linux/drivers/dma/ioat_dma.c
Len Brown 2f102607ac i7300_idle: allow testing on i5000-series hardware w/o re-compile
Testing the i7300_idle driver on i5000-series hardware required
an edit to i7300_idle.h to "#define SUPPORT_I5000 1" and a re-build
of both i7300_idle and ioat_dma.

Replace that build-time scheme with a load-time module parameter:
"7300_idle.forceload=1" to make it easier to test the driver
on hardware that while not officially validated, works fine
and is much more commonly available.

By default (no modparam) the driver will continue to load
only on the i7300.

Note that ioat_dma runs a copy of i7300_idle's probe routine
to know to reserve an IOAT channel for i7300_idle.
This change makes ioat_dma do that always on the i5000,
just like it does on the i7300.

Signed-off-by: Len Brown <len.brown@intel.com>
Acked-by: Andrew Henroid <andrew.d.henroid@intel.com>
2009-05-28 20:52:40 -04:00

1741 lines
48 KiB
C

/*
* Intel I/OAT DMA Linux driver
* Copyright(c) 2004 - 2009 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
*/
/*
* This driver supports an Intel I/OAT DMA engine, which does asynchronous
* copy operations.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/workqueue.h>
#include <linux/i7300_idle.h>
#include "ioatdma.h"
#include "ioatdma_registers.h"
#include "ioatdma_hw.h"
#define to_ioat_chan(chan) container_of(chan, struct ioat_dma_chan, common)
#define to_ioatdma_device(dev) container_of(dev, struct ioatdma_device, common)
#define to_ioat_desc(lh) container_of(lh, struct ioat_desc_sw, node)
#define tx_to_ioat_desc(tx) container_of(tx, struct ioat_desc_sw, async_tx)
#define chan_num(ch) ((int)((ch)->reg_base - (ch)->device->reg_base) / 0x80)
static int ioat_pending_level = 4;
module_param(ioat_pending_level, int, 0644);
MODULE_PARM_DESC(ioat_pending_level,
"high-water mark for pushing ioat descriptors (default: 4)");
#define RESET_DELAY msecs_to_jiffies(100)
#define WATCHDOG_DELAY round_jiffies(msecs_to_jiffies(2000))
static void ioat_dma_chan_reset_part2(struct work_struct *work);
static void ioat_dma_chan_watchdog(struct work_struct *work);
/*
* workaround for IOAT ver.3.0 null descriptor issue
* (channel returns error when size is 0)
*/
#define NULL_DESC_BUFFER_SIZE 1
/* internal functions */
static void ioat_dma_start_null_desc(struct ioat_dma_chan *ioat_chan);
static void ioat_dma_memcpy_cleanup(struct ioat_dma_chan *ioat_chan);
static struct ioat_desc_sw *
ioat1_dma_get_next_descriptor(struct ioat_dma_chan *ioat_chan);
static struct ioat_desc_sw *
ioat2_dma_get_next_descriptor(struct ioat_dma_chan *ioat_chan);
static inline struct ioat_dma_chan *ioat_lookup_chan_by_index(
struct ioatdma_device *device,
int index)
{
return device->idx[index];
}
/**
* ioat_dma_do_interrupt - handler used for single vector interrupt mode
* @irq: interrupt id
* @data: interrupt data
*/
static irqreturn_t ioat_dma_do_interrupt(int irq, void *data)
{
struct ioatdma_device *instance = data;
struct ioat_dma_chan *ioat_chan;
unsigned long attnstatus;
int bit;
u8 intrctrl;
intrctrl = readb(instance->reg_base + IOAT_INTRCTRL_OFFSET);
if (!(intrctrl & IOAT_INTRCTRL_MASTER_INT_EN))
return IRQ_NONE;
if (!(intrctrl & IOAT_INTRCTRL_INT_STATUS)) {
writeb(intrctrl, instance->reg_base + IOAT_INTRCTRL_OFFSET);
return IRQ_NONE;
}
attnstatus = readl(instance->reg_base + IOAT_ATTNSTATUS_OFFSET);
