linux/drivers/media/dvb/dvb-core/dvb_net.c
Ang Way Chuang 29e1fa3565 dvb-core: Fix DoS bug in ULE decapsulation code that can be triggered by an invalid Payload Pointer
ULE (Unidirectional Lightweight Encapsulation RFC 4326) decapsulation
has a bug that causes endless loop when Payload Pointer of MPEG2-TS
frame is 182 or 183.  Anyone who sends malicious MPEG2-TS frame will
cause the receiver of ULE SNDU to go into endless loop.

This patch was generated and tested against linux-2.6.32.9 and should
apply cleanly to linux-2.6.33 as well because there was only one typo
fix to dvb_net.c since v2.6.32.

This bug was brought to you by modern day Santa Claus who decided to
shower the satellite dish at Keio University with heavy snow causing
huge burst of errors.  We, receiver end, received Santa Claus's gift in
the form of kernel bug.

Care has been taken not to introduce more bug by fixing this bug, but
please scrutinize the code for I always produces buggy code.

Signed-off-by: Ang Way Chuang <wcang79@gmail.com>
Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-02-26 17:15:44 -08:00

1514 lines
42 KiB
C

/*
* dvb_net.c
*
* Copyright (C) 2001 Convergence integrated media GmbH
* Ralph Metzler <ralph@convergence.de>
* Copyright (C) 2002 Ralph Metzler <rjkm@metzlerbros.de>
*
* ULE Decapsulation code:
* Copyright (C) 2003, 2004 gcs - Global Communication & Services GmbH.
* and Department of Scientific Computing
* Paris Lodron University of Salzburg.
* Hilmar Linder <hlinder@cosy.sbg.ac.at>
* and Wolfram Stering <wstering@cosy.sbg.ac.at>
*
* ULE Decaps according to RFC 4326.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
*/
/*
* ULE ChangeLog:
* Feb 2004: hl/ws v1: Implementing draft-fair-ipdvb-ule-01.txt
*
* Dec 2004: hl/ws v2: Implementing draft-ietf-ipdvb-ule-03.txt:
* ULE Extension header handling.
* Bugreports by Moritz Vieth and Hanno Tersteegen,
* Fraunhofer Institute for Open Communication Systems
* Competence Center for Advanced Satellite Communications.
* Bugfixes and robustness improvements.
* Filtering on dest MAC addresses, if present (D-Bit = 0)
* ULE_DEBUG compile-time option.
* Apr 2006: cp v3: Bugfixes and compliency with RFC 4326 (ULE) by
* Christian Praehauser <cpraehaus@cosy.sbg.ac.at>,
* Paris Lodron University of Salzburg.
*/
/*
* FIXME / TODO (dvb_net.c):
*
* Unloading does not work for 2.6.9 kernels: a refcount doesn't go to zero.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/dvb/net.h>
#include <linux/uio.h>
#include <asm/uaccess.h>
#include <linux/crc32.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include "dvb_demux.h"
#include "dvb_net.h"
static int dvb_net_debug;
module_param(dvb_net_debug, int, 0444);
MODULE_PARM_DESC(dvb_net_debug, "enable debug messages");
#define dprintk(x...) do { if (dvb_net_debug) printk(x); } while (0)
static inline __u32 iov_crc32( __u32 c, struct kvec *iov, unsigned int cnt )
{
unsigned int j;
for (j = 0; j < cnt; j++)
c = crc32_be( c, iov[j].iov_base, iov[j].iov_len );
return c;
}
#define DVB_NET_MULTICAST_MAX 10
#undef ULE_DEBUG
#ifdef ULE_DEBUG
#define MAC_ADDR_PRINTFMT "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x"
#define MAX_ADDR_PRINTFMT_ARGS(macap) (macap)[0],(macap)[1],(macap)[2],(macap)[3],(macap)[4],(macap)[5]
#define isprint(c) ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9'))
static void hexdump( const unsigned char *buf, unsigned short len )
{
char str[80], octet[10];
int ofs, i, l;
for (ofs = 0; ofs < len; ofs += 16) {
sprintf( str, "%03d: ", ofs );
for (i = 0; i < 16; i++) {
if ((i + ofs) < len)
sprintf( octet, "%02x ", buf[ofs + i] );
else
strcpy( octet, " " );
strcat( str, octet );
}
strcat( str, " " );
l = strlen( str );
for (i = 0; (i < 16) && ((i + ofs) < len); i++)
str[l++] = isprint( buf[ofs + i] ) ? buf[ofs + i] : '.';
str[l] = '\0';
printk( KERN_WARNING "%s\n", str );
}
}
#endif
struct dvb_net_priv {
int in_use;
u16 pid;
struct net_device *net;
struct dvb_net *host;
struct dmx_demux *demux;
struct dmx_section_feed *secfeed;
struct dmx_section_filter *secfilter;
struct dmx_ts_feed *tsfeed;
int multi_num;
struct dmx_section_filter *multi_secfilter[DVB_NET_MULTICAST_MAX];
unsigned char multi_macs[DVB_NET_MULTICAST_MAX][6];
int rx_mode;
#define RX_MODE_UNI 0
#define RX_MODE_MULTI 1
#define RX_MODE_ALL_MULTI 2
#define RX_MODE_PROMISC 3
struct work_struct set_multicast_list_wq;
struct work_struct restart_net_feed_wq;
unsigned char feedtype; /* Either FEED_TYPE_ or FEED_TYPE_ULE */
int need_pusi; /* Set to 1, if synchronization on PUSI required. */
unsigned char tscc; /* TS continuity counter after sync on PUSI. */
struct sk_buff *ule_skb; /* ULE SNDU decodes into this buffer. */
unsigned char *ule_next_hdr; /* Pointer into skb to next ULE extension header. */
unsigned short ule_sndu_len; /* ULE SNDU length in bytes, w/o D-Bit. */
unsigned short ule_sndu_type; /* ULE SNDU type field, complete. */
unsigned char ule_sndu_type_1; /* ULE SNDU type field, if split across 2 TS cells. */
unsigned char ule_dbit; /* Whether the DestMAC address present
* or not (bit is set). */
unsigned char ule_bridged; /* Whether the ULE_BRIDGED extension header was found. */
int ule_sndu_remain; /* Nr. of bytes still required for current ULE SNDU. */
unsigned long ts_count; /* Current ts cell counter. */
struct mutex mutex;
};
/**
* Determine the packet's protocol ID. The rule here is that we
* assume 802.3 if the type field is short enough to be a length.
