start, vma->vm_end);
tlb->range_start = TASK_SIZE;
tlb->range_end = 0;
}
}
static inline void
tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
{
if (!tlb->fullmm && tlb->range_end > 0)
flush_tlb_range(vma, tlb->range_start, tlb->range_end);
}
#define tlb_remove_page(tlb,page) free_page_and_swap_cache(page)
#define pte_free_tlb(tlb, ptep) pte_free((tlb)->mm, ptep)
#define pmd_free_tlb(tlb, pmdp) pmd_free((tlb)->mm, pmdp)
#define tlb_migrate_finish(mm) do { } while (0)
#endif /* CONFIG_MMU */
#endif