for_each_bit(bit, &attnstatus, BITS_PER_LONG) {
ioat_chan = ioat_lookup_chan_by_index(instance, bit);
tasklet_schedule(&ioat_chan->cleanup_task);
}
writeb(intrctrl, instance->reg_base + IOAT_INTRCTRL_OFFSET);
return IRQ_HANDLED;
}
/**
* ioat_dma_do_interrupt_msix - handler used for vector-per-channel interrupt mode
* @irq: interrupt id
* @data: interrupt data
*/
static irqreturn_t ioat_dma_do_interrupt_msix(int irq, void *data)
{
struct ioat_dma_chan *ioat_chan = data;
tasklet_schedule(&ioat_chan->cleanup_task);
return IRQ_HANDLED;
}
static void ioat_dma_cleanup_tasklet(unsigned long data);
/**
* ioat_dma_enumerate_channels - find and initialize the device's channels
* @device: the device to be enumerated
*/
static int ioat_dma_enumerate_channels(struct ioatdma_device *device)
{
u8 xfercap_scale;
u32 xfercap;
int i;
struct ioat_dma_chan *ioat_chan;
/*
* IOAT ver.3 workarounds
*/
if (device->version == IOAT_VER_3_0) {
u32 chan_err_mask;
u16 dev_id;
u32 dmauncerrsts;
/*
* Write CHANERRMSK_INT with 3E07h to mask out the errors
* that can cause stability issues for IOAT ver.3
*/
chan_err_mask = 0x3E07;
pci_write_config_dword(device->pdev,
IOAT_PCI_CHANERRMASK_INT_OFFSET,
chan_err_mask);
/*
* Clear DMAUNCERRSTS Cfg-Reg Parity Error status bit
* (workaround for spurious config parity error after restart)
*/
pci_read_config_word(device->pdev,
IOAT_PCI_DEVICE_ID_OFFSET,
&dev_id);
if (dev_id == PCI_DEVICE_ID_INTEL_IOAT_TBG0) {
dmauncerrsts = 0x10;
pci_write_config_dword(device->pdev,
IOAT_PCI_DMAUNCERRSTS_OFFSET,
dmauncerrsts);
}
}
device->common.chancnt = readb(device->reg_base + IOAT_CHANCNT_OFFSET);
xfercap_scale = readb(device->reg_base + IOAT_XFERCAP_OFFSET);
xfercap = (xfercap_scale == 0 ? -1 : (1UL << xfercap_scale));
#ifdef CONFIG_I7300_IDLE_IOAT_CHANNEL
if (i7300_idle_platform_probe(NULL, NULL, 1) == 0) {
device->common.chancnt--;
}
#endif
for (i = 0; i < device->common.chancnt; i++) {
ioat_chan = kzalloc(sizeof(*ioat_chan), GFP_KERNEL);
if (!ioat_chan) {
device->common.chancnt = i;
break;
}
ioat_chan->device = device;
ioat_chan->reg_base = device->reg_base + (0x80 * (i + 1));
ioat_chan->xfercap = xfercap;
ioat_chan->desccount = 0;
INIT_DELAYED_WORK(&ioat_chan->work, ioat_dma_chan_reset_part2);
if (ioat_chan->device->version == IOAT_VER_2_0)
writel(IOAT_DCACTRL_CMPL_WRITE_ENABLE |
IOAT_DMA_DCA_ANY_CPU,
ioat_chan->reg_base + IOAT_DCACTRL_OFFSET);
else if (ioat_chan->device->version == IOAT_VER_3_0)
writel(IOAT_DMA_DCA_ANY_CPU,
ioat_chan->reg_base + IOAT_DCACTRL_OFFSET);
spin_lock_init(&ioat_chan->cleanup_lock);
spin_lock_init(&ioat_chan->desc_lock);
INIT_LIST_HEAD(&ioat_chan->free_desc);
INIT_LIST_HEAD(&ioat_chan->used_desc);
/* This should be made common somewhere in dmaengine.c */
ioat_chan->common.device = &device->common;
list_add_tail(&ioat_chan->common.device_node,
&device->common.channels);
device->idx[i] = ioat_chan;
tasklet_init(&ioat_chan->cleanup_task,
ioat_dma_cleanup_tasklet,
(unsigned long) ioat_chan);
tasklet_disable(&ioat_chan->cleanup_task);
}
return device->common.chancnt;
}
/**
* ioat_dma_memcpy_issue_pending - push potentially unrecognized appended
* descriptors to hw
* @chan: DMA channel handle
*/
static inline void __ioat1_dma_memcpy_issue_pending(
struct ioat_dma_chan *ioat_chan)
{
ioat_chan->pending = 0;