* This is normal practice and works for any 'now in use' protocol.
*
* stolen from eth.c out of the linux kernel, hacked for dvb-device
* by Michael Holzt <kju@debian.org>
*/
static __be16 dvb_net_eth_type_trans(struct sk_buff *skb,
struct net_device *dev)
{
struct ethhdr *eth;
unsigned char *rawp;
skb_reset_mac_header(skb);
skb_pull(skb,dev->hard_header_len);
eth = eth_hdr(skb);
if (*eth->h_dest & 1) {
if(memcmp(eth->h_dest,dev->broadcast, ETH_ALEN)==0)
skb->pkt_type=PACKET_BROADCAST;
else
skb->pkt_type=PACKET_MULTICAST;
}
if (ntohs(eth->h_proto) >= 1536)
return eth->h_proto;
rawp = skb->data;
/**
* This is a magic hack to spot IPX packets. Older Novell breaks
* the protocol design and runs IPX over 802.3 without an 802.2 LLC
* layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
* won't work for fault tolerant netware but does for the rest.
*/
if (*(unsigned short *)rawp == 0xFFFF)
return htons(ETH_P_802_3);
/**
* Real 802.2 LLC
*/
return htons(ETH_P_802_2);
}
#define TS_SZ 188
#define TS_SYNC 0x47
#define TS_TEI 0x80
#define TS_SC 0xC0
#define TS_PUSI 0x40
#define TS_AF_A 0x20
#define TS_AF_D 0x10
/* ULE Extension Header handlers. */
#define ULE_TEST 0
#define ULE_BRIDGED 1
#define ULE_OPTEXTHDR_PADDING 0
static int ule_test_sndu( struct dvb_net_priv *p )
{
return -1;
}
static int ule_bridged_sndu( struct dvb_net_priv *p )
{
struct ethhdr *hdr = (struct ethhdr*) p->ule_next_hdr;
if(ntohs(hdr->h_proto) < 1536) {
int framelen = p->ule_sndu_len - ((p->ule_next_hdr+sizeof(struct ethhdr)) - p->ule_skb->data);
/* A frame Type < 1536 for a bridged frame, introduces a LLC Length field. */
if(framelen != ntohs(hdr->h_proto)) {
return -1;
}
}
/* Note:
* From RFC4326:
* "A bridged SNDU is a Mandatory Extension Header of Type 1.
* It must be the final (or only) extension header specified in the header chain of a SNDU."
* The 'ule_bridged' flag will cause the extension header processing loop to terminate.
*/
p->ule_bridged = 1;
return 0;
}
static int ule_exthdr_padding(struct dvb_net_priv *p)
{
return 0;
}
/** Handle ULE extension headers.
* Function is called after a successful CRC32 verification of an ULE SNDU to complete its decoding.
* Returns: >= 0: nr. of bytes consumed by next extension header
* -1: Mandatory extension header that is not recognized or TEST SNDU; discard.
*/
static int handle_one_ule_extension( struct dvb_net_priv *p )
{
/* Table of mandatory extension header handlers. The header type is the index. */
static int (*ule_mandatory_ext_handlers[255])( struct dvb_net_priv *p ) =
{ [0] = ule_test_sndu, [1] = ule_bridged_sndu, [2] = NULL, };
/* Table of optional extension header handlers. The header type is the index. */
static int (*ule_optional_ext_handlers[255])( struct dvb_net_priv *p ) =
{ [0] = ule_exthdr_padding, [1] = NULL, };
int ext_len = 0;
unsigned char hlen = (p->ule_sndu_type & 0x0700) >> 8;
unsigned char htype = p->ule_sndu_type & 0x00FF;
/* Discriminate mandatory and optional extension headers. */
if (hlen == 0) {
/* Mandatory extension header */
if (ule_mandatory_ext_handlers[htype]) {
ext_len = ule_mandatory_ext_handlers[htype]( p );
if(ext_len >= 0) {
p->ule_next_hdr += ext_len;
if (!p->ule_bridged) {
p->ule_sndu_type = ntohs(*(__be16 *)p->ule_next_hdr);
p->ule_next_hdr += 2;
} else {
p->ule_sndu_type = ntohs(*(__be16 *)(p->ule_next_hdr + ((p->ule_dbit ? 2 : 3) * ETH_ALEN)));
/* This assures the extension handling loop will terminate. */
}
}
// else: extension handler failed or SNDU should be discarded
} else
ext_len = -1; /* SNDU has to be discarded. */
} else {
/* Optional extension header. Calculate the length. */
ext_len = hlen << 1;
/* Process the optional extension header according to its type. */
if (ule_optional_ext_handlers[htype])
(void)ule_optional_ext_handlers[htype]( p );
p->ule_next_hdr += ext_len;
p->ule_sndu_type = ntohs( *(__be16 *)(p->ule_next_hdr-2) );
/*
* note: the length of the next header type is included in the
* length of THIS optional extension header
*/
}
return ext_len;
}
static int handle_ule_extensions( struct dvb_net_priv *p )
{
int total_ext_len = 0, l;
p->ule_next_hdr = p->ule_skb->data;
do {
l = handle_one_ule_extension( p );
if (l < 0)
return l; /* Stop extension header processing and discard SNDU. */
total_ext_len += l;
#ifdef ULE_DEBUG
dprintk("handle_ule_extensions: ule_next_hdr=%p, ule_sndu_type=%i, "
"l=%i, total_ext_len=%i\n", p->ule_next_hdr,
(int) p->ule_sndu_type, l, total_ext_len);
#endif
} while (p->ule_sndu_type < 1536);
return total_ext_len;
}
/** Prepare for a new ULE SNDU: reset the decoder state. */
static inline void reset_ule( struct dvb_net_priv *p )
{
p->ule_skb = NULL;
p->ule_next_hdr = NULL;
p->ule_sndu_len = 0;
p->ule_sndu_type = 0;
p->ule_sndu_type_1 = 0;
p->ule_sndu_remain = 0;
p->ule_dbit = 0xFF;
p->ule_bridged = 0;
}
/**
* Decode ULE SNDUs according to draft-ietf-ipdvb-ule-03.txt from a sequence of
* TS cells of a single PID.
