linux/include/asm-generic/tlb.h
Shaohua Li f21760b15d thp: add tlb_remove_pmd_tlb_entry
We have tlb_remove_tlb_entry to indicate a pte tlb flush entry should be
flushed, but not a corresponding API for pmd entry.  This isn't a
problem so far because THP is only for x86 currently and tlb_flush()
under x86 will flush entire TLB.  But this is confusion and could be
missed if thp is ported to other arch.

Also convert tlb->need_flush = 1 to a VM_BUG_ON(!tlb->need_flush) in
__tlb_remove_page() as suggested by Andrea Arcangeli.  The
__tlb_remove_page() function is supposed to be called after
tlb_remove_xxx_tlb_entry() and we can catch any misuse.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:08 -08:00

178 lines
5.2 KiB
C

/* include/asm-generic/tlb.h
*
* Generic TLB shootdown code
*
* Copyright 2001 Red Hat, Inc.
* Based on code from mm/memory.c Copyright Linus Torvalds and others.
*
* Copyright 2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _ASM_GENERIC__TLB_H
#define _ASM_GENERIC__TLB_H
#include <linux/swap.h>
#include <asm/pgalloc.h>
#include <asm/tlbflush.h>
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
/*
* Semi RCU freeing of the page directories.
*
* This is needed by some architectures to implement software pagetable walkers.
*
* gup_fast() and other software pagetable walkers do a lockless page-table
* walk and therefore needs some synchronization with the freeing of the page
* directories. The chosen means to accomplish that is by disabling IRQs over
* the walk.
*
* Architectures that use IPIs to flush TLBs will then automagically DTRT,
* since we unlink the page, flush TLBs, free the page. Since the disabling of
* IRQs delays the completion of the TLB flush we can never observe an already
* freed page.
*
* Architectures that do not have this (PPC) need to delay the freeing by some
* other means, this is that means.
*
* What we do is batch the freed directory pages (tables) and RCU free them.
* We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
* holds off grace periods.
*
* However, in order to batch these pages we need to allocate storage, this
* allocation is deep inside the MM code and can thus easily fail on memory
* pressure. To guarantee progress we fall back to single table freeing, see
* the implementation of tlb_remove_table_one().
*
*/
struct mmu_table_batch {
struct rcu_head rcu;
unsigned int nr;
void *tables[0];
};
#define MAX_TABLE_BATCH \
((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
extern void tlb_table_flush(struct mmu_gather *tlb);
extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
#endif
/*
* If we can't allocate a page to make a big batch of page pointers
* to work on, then just handle a few from the on-stack structure.
*/
#define MMU_GATHER_BUNDLE 8
struct mmu_gather_batch {
struct mmu_gather_batch *next;
unsigned int nr;
unsigned int max;
struct page *pages[0];
};
#define MAX_GATHER_BATCH \
((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
/* struct mmu_gather is an opaque type used by the mm code for passing around
* any data needed by arch specific code for tlb_remove_page.
*/
struct mmu_gather {
struct mm_struct *mm;
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
struct mmu_table_batch *batch;
#endif
unsigned int need_flush : 1, /* Did free PTEs */
fast_mode : 1; /* No batching */
unsigned int fullmm;
struct mmu_gather_batch *active;
struct mmu_gather_batch local;
struct page *__pages[MMU_GATHER_BUNDLE];
};
#define HAVE_GENERIC_MMU_GATHER
static inline int tlb_fast_mode(struct mmu_gather *tlb)
{
#ifdef CONFIG_SMP
return tlb->fast_mode;
#else
/*
* For UP we don't need to worry about TLB flush
* and page free order so much..
*/
return 1;
#endif
}
void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm);
void tlb_flush_mmu(struct mmu_gather *tlb);
void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end);
int __tlb_remove_page(struct mmu_gather *tlb, struct page *page);
/* tlb_remove_page
* Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
* required.
*/
static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
{
if (!__tlb_remove_page(tlb, page))
tlb_flush_mmu(tlb);
}
/**
* tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
*
* Record the fact that pte's were really umapped in ->need_flush, so we can
* later optimise away the tlb invalidate. This helps when userspace is
* unmapping already-unmapped pages, which happens quite a lot.
*/
#define tlb_remove_tlb_entry(tlb, ptep, address) \
do { \
tlb->need_flush = 1; \
__tlb_remove_tlb_entry(tlb, ptep, address); \
} while (0)
/**
* tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
* This is a nop so far, because only x86 needs it.
*/
#ifndef __tlb_remove_pmd_tlb_entry
#define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
#endif
#define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \
do { \
tlb->need_flush = 1; \
__tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \
} while (0)
#define pte_free_tlb(tlb, ptep, address) \
do { \
tlb->need_flush = 1; \
__pte_free_tlb(tlb, ptep, address); \
} while (0)
#ifndef __ARCH_HAS_4LEVEL_HACK
#define pud_free_tlb(tlb, pudp, address) \
do { \
tlb->need_flush = 1; \
__pud_free_tlb(tlb, pudp, address); \
} while (0)
#endif
#define pmd_free_tlb(tlb, pmdp, address) \
do { \
tlb->need_flush = 1; \
__pmd_free_tlb(tlb, pmdp, address); \
} while (0)
#define tlb_migrate_finish(mm) do {} while (0)
#endif /* _ASM_GENERIC__TLB_H */