writeb(IOAT_CHANCMD_APPEND, ioat_chan->reg_base + IOAT1_CHANCMD_OFFSET);
}
static void ioat1_dma_memcpy_issue_pending(struct dma_chan *chan)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
if (ioat_chan->pending > 0) {
spin_lock_bh(&ioat_chan->desc_lock);
__ioat1_dma_memcpy_issue_pending(ioat_chan);
spin_unlock_bh(&ioat_chan->desc_lock);
}
}
static inline void __ioat2_dma_memcpy_issue_pending(
struct ioat_dma_chan *ioat_chan)
{
ioat_chan->pending = 0;
writew(ioat_chan->dmacount,
ioat_chan->reg_base + IOAT_CHAN_DMACOUNT_OFFSET);
}
static void ioat2_dma_memcpy_issue_pending(struct dma_chan *chan)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
if (ioat_chan->pending > 0) {
spin_lock_bh(&ioat_chan->desc_lock);
__ioat2_dma_memcpy_issue_pending(ioat_chan);
spin_unlock_bh(&ioat_chan->desc_lock);
}
}
/**
* ioat_dma_chan_reset_part2 - reinit the channel after a reset
*/
static void ioat_dma_chan_reset_part2(struct work_struct *work)
{
struct ioat_dma_chan *ioat_chan =
container_of(work, struct ioat_dma_chan, work.work);
struct ioat_desc_sw *desc;
spin_lock_bh(&ioat_chan->cleanup_lock);
spin_lock_bh(&ioat_chan->desc_lock);
ioat_chan->completion_virt->low = 0;
ioat_chan->completion_virt->high = 0;
ioat_chan->pending = 0;
/*
* count the descriptors waiting, and be sure to do it
* right for both the CB1 line and the CB2 ring
*/
ioat_chan->dmacount = 0;
if (ioat_chan->used_desc.prev) {
desc = to_ioat_desc(ioat_chan->used_desc.prev);
do {
ioat_chan->dmacount++;
desc = to_ioat_desc(desc->node.next);
} while (&desc->node != ioat_chan->used_desc.next);
}
/*
* write the new starting descriptor address
* this puts channel engine into ARMED state
*/
desc = to_ioat_desc(ioat_chan->used_desc.prev);
switch (ioat_chan->device->version) {
case IOAT_VER_1_2:
writel(((u64) desc->async_tx.phys) & 0x00000000FFFFFFFF,
ioat_chan->reg_base + IOAT1_CHAINADDR_OFFSET_LOW);
writel(((u64) desc->async_tx.phys) >> 32,
ioat_chan->reg_base + IOAT1_CHAINADDR_OFFSET_HIGH);
writeb(IOAT_CHANCMD_START, ioat_chan->reg_base
+ IOAT_CHANCMD_OFFSET(ioat_chan->device->version));
break;
case IOAT_VER_2_0:
writel(((u64) desc->async_tx.phys) & 0x00000000FFFFFFFF,
ioat_chan->reg_base + IOAT2_CHAINADDR_OFFSET_LOW);
writel(((u64) desc->async_tx.phys) >> 32,
ioat_chan->reg_base + IOAT2_CHAINADDR_OFFSET_HIGH);
/* tell the engine to go with what's left to be done */
writew(ioat_chan->dmacount,
ioat_chan->reg_base + IOAT_CHAN_DMACOUNT_OFFSET);
break;
}
dev_err(&ioat_chan->device->pdev->dev,
"chan%d reset - %d descs waiting, %d total desc\n",
chan_num(ioat_chan), ioat_chan->dmacount, ioat_chan->desccount);
spin_unlock_bh(&ioat_chan->desc_lock);
spin_unlock_bh(&ioat_chan->cleanup_lock);
}
/**
* ioat_dma_reset_channel - restart a channel
* @ioat_chan: IOAT DMA channel handle
*/
static void ioat_dma_reset_channel(struct ioat_dma_chan *ioat_chan)
{
u32 chansts, chanerr;
if (!ioat_chan->used_desc.prev)
return;
chanerr = readl(ioat_chan->reg_base + IOAT_CHANERR_OFFSET);
chansts = (ioat_chan->completion_virt->low
& IOAT_CHANSTS_DMA_TRANSFER_STATUS);
if (chanerr) {
dev_err(&ioat_chan->device->pdev->dev,
"chan%d, CHANSTS = 0x%08x CHANERR = 0x%04x, clearing\n",
chan_num(ioat_chan), chansts, chanerr);
writel(chanerr, ioat_chan->reg_base + IOAT_CHANERR_OFFSET);
}
/*
* whack it upside the head with a reset
* and wait for things to settle out.