*/
static void dvb_net_ule( struct net_device *dev, const u8 *buf, size_t buf_len )
{
struct dvb_net_priv *priv = netdev_priv(dev);
unsigned long skipped = 0L;
const u8 *ts, *ts_end, *from_where = NULL;
u8 ts_remain = 0, how_much = 0, new_ts = 1;
struct ethhdr *ethh = NULL;
#ifdef ULE_DEBUG
/* The code inside ULE_DEBUG keeps a history of the last 100 TS cells processed. */
static unsigned char ule_hist[100*TS_SZ];
static unsigned char *ule_where = ule_hist, ule_dump;
#endif
/* For all TS cells in current buffer.
* Appearently, we are called for every single TS cell.
*/
for (ts = buf, ts_end = buf + buf_len; ts < ts_end; /* no default incr. */ ) {
if (new_ts) {
/* We are about to process a new TS cell. */
#ifdef ULE_DEBUG
if (ule_where >= &ule_hist[100*TS_SZ]) ule_where = ule_hist;
memcpy( ule_where, ts, TS_SZ );
if (ule_dump) {
hexdump( ule_where, TS_SZ );
ule_dump = 0;
}
ule_where += TS_SZ;
#endif
/* Check TS error conditions: sync_byte, transport_error_indicator, scrambling_control . */
if ((ts[0] != TS_SYNC) || (ts[1] & TS_TEI) || ((ts[3] & TS_SC) != 0)) {
printk(KERN_WARNING "%lu: Invalid TS cell: SYNC %#x, TEI %u, SC %#x.\n",
priv->ts_count, ts[0], ts[1] & TS_TEI >> 7, ts[3] & 0xC0 >> 6);
/* Drop partly decoded SNDU, reset state, resync on PUSI. */
if (priv->ule_skb) {
dev_kfree_skb( priv->ule_skb );
/* Prepare for next SNDU. */
dev->stats.rx_errors++;
dev->stats.rx_frame_errors++;
}
reset_ule(priv);
priv->need_pusi = 1;
/* Continue with next TS cell. */
ts += TS_SZ;
priv->ts_count++;
continue;
}
ts_remain = 184;
from_where = ts + 4;
}
/* Synchronize on PUSI, if required. */
if (priv->need_pusi) {
if (ts[1] & TS_PUSI) {
/* Find beginning of first ULE SNDU in current TS cell. */
/* Synchronize continuity counter. */
priv->tscc = ts[3] & 0x0F;
/* There is a pointer field here. */
if (ts[4] > ts_remain) {
printk(KERN_ERR "%lu: Invalid ULE packet "
"(pointer field %d)\n", priv->ts_count, ts[4]);
ts += TS_SZ;
priv->ts_count++;
continue;
}
/* Skip to destination of pointer field. */
from_where = &ts[5] + ts[4];
ts_remain -= 1 + ts[4];
skipped = 0;
} else {
skipped++;
ts += TS_SZ;
priv->ts_count++;
continue;
}
}
if (new_ts) {
/* Check continuity counter. */
if ((ts[3] & 0x0F) == priv->tscc)
priv->tscc = (priv->tscc + 1) & 0x0F;
else {
/* TS discontinuity handling: */
printk(KERN_WARNING "%lu: TS discontinuity: got %#x, "
"expected %#x.\n", priv->ts_count, ts[3] & 0x0F, priv->tscc);
/* Drop partly decoded SNDU, reset state, resync on PUSI. */
if (priv->ule_skb) {
dev_kfree_skb( priv->ule_skb );
/* Prepare for next SNDU. */
// reset_ule(priv); moved to below.
dev->stats.rx_errors++;
dev->stats.rx_frame_errors++;
}
reset_ule(priv);
/* skip to next PUSI. */
priv->need_pusi = 1;
continue;
}
/* If we still have an incomplete payload, but PUSI is
* set; some TS cells are missing.
* This is only possible here, if we missed exactly 16 TS
* cells (continuity counter wrap). */
if (ts[1] & TS_PUSI) {
if (! priv->need_pusi) {
if (!(*from_where < (ts_remain-1)) || *from_where != priv->ule_sndu_remain) {
/* Pointer field is invalid. Drop this TS cell and any started ULE SNDU. */
printk(KERN_WARNING "%lu: Invalid pointer "
"field: %u.\n", priv->ts_count, *from_where);
/* Drop partly decoded SNDU, reset state, resync on PUSI. */
if (priv->ule_skb) {
dev_kfree_skb( priv->ule_skb );
dev->stats.rx_errors++;
dev->stats.rx_frame_errors++;
}
reset_ule(priv);
priv->need_pusi = 1;
continue;
}
/* Skip pointer field (we're processing a
* packed payload). */
from_where += 1;
ts_remain -= 1;
} else
priv->need_pusi = 0;
if (priv->ule_sndu_remain > 183) {
/* Current SNDU lacks more data than there could be available in the
* current TS cell. */
dev->stats.rx_errors++;
dev->stats.rx_length_errors++;
printk(KERN_WARNING "%lu: Expected %d more SNDU bytes, but "
"got PUSI (pf %d, ts_remain %d). Flushing incomplete payload.\n",
priv->ts_count, priv->ule_sndu_remain, ts[4], ts_remain);
dev_kfree_skb(priv->ule_skb);
/* Prepare for next SNDU. */
reset_ule(priv);
/* Resync: go to where pointer field points to: start of next ULE SNDU. */
from_where += ts[4];
ts_remain -= ts[4];
}
}
}
/* Check if new payload needs to be started. */
if (priv->ule_skb == NULL) {
/* Start a new payload with skb.
* Find ULE header. It is only guaranteed that the
* length field (2 bytes) is contained in the current
* TS.
* Check ts_remain has to be >= 2 here. */
if (ts_remain < 2) {
printk(KERN_WARNING "Invalid payload packing: only %d "
"bytes left in TS. Resyncing.\n", ts_remain);
priv->ule_sndu_len = 0;
priv->need_pusi = 1;
ts += TS_SZ;
continue;
}
if (! priv->ule_sndu_len) {
/* Got at least two bytes, thus extrace the SNDU length. */
priv->ule_sndu_len = from_where[0] << 8 | from_where[1];
if (priv->ule_sndu_len & 0x8000) {
/* D-Bit is set: no dest mac present. */
priv->ule_sndu_len &= 0x7FFF;
priv->ule_dbit = 1;
} else
priv->ule_dbit = 0;
if (priv->ule_sndu_len < 5) {
printk(KERN_WARNING "%lu: Invalid ULE SNDU length %u. "
"Resyncing.\n", priv->ts_count, priv->ule_sndu_len);
dev->stats.rx_errors++;
dev->stats.rx_length_errors++;
priv->ule_sndu_len = 0;
priv->need_pusi = 1;
new_ts = 1;
ts += TS_SZ;
priv->ts_count++;
continue;
}
ts_remain -= 2; /* consume the 2 bytes SNDU length. */
from_where += 2;
}
/*
* State of current TS:
* ts_remain (remaining bytes in the current TS cell)
* 0 ule_type is not available now, we need the next TS cell
* 1 the first byte of the ule_type is present
* >=2 full ULE header present, maybe some payload data as well.
*/
switch (ts_remain) {
case 1:
priv->ule_sndu_type = from_where[0] << 8;
priv->ule_sndu_type_1 = 1; /* first byte of ule_type is set. */
ts_remain -= 1; from_where += 1;
/* Continue w/ next TS. */
case 0:
new_ts = 1;
ts += TS_SZ;
priv->ts_count++;
continue;
default: /* complete ULE header is present in current TS. */
/* Extract ULE type field. */
if (priv->ule_sndu_type_1) {
priv->ule_sndu_type |= from_where[0];
from_where += 1; /* points to payload start. */
ts_remain -= 1;
} else {
/* Complete type is present in new TS. */
priv->ule_sndu_type = from_where[0] << 8 | from_where[1];
from_where += 2; /* points to payload start. */
ts_remain -= 2;
}
break;
}
/* Allocate the skb (decoder target buffer) with the correct size, as follows:
* prepare for the largest case: bridged SNDU with MAC address (dbit = 0). */
priv->ule_skb = dev_alloc_skb( priv->ule_sndu_len + ETH_HLEN + ETH_ALEN );
if (priv->ule_skb == NULL) {
printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n",
dev->name);
dev->stats.rx_dropped++;
return;
}
/* This includes the CRC32 _and_ dest mac, if !dbit. */
priv->ule_sndu_remain = priv->ule_sndu_len;
priv->ule_skb->dev = dev;
/* Leave space for Ethernet or bridged SNDU header (eth hdr plus one MAC addr). */
skb_reserve( priv->ule_skb, ETH_HLEN + ETH_ALEN );
}
/* Copy data into our current skb. */
how_much = min(priv->ule_sndu_remain, (int)ts_remain);
memcpy(skb_put(priv->ule_skb, how_much), from_where, how_much);
priv->ule_sndu_remain -= how_much;
ts_remain -= how_much;
from_where += how_much;
/* Check for complete payload. */
if (priv->ule_sndu_remain <= 0) {
/* Check CRC32, we've got it in our skb already. */
__be16 ulen = htons(priv->ule_sndu_len);
__be16 utype = htons(priv->ule_sndu_type);
const u8 *tail;
struct kvec iov[3] = {
{ &ulen, sizeof ulen },
{ &utype, sizeof utype },
{ priv->ule_skb->data, priv->ule_skb->len - 4 }
};
u32 ule_crc = ~0L, expected_crc;
if (priv->ule_dbit) {
/* Set D-bit for CRC32 verification,
* if it was set originally. */
ulen |= htons(0x8000);
}
ule_crc = iov_crc32(ule_crc, iov, 3);
tail = skb_tail_pointer(priv->ule_skb);
expected_crc = *(tail - 4) << 24 |
*(tail - 3) << 16 |
*(tail - 2) << 8 |
*(tail - 1);
if (ule_crc != expected_crc) {
printk(KERN_WARNING "%lu: CRC32 check FAILED: %08x / %08x, SNDU len %d type %#x, ts_remain %d, next 2: %x.\n",
priv->ts_count, ule_crc, expected_crc, priv->ule_sndu_len, priv->ule_sndu_type, ts_remain, ts_remain > 2 ? *(unsigned short *)from_where : 0);
#ifdef ULE_DEBUG
hexdump( iov[0].iov_base, iov[0].iov_len );
hexdump( iov[1].iov_base, iov[1].iov_len );
hexdump( iov[2].iov_base, iov[2].iov_len );
if (ule_where == ule_hist) {
hexdump( &ule_hist[98*TS_SZ], TS_SZ );
hexdump( &ule_hist[99*TS_SZ], TS_SZ );
} else if (ule_where == &ule_hist[TS_SZ]) {
hexdump( &ule_hist[99*TS_SZ], TS_SZ );
hexdump( ule_hist, TS_SZ );
} else {
hexdump( ule_where - TS_SZ - TS_SZ, TS_SZ );
hexdump( ule_where - TS_SZ, TS_SZ );
}
ule_dump = 1;
#endif
dev->stats.rx_errors++;
dev->stats.rx_crc_errors++;
dev_kfree_skb(priv->ule_skb);
} else {
/* CRC32 verified OK. */
u8 dest_addr[ETH_ALEN];
static const u8 bc_addr[ETH_ALEN] =
{ [ 0 ... ETH_ALEN-1] = 0xff };
/* CRC32 was OK. Remove it from skb. */
priv->ule_skb->tail -= 4;
priv->ule_skb->len -= 4;
if (!priv->ule_dbit) {
/*
* The destination MAC address is the
* next data in the skb. It comes
* before any extension headers.
*
* Check if the payload of this SNDU
* should be passed up the stack.
*/
register int drop = 0;
if (priv->rx_mode != RX_MODE_PROMISC) {
if (priv->ule_skb->data[0] & 0x01) {
/* multicast or broadcast */
if (memcmp(priv->ule_skb->data, bc_addr, ETH_ALEN)) {
/* multicast */
if (priv->rx_mode == RX_MODE_MULTI) {
int i;
for(i = 0; i < priv->multi_num && memcmp(priv->ule_skb->data, priv->multi_macs[i], ETH_ALEN); i++)
;
if (i == priv->multi_num)
drop = 1;
} else if (priv->rx_mode != RX_MODE_ALL_MULTI)
drop = 1; /* no broadcast; */
/* else: all multicast mode: accept all multicast packets */
}
/* else: broadcast */
}
else if (memcmp(priv->ule_skb->data, dev->dev_addr, ETH_ALEN))
drop = 1;
/* else: destination address matches the MAC address of our receiver device */
}
/* else: promiscuous mode; pass everything up the stack */
if (drop) {
#ifdef ULE_DEBUG
dprintk("Dropping SNDU: MAC destination address does not match: dest addr: "MAC_ADDR_PRINTFMT", dev addr: "MAC_ADDR_PRINTFMT"\n",
MAX_ADDR_PRINTFMT_ARGS(priv->ule_skb->data), MAX_ADDR_PRINTFMT_ARGS(dev->dev_addr));
#endif
dev_kfree_skb(priv->ule_skb);
goto sndu_done;
}
else
{
skb_copy_from_linear_data(priv->ule_skb,
dest_addr,
ETH_ALEN);
skb_pull(priv->ule_skb, ETH_ALEN);
}
}
/* Handle ULE Extension Headers. */
if (priv->ule_sndu_type < 1536) {
/* There is an extension header. Handle it accordingly. */
int l = handle_ule_extensions(priv);
if (l < 0) {
/* Mandatory extension header unknown or TEST SNDU. Drop it. */
// printk( KERN_WARNING "Dropping SNDU, extension headers.\n" );
dev_kfree_skb(priv->ule_skb);
goto sndu_done;
}
skb_pull(priv->ule_skb, l);
}
/*
* Construct/assure correct ethernet header.