* force the pending count to a really big negative
* to make sure no one forces an issue_pending
* while we're waiting.
*/
spin_lock_bh(&ioat_chan->desc_lock);
ioat_chan->pending = INT_MIN;
writeb(IOAT_CHANCMD_RESET,
ioat_chan->reg_base
+ IOAT_CHANCMD_OFFSET(ioat_chan->device->version));
spin_unlock_bh(&ioat_chan->desc_lock);
/* schedule the 2nd half instead of sleeping a long time */
schedule_delayed_work(&ioat_chan->work, RESET_DELAY);
}
/**
* ioat_dma_chan_watchdog - watch for stuck channels
*/
static void ioat_dma_chan_watchdog(struct work_struct *work)
{
struct ioatdma_device *device =
container_of(work, struct ioatdma_device, work.work);
struct ioat_dma_chan *ioat_chan;
int i;
union {
u64 full;
struct {
u32 low;
u32 high;
};
} completion_hw;
unsigned long compl_desc_addr_hw;
for (i = 0; i < device->common.chancnt; i++) {
ioat_chan = ioat_lookup_chan_by_index(device, i);
if (ioat_chan->device->version == IOAT_VER_1_2
/* have we started processing anything yet */
&& ioat_chan->last_completion
/* have we completed any since last watchdog cycle? */
&& (ioat_chan->last_completion ==
ioat_chan->watchdog_completion)
/* has TCP stuck on one cookie since last watchdog? */
&& (ioat_chan->watchdog_tcp_cookie ==
ioat_chan->watchdog_last_tcp_cookie)
&& (ioat_chan->watchdog_tcp_cookie !=
ioat_chan->completed_cookie)
/* is there something in the chain to be processed? */
/* CB1 chain always has at least the last one processed */
&& (ioat_chan->used_desc.prev != ioat_chan->used_desc.next)
&& ioat_chan->pending == 0) {
/*
* check CHANSTS register for completed
* descriptor address.
* if it is different than completion writeback,
* it is not zero
* and it has changed since the last watchdog
* we can assume that channel
* is still working correctly
* and the problem is in completion writeback.