* Note: in bridged mode (priv->ule_bridged !=
* 0) we already have the (original) ethernet
* header at the start of the payload (after
* optional dest. address and any extension
* headers).
*/
if (!priv->ule_bridged) {
skb_push(priv->ule_skb, ETH_HLEN);
ethh = (struct ethhdr *)priv->ule_skb->data;
if (!priv->ule_dbit) {
/* dest_addr buffer is only valid if priv->ule_dbit == 0 */
memcpy(ethh->h_dest, dest_addr, ETH_ALEN);
memset(ethh->h_source, 0, ETH_ALEN);
}
else /* zeroize source and dest */
memset( ethh, 0, ETH_ALEN*2 );
ethh->h_proto = htons(priv->ule_sndu_type);
}
/* else: skb is in correct state; nothing to do. */
priv->ule_bridged = 0;
/* Stuff into kernel's protocol stack. */
priv->ule_skb->protocol = dvb_net_eth_type_trans(priv->ule_skb, dev);
/* If D-bit is set (i.e. destination MAC address not present),
* receive the packet anyhow. */
/* if (priv->ule_dbit && skb->pkt_type == PACKET_OTHERHOST)
priv->ule_skb->pkt_type = PACKET_HOST; */
dev->stats.rx_packets++;
dev->stats.rx_bytes += priv->ule_skb->len;
netif_rx(priv->ule_skb);
}
sndu_done:
/* Prepare for next SNDU. */
reset_ule(priv);
}
/* More data in current TS (look at the bytes following the CRC32)? */
if (ts_remain >= 2 && *((unsigned short *)from_where) != 0xFFFF) {
/* Next ULE SNDU starts right there. */
new_ts = 0;
priv->ule_skb = NULL;
priv->ule_sndu_type_1 = 0;
priv->ule_sndu_len = 0;
// printk(KERN_WARNING "More data in current TS: [%#x %#x %#x %#x]\n",
// *(from_where + 0), *(from_where + 1),
// *(from_where + 2), *(from_where + 3));
// printk(KERN_WARNING "ts @ %p, stopped @ %p:\n", ts, from_where + 0);
// hexdump(ts, 188);
} else {
new_ts = 1;
ts += TS_SZ;
priv->ts_count++;
if (priv->ule_skb == NULL) {
priv->need_pusi = 1;
priv->ule_sndu_type_1 = 0;
priv->ule_sndu_len = 0;
}
}
} /* for all available TS cells */
}
static int dvb_net_ts_callback(const u8 *buffer1, size_t buffer1_len,
const u8 *buffer2, size_t buffer2_len,
struct dmx_ts_feed *feed, enum dmx_success success)
{
struct net_device *dev = feed->priv;
if (buffer2)
printk(KERN_WARNING "buffer2 not NULL: %p.\n", buffer2);
if (buffer1_len > 32768)
printk(KERN_WARNING "length > 32k: %zu.\n", buffer1_len);
/* printk("TS callback: %u bytes, %u TS cells @ %p.\n",
buffer1_len, buffer1_len / TS_SZ, buffer1); */
dvb_net_ule(dev, buffer1, buffer1_len);
return 0;
}
static void dvb_net_sec(struct net_device *dev,
const u8 *pkt, int pkt_len)
{
u8 *eth;
struct sk_buff *skb;
struct net_device_stats *stats = &dev->stats;
int snap = 0;
/* note: pkt_len includes a 32bit checksum */
if (pkt_len < 16) {
printk("%s: IP/MPE packet length = %d too small.\n",
dev->name, pkt_len);
stats->rx_errors++;
stats->rx_length_errors++;
return;
}
/* it seems some ISPs manage to screw up here, so we have to
* relax the error checks... */
#if 0
if ((pkt[5] & 0xfd) != 0xc1) {
/* drop scrambled or broken packets */
#else
if ((pkt[5] & 0x3c) != 0x00) {
/* drop scrambled */
#endif
stats->rx_errors++;
stats->rx_crc_errors++;
return;
}
if (pkt[5] & 0x02) {
/* handle LLC/SNAP, see rfc-1042 */
if (pkt_len < 24 || memcmp(&pkt[12], "\xaa\xaa\x03\0\0\0", 6)) {
stats->rx_dropped++;
return;
}
snap = 8;
}
if (pkt[7]) {
/* FIXME: assemble datagram from multiple sections */
stats->rx_errors++;
stats->rx_frame_errors++;
return;
}
/* we have 14 byte ethernet header (ip header follows);
* 12 byte MPE header; 4 byte checksum; + 2 byte alignment, 8 byte LLC/SNAP
*/
if (!(skb = dev_alloc_skb(pkt_len - 4 - 12 + 14 + 2 - snap))) {
//printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
stats->rx_dropped++;
return;
}
skb_reserve(skb, 2); /* longword align L3 header */
skb->dev = dev;
/* copy L3 payload */
eth = (u8 *) skb_put(skb, pkt_len - 12 - 4 + 14 - snap);
memcpy(eth + 14, pkt + 12 + snap, pkt_len - 12 - 4 - snap);
/* create ethernet header: */
eth[0]=pkt[0x0b];
eth[1]=pkt[0x0a];
eth[2]=pkt[0x09];
eth[3]=pkt[0x08];
eth[4]=pkt[0x04];
eth[5]=pkt[0x03];
eth[6]=eth[7]=eth[8]=eth[9]=eth[10]=eth[11]=0;
if (snap) {
eth[12] = pkt[18];
eth[13] = pkt[19];
} else {
/* protocol numbers are from rfc-1700 or
* http://www.iana.org/assignments/ethernet-numbers
*/
if (pkt[12] >> 4 == 6) { /* version field from IP header */
eth[12] = 0x86; /* IPv6 */
eth[13] = 0xdd;
} else {
eth[12] = 0x08; /* IPv4 */
eth[13] = 0x00;
}
}
skb->protocol = dvb_net_eth_type_trans(skb, dev);
stats->rx_packets++;
stats->rx_bytes+=skb->len;
netif_rx(skb);
}
static int dvb_net_sec_callback(const u8 *buffer1, size_t buffer1_len,
const u8 *buffer2, size_t buffer2_len,
struct dmx_section_filter *filter,
enum dmx_success success)
{
struct net_device *dev = filter->priv;
/**
* we rely on the DVB API definition where exactly one complete
* section is delivered in buffer1
*/
dvb_net_sec (dev, buffer1, buffer1_len);
return 0;
}
static int dvb_net_tx(struct sk_buff *skb, struct net_device *dev)
{
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static u8 mask_normal[6]={0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
static u8 mask_allmulti[6]={0xff, 0xff, 0xff, 0x00, 0x00, 0x00};
static u8 mac_allmulti[6]={0x01, 0x00, 0x5e, 0x00, 0x00, 0x00};
static u8 mask_promisc[6]={0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
static int dvb_net_filter_sec_set(struct net_device *dev,
struct dmx_section_filter **secfilter,
u8 *mac, u8 *mac_mask)
{
struct dvb_net_priv *priv = netdev_priv(dev);
int ret;
*secfilter=NULL;
ret = priv->secfeed->allocate_filter(priv->secfeed, secfilter);
if (ret<0) {
printk("%s: could not get filter\n", dev->name);
return ret;
}
(*secfilter)->priv=(void *) dev;
memset((*secfilter)->filter_value, 0x00, DMX_MAX_FILTER_SIZE);
memset((*secfilter)->filter_mask, 0x00, DMX_MAX_FILTER_SIZE);
memset((*secfilter)->filter_mode, 0xff, DMX_MAX_FILTER_SIZE);
(*secfilter)->filter_value[0]=0x3e;
(*secfilter)->filter_value[3]=mac[5];
(*secfilter)->filter_value[4]=mac[4];
(*secfilter)->filter_value[8]=mac[3];
(*secfilter)->filter_value[9]=mac[2];
(*secfilter)->filter_value[10]=mac[1];
(*secfilter)->filter_value[11]=mac[0];
(*secfilter)->filter_mask[0] = 0xff;
(*secfilter)->filter_mask[3] = mac_mask[5];
(*secfilter)->filter_mask[4] = mac_mask[4];
(*secfilter)->filter_mask[8] = mac_mask[3];
(*secfilter)->filter_mask[9] = mac_mask[2];
(*secfilter)->filter_mask[10] = mac_mask[1];
(*secfilter)->filter_mask[11]=mac_mask[0];
dprintk("%s: filter mac=%02x %02x %02x %02x %02x %02x\n",
dev->name, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
dprintk("%s: filter mask=%02x %02x %02x %02x %02x %02x\n",
dev->name, mac_mask[0], mac_mask[1], mac_mask[2],
mac_mask[3], mac_mask[4], mac_mask[5]);
return 0;
}
static int dvb_net_feed_start(struct net_device *dev)
{
int ret = 0, i;
struct dvb_net_priv *priv = netdev_priv(dev);
struct dmx_demux *demux = priv->demux;
unsigned char *mac = (unsigned char *) dev->dev_addr;
dprintk("%s: rx_mode %i\n", __func__, priv->rx_mode);
mutex_lock(&priv->mutex);
if (priv->tsfeed || priv->secfeed || priv->secfilter || priv->multi_secfilter[0])
printk("%s: BUG %d\n", __func__, __LINE__);
priv->secfeed=NULL;
priv->secfilter=NULL;
priv->tsfeed = NULL;
if (priv->feedtype == DVB_NET_FEEDTYPE_MPE) {
dprintk("%s: alloc secfeed\n", __func__);
ret=demux->allocate_section_feed(demux, &priv->secfeed,
dvb_net_sec_callback);
if (ret<0) {
printk("%s: could not allocate section feed\n", dev->name);
goto error;
}
ret = priv->secfeed->set(priv->secfeed, priv->pid, 32768, 1);
if (ret<0) {
printk("%s: could not set section feed\n", dev->name);
priv->demux->release_section_feed(priv->demux, priv->secfeed);
priv->secfeed=NULL;
goto error;
}
if (priv->rx_mode != RX_MODE_PROMISC) {
dprintk("%s: set secfilter\n", __func__);
dvb_net_filter_sec_set(dev, &priv->secfilter, mac, mask_normal);
}
switch (priv->rx_mode) {
case RX_MODE_MULTI:
for (i = 0; i < priv->multi_num; i++) {
dprintk("%s: set multi_secfilter[%d]\n", __func__, i);
dvb_net_filter_sec_set(dev, &priv->multi_secfilter[i],
priv->multi_macs[i], mask_normal);
}
break;
case RX_MODE_ALL_MULTI:
priv->multi_num=1;
dprintk("%s: set multi_secfilter[0]\n", __func__);
dvb_net_filter_sec_set(dev, &priv->multi_secfilter[0],
mac_allmulti, mask_allmulti);
break;
case RX_MODE_PROMISC:
priv->multi_num=0;
dprintk("%s: set secfilter\n", __func__);
dvb_net_filter_sec_set(dev, &priv->secfilter, mac, mask_promisc);
break;
}
dprintk("%s: start filtering\n", __func__);
priv->secfeed->start_filtering(priv->secfeed);
} else if (priv->feedtype == DVB_NET_FEEDTYPE_ULE) {
struct timespec timeout = { 0, 10000000 }; // 10 msec
/* we have payloads encapsulated in TS */
dprintk("%s: alloc tsfeed\n", __func__);
ret = demux->allocate_ts_feed(demux, &priv->tsfeed, dvb_net_ts_callback);
if (ret < 0) {
printk("%s: could not allocate ts feed\n", dev->name);
goto error;
}
/* Set netdevice pointer for ts decaps callback. */
priv->tsfeed->priv = (void *)dev;
ret = priv->tsfeed->set(priv->tsfeed,
priv->pid, /* pid */
TS_PACKET, /* type */
DMX_TS_PES_OTHER, /* pes type */
32768, /* circular buffer size */
timeout /* timeout */
);
if (ret < 0) {
printk("%s: could not set ts feed\n", dev->name);
priv->demux->release_ts_feed(priv->demux, priv->tsfeed);
priv->tsfeed = NULL;
goto error;
}
dprintk("%s: start filtering\n", __func__);
priv->tsfeed->start_filtering(priv->tsfeed);
} else
ret = -EINVAL;
error:
mutex_unlock(&priv->mutex);
return ret;
}