* update completion writeback
* with actual CHANSTS value
* else
* try resetting the channel
*/
completion_hw.low = readl(ioat_chan->reg_base +
IOAT_CHANSTS_OFFSET_LOW(ioat_chan->device->version));
completion_hw.high = readl(ioat_chan->reg_base +
IOAT_CHANSTS_OFFSET_HIGH(ioat_chan->device->version));
#if (BITS_PER_LONG == 64)
compl_desc_addr_hw =
completion_hw.full
& IOAT_CHANSTS_COMPLETED_DESCRIPTOR_ADDR;
#else
compl_desc_addr_hw =
completion_hw.low & IOAT_LOW_COMPLETION_MASK;
#endif
if ((compl_desc_addr_hw != 0)
&& (compl_desc_addr_hw != ioat_chan->watchdog_completion)
&& (compl_desc_addr_hw != ioat_chan->last_compl_desc_addr_hw)) {
ioat_chan->last_compl_desc_addr_hw = compl_desc_addr_hw;
ioat_chan->completion_virt->low = completion_hw.low;
ioat_chan->completion_virt->high = completion_hw.high;
} else {
ioat_dma_reset_channel(ioat_chan);
ioat_chan->watchdog_completion = 0;
ioat_chan->last_compl_desc_addr_hw = 0;
}
/*
* for version 2.0 if there are descriptors yet to be processed
* and the last completed hasn't changed since the last watchdog
* if they haven't hit the pending level
* issue the pending to push them through
* else
* try resetting the channel
*/
} else if (ioat_chan->device->version == IOAT_VER_2_0
&& ioat_chan->used_desc.prev
&& ioat_chan->last_completion
&& ioat_chan->last_completion == ioat_chan->watchdog_completion) {
if (ioat_chan->pending < ioat_pending_level)
ioat2_dma_memcpy_issue_pending(&ioat_chan->common);
else {
ioat_dma_reset_channel(ioat_chan);
ioat_chan->watchdog_completion = 0;
}
} else {
ioat_chan->last_compl_desc_addr_hw = 0;
ioat_chan->watchdog_completion
= ioat_chan->last_completion;
}
ioat_chan->watchdog_last_tcp_cookie =
ioat_chan->watchdog_tcp_cookie;
}
schedule_delayed_work(&device->work, WATCHDOG_DELAY);
}
static dma_cookie_t ioat1_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(tx->chan);
struct ioat_desc_sw *first = tx_to_ioat_desc(tx);
struct ioat_desc_sw *prev, *new;
struct ioat_dma_descriptor *hw;
dma_cookie_t cookie;
LIST_HEAD(new_chain);
u32 copy;
size_t len;
dma_addr_t src, dst;
unsigned long orig_flags;
unsigned int desc_count = 0;
/* src and dest and len are stored in the initial descriptor */
len = first->len;
src = first->src;
dst = first->dst;
orig_flags = first->async_tx.flags;
new = first;
spin_lock_bh(&ioat_chan->desc_lock);
prev = to_ioat_desc(ioat_chan->used_desc.prev);
prefetch(prev->hw);
do {
copy = min_t(size_t, len, ioat_chan->xfercap);
async_tx_ack(&new->async_tx);
hw = new->hw;
hw->size = copy;
hw->ctl = 0;
hw->src_addr = src;
hw->dst_addr = dst;
hw->next = 0;
/* chain together the physical address list for the HW */
wmb();
prev->hw->next = (u64) new->async_tx.phys;
len -= copy;
dst += copy;
src += copy;
list_add_tail(&new->node, &new_chain);
desc_count++;
prev = new;
} while (len && (new = ioat1_dma_get_next_descriptor(ioat_chan)));
if (!new) {
dev_err(&ioat_chan->device->pdev->dev,
"tx submit failed\n");
spin_unlock_bh(&ioat_chan->desc_lock);
return -ENOMEM;
}
hw->ctl = IOAT_DMA_DESCRIPTOR_CTL_CP_STS;
if (first->async_tx.callback) {
hw->ctl |= IOAT_DMA_DESCRIPTOR_CTL_INT_GN;
if (first != new) {
/* move callback into to last desc */
new->async_tx.callback = first->async_tx.callback;
new->async_tx.callback_param
= first->async_tx.callback_param;
first->async_tx.callback = NULL;
first->async_tx.callback_param = NULL;
}
}
new->tx_cnt = desc_count;
new->async_tx.flags = orig_flags; /* client is in control of this ack */
/* store the original values for use in later cleanup */