static int dvb_net_feed_stop(struct net_device *dev)
{
struct dvb_net_priv *priv = netdev_priv(dev);
int i, ret = 0;
dprintk("%s\n", __func__);
mutex_lock(&priv->mutex);
if (priv->feedtype == DVB_NET_FEEDTYPE_MPE) {
if (priv->secfeed) {
if (priv->secfeed->is_filtering) {
dprintk("%s: stop secfeed\n", __func__);
priv->secfeed->stop_filtering(priv->secfeed);
}
if (priv->secfilter) {
dprintk("%s: release secfilter\n", __func__);
priv->secfeed->release_filter(priv->secfeed,
priv->secfilter);
priv->secfilter=NULL;
}
for (i=0; i<priv->multi_num; i++) {
if (priv->multi_secfilter[i]) {
dprintk("%s: release multi_filter[%d]\n",
__func__, i);
priv->secfeed->release_filter(priv->secfeed,
priv->multi_secfilter[i]);
priv->multi_secfilter[i] = NULL;
}
}
priv->demux->release_section_feed(priv->demux, priv->secfeed);
priv->secfeed = NULL;
} else
printk("%s: no feed to stop\n", dev->name);
} else if (priv->feedtype == DVB_NET_FEEDTYPE_ULE) {
if (priv->tsfeed) {
if (priv->tsfeed->is_filtering) {
dprintk("%s: stop tsfeed\n", __func__);
priv->tsfeed->stop_filtering(priv->tsfeed);
}
priv->demux->release_ts_feed(priv->demux, priv->tsfeed);
priv->tsfeed = NULL;
}
else
printk("%s: no ts feed to stop\n", dev->name);
} else
ret = -EINVAL;
mutex_unlock(&priv->mutex);
return ret;
}
static int dvb_set_mc_filter (struct net_device *dev, struct dev_mc_list *mc)
{
struct dvb_net_priv *priv = netdev_priv(dev);
if (priv->multi_num == DVB_NET_MULTICAST_MAX)
return -ENOMEM;
memcpy(priv->multi_macs[priv->multi_num], mc->dmi_addr, 6);
priv->multi_num++;
return 0;
}
static void wq_set_multicast_list (struct work_struct *work)
{
struct dvb_net_priv *priv =
container_of(work, struct dvb_net_priv, set_multicast_list_wq);
struct net_device *dev = priv->net;
dvb_net_feed_stop(dev);
priv->rx_mode = RX_MODE_UNI;
netif_addr_lock_bh(dev);
if (dev->flags & IFF_PROMISC) {
dprintk("%s: promiscuous mode\n", dev->name);
priv->rx_mode = RX_MODE_PROMISC;
} else if ((dev->flags & IFF_ALLMULTI)) {
dprintk("%s: allmulti mode\n", dev->name);
priv->rx_mode = RX_MODE_ALL_MULTI;
} else if (dev->mc_count) {
int mci;
struct dev_mc_list *mc;
dprintk("%s: set_mc_list, %d entries\n",
dev->name, dev->mc_count);
priv->rx_mode = RX_MODE_MULTI;
priv->multi_num = 0;
for (mci = 0, mc=dev->mc_list;
mci < dev->mc_count;
mc = mc->next, mci++) {
dvb_set_mc_filter(dev, mc);
}
}
netif_addr_unlock_bh(dev);
dvb_net_feed_start(dev);
}
static void dvb_net_set_multicast_list (struct net_device *dev)
{
struct dvb_net_priv *priv = netdev_priv(dev);
schedule_work(&priv->set_multicast_list_wq);
}
static void wq_restart_net_feed (struct work_struct *work)
{
struct dvb_net_priv *priv =
container_of(work, struct dvb_net_priv, restart_net_feed_wq);
struct net_device *dev = priv->net;
if (netif_running(dev)) {
dvb_net_feed_stop(dev);
dvb_net_feed_start(dev);
}
}
static int dvb_net_set_mac (struct net_device *dev, void *p)
{
struct dvb_net_priv *priv = netdev_priv(dev);
struct sockaddr *addr=p;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
if (netif_running(dev))
schedule_work(&priv->restart_net_feed_wq);
return 0;
}
static int dvb_net_open(struct net_device *dev)
{
struct dvb_net_priv *priv = netdev_priv(dev);
priv->in_use++;
dvb_net_feed_start(dev);
return 0;
}
static int dvb_net_stop(struct net_device *dev)
{
struct dvb_net_priv *priv = netdev_priv(dev);
priv->in_use--;
return dvb_net_feed_stop(dev);
}
static const struct header_ops dvb_header_ops = {
.create = eth_header,
.parse = eth_header_parse,
.rebuild = eth_rebuild_header,
};
static const struct net_device_ops dvb_netdev_ops = {
.ndo_open = dvb_net_open,
.ndo_stop = dvb_net_stop,
.ndo_start_xmit = dvb_net_tx,
.ndo_set_multicast_list = dvb_net_set_multicast_list,
.ndo_set_mac_address = dvb_net_set_mac,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
};
static void dvb_net_setup(struct net_device *dev)
{
ether_setup(dev);
dev->header_ops = &dvb_header_ops;
dev->netdev_ops = &dvb_netdev_ops;
dev->mtu = 4096;
dev->mc_count = 0;
dev->flags |= IFF_NOARP;
}
static int get_if(struct dvb_net *dvbnet)
{
int i;
for (i=0; i<DVB_NET_DEVICES_MAX; i++)
if (!dvbnet->state[i])
break;
if (i == DVB_NET_DEVICES_MAX)
return -1;
dvbnet->state[i]=1;
return i;
}
static int dvb_net_add_if(struct dvb_net *dvbnet, u16 pid, u8 feedtype)
{
struct net_device *net;
struct dvb_net_priv *priv;
int result;
int if_num;
if (feedtype != DVB_NET_FEEDTYPE_MPE && feedtype != DVB_NET_FEEDTYPE_ULE)
return -EINVAL;
if ((if_num = get_if(dvbnet)) < 0)
return -EINVAL;
net = alloc_netdev(sizeof(struct dvb_net_priv), "dvb", dvb_net_setup);
if (!net)
return -ENOMEM;
if (dvbnet->dvbdev->id)
snprintf(net->name, IFNAMSIZ, "dvb%d%u%d",
dvbnet->dvbdev->adapter->num, dvbnet->dvbdev->id, if_num);
else
/* compatibility fix to keep dvb0_0 format */
snprintf(net->name, IFNAMSIZ, "dvb%d_%d",
dvbnet->dvbdev->adapter->num, if_num);
net->addr_len = 6;
memcpy(net->dev_addr, dvbnet->dvbdev->adapter->proposed_mac, 6);
dvbnet->device[if_num] = net;
priv = netdev_priv(net);
priv->net = net;
priv->demux = dvbnet->demux;
priv->pid = pid;
priv->rx_mode = RX_MODE_UNI;
priv->need_pusi = 1;
priv->tscc = 0;
priv->feedtype = feedtype;
reset_ule(priv);
INIT_WORK(&priv->set_multicast_list_wq, wq_set_multicast_list);
INIT_WORK(&priv->restart_net_feed_wq, wq_restart_net_feed);
mutex_init(&priv->mutex);
net->base_addr = pid;
if ((result = register_netdev(net)) < 0) {
dvbnet->device[if_num] = NULL;
free_netdev(net);
return result;
}
printk("dvb_net: created network interface %s\n", net->name);
return if_num;
}
static int dvb_net_remove_if(struct dvb_net *dvbnet, unsigned long num)
{
struct net_device *net = dvbnet->device[num];
struct dvb_net_priv *priv;
if (!dvbnet->state[num])
return -EINVAL;
priv = netdev_priv(net);
if (priv->in_use)
return -EBUSY;
dvb_net_stop(net);
flush_scheduled_work();
printk("dvb_net: removed network interface %s\n", net->name);
unregister_netdev(net);
dvbnet->state[num]=0;
dvbnet->device[num] = NULL;
free_netdev(net);
return 0;
}
static int dvb_net_do_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, void *parg)
{
struct dvb_device *dvbdev = file->private_data;
struct dvb_net *dvbnet = dvbdev->priv;
if (((file->f_flags&O_ACCMODE)==O_RDONLY))
return -EPERM;
switch (cmd) {
case NET_ADD_IF:
{
struct dvb_net_if *dvbnetif = parg;
int result;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!try_module_get(dvbdev->adapter->module))
return -EPERM;
result=dvb_net_add_if(dvbnet, dvbnetif->pid, dvbnetif->feedtype);
if (result<0) {
module_put(dvbdev->adapter->module);
return result;
}
dvbnetif->if_num=result;
break;
}
case NET_GET_IF:
{
struct net_device *netdev;
struct dvb_net_priv *priv_data;
struct dvb_net_if *dvbnetif = parg;
if (dvbnetif->if_num >= DVB_NET_DEVICES_MAX ||
!dvbnet->state[dvbnetif->if_num])
return -EINVAL;
netdev = dvbnet->device[dvbnetif->if_num];
priv_data = netdev_priv(netdev);
dvbnetif->pid=priv_data->pid;
dvbnetif->feedtype=priv_data->feedtype;
break;
}
case NET_REMOVE_IF:
{
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if ((unsigned long) parg >= DVB_NET_DEVICES_MAX)
return -EINVAL;
ret = dvb_net_remove_if(dvbnet, (unsigned long) parg);
if (!ret)
module_put(dvbdev->adapter->module);
return ret;
}
/* binary compatibility cruft */
case __NET_ADD_IF_OLD:
{
struct __dvb_net_if_old *dvbnetif = parg;
int result;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!try_module_get(dvbdev->adapter->module))
return -EPERM;
result=dvb_net_add_if(dvbnet, dvbnetif->pid, DVB_NET_FEEDTYPE_MPE);
if (result<0) {
module_put(dvbdev->adapter->module);
return result;
}
dvbnetif->if_num=result;
break;
}
case __NET_GET_IF_OLD:
{
struct net_device *netdev;
struct dvb_net_priv *priv_data;
struct __dvb_net_if_old *dvbnetif = parg;
if (dvbnetif->if_num >= DVB_NET_DEVICES_MAX ||
!dvbnet->state[dvbnetif->if_num])
return -EINVAL;
netdev = dvbnet->device[dvbnetif->if_num];
priv_data = netdev_priv(netdev);
dvbnetif->pid=priv_data->pid;
break;
}
default:
return -ENOTTY;
}
return 0;
}
static int dvb_net_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
return dvb_usercopy(inode, file, cmd, arg, dvb_net_do_ioctl);
}
static int dvb_net_close(struct inode *inode, struct file *file)
{
struct dvb_device *dvbdev = file->private_data;
struct dvb_net *dvbnet = dvbdev->priv;
dvb_generic_release(inode, file);
if(dvbdev->users == 1 && dvbnet->exit == 1) {
fops_put(file->f_op);
file->f_op = NULL;
wake_up(&dvbdev->wait_queue);
}
return 0;
}
static const struct file_operations dvb_net_fops = {
.owner = THIS_MODULE,
.ioctl = dvb_net_ioctl,
.open = dvb_generic_open,
.release = dvb_net_close,
};
static struct dvb_device dvbdev_net = {
.priv = NULL,
.users = 1,
.writers = 1,
.fops = &dvb_net_fops,
};
void dvb_net_release (struct dvb_net *dvbnet)
{
int i;
dvbnet->exit = 1;
if (dvbnet->dvbdev->users < 1)
wait_event(dvbnet->dvbdev->wait_queue,
dvbnet->dvbdev->users==1);
dvb_unregister_device(dvbnet->dvbdev);
for (i=0; i<DVB_NET_DEVICES_MAX; i++) {
if (!dvbnet->state[i])
continue;
dvb_net_remove_if(dvbnet, i);
}
}
EXPORT_SYMBOL(dvb_net_release);
int dvb_net_init (struct dvb_adapter *adap, struct dvb_net *dvbnet,
struct dmx_demux *dmx)
{
int i;
dvbnet->demux = dmx;
for (i=0; i<DVB_NET_DEVICES_MAX; i++)
dvbnet->state[i] = 0;
dvb_register_device (adap, &dvbnet->dvbdev, &dvbdev_net,
dvbnet, DVB_DEVICE_NET);
return 0;
}
EXPORT_SYMBOL(dvb_net_init);