if (new != first) {
new->src = first->src;
new->dst = first->dst;
new->len = first->len;
}
/* cookie incr and addition to used_list must be atomic */
cookie = ioat_chan->common.cookie;
cookie++;
if (cookie < 0)
cookie = 1;
ioat_chan->common.cookie = new->async_tx.cookie = cookie;
/* write address into NextDescriptor field of last desc in chain */
to_ioat_desc(ioat_chan->used_desc.prev)->hw->next =
first->async_tx.phys;
list_splice_tail(&new_chain, &ioat_chan->used_desc);
ioat_chan->dmacount += desc_count;
ioat_chan->pending += desc_count;
if (ioat_chan->pending >= ioat_pending_level)
__ioat1_dma_memcpy_issue_pending(ioat_chan);
spin_unlock_bh(&ioat_chan->desc_lock);
return cookie;
}
static dma_cookie_t ioat2_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(tx->chan);
struct ioat_desc_sw *first = tx_to_ioat_desc(tx);
struct ioat_desc_sw *new;
struct ioat_dma_descriptor *hw;
dma_cookie_t cookie;
u32 copy;
size_t len;
dma_addr_t src, dst;
unsigned long orig_flags;
unsigned int desc_count = 0;
/* src and dest and len are stored in the initial descriptor */
len = first->len;
src = first->src;
dst = first->dst;
orig_flags = first->async_tx.flags;
new = first;
/*
* ioat_chan->desc_lock is still in force in version 2 path
* it gets unlocked at end of this function
*/
do {
copy = min_t(size_t, len, ioat_chan->xfercap);
async_tx_ack(&new->async_tx);
hw = new->hw;
hw->size = copy;
hw->ctl = 0;
hw->src_addr = src;
hw->dst_addr = dst;
len -= copy;
dst += copy;
src += copy;
desc_count++;
} while (len && (new = ioat2_dma_get_next_descriptor(ioat_chan)));
if (!new) {
dev_err(&ioat_chan->device->pdev->dev,
"tx submit failed\n");
spin_unlock_bh(&ioat_chan->desc_lock);
return -ENOMEM;
}
hw->ctl |= IOAT_DMA_DESCRIPTOR_CTL_CP_STS;
if (first->async_tx.callback) {
hw->ctl |= IOAT_DMA_DESCRIPTOR_CTL_INT_GN;
if (first != new) {
/* move callback into to last desc */
new->async_tx.callback = first->async_tx.callback;
new->async_tx.callback_param
= first->async_tx.callback_param;
first->async_tx.callback = NULL;
first->async_tx.callback_param = NULL;
}
}
new->tx_cnt = desc_count;
new->async_tx.flags = orig_flags; /* client is in control of this ack */
/* store the original values for use in later cleanup */
if (new != first) {
new->src = first->src;
new->dst = first->dst;
new->len = first->len;
}
/* cookie incr and addition to used_list must be atomic */
cookie = ioat_chan->common.cookie;
cookie++;
if (cookie < 0)
cookie = 1;
ioat_chan->common.cookie = new->async_tx.cookie = cookie;
ioat_chan->dmacount += desc_count;
ioat_chan->pending += desc_count;
if (ioat_chan->pending >= ioat_pending_level)
__ioat2_dma_memcpy_issue_pending(ioat_chan);
spin_unlock_bh(&ioat_chan->desc_lock);
return cookie;
}
/**
* ioat_dma_alloc_descriptor - allocate and return a sw and hw descriptor pair
* @ioat_chan: the channel supplying the memory pool for the descriptors
* @flags: allocation flags
*/
static struct ioat_desc_sw *ioat_dma_alloc_descriptor(
struct ioat_dma_chan *ioat_chan,
gfp_t flags)
{
struct ioat_dma_descriptor *desc;
struct ioat_desc_sw *desc_sw;
struct ioatdma_device *ioatdma_device;
dma_addr_t phys;
ioatdma_device = to_ioatdma_device(ioat_chan->common.device);
desc = pci_pool_alloc(ioatdma_device->dma_pool, flags, &phys);
if (unlikely(!desc))
return NULL;
desc_sw = kzalloc(sizeof(*desc_sw), flags);
if (unlikely(!desc_sw)) {
pci_pool_free(ioatdma_device->dma_pool, desc, phys);
return NULL;
}
memset(desc, 0, sizeof(*desc));
dma_async_tx_descriptor_init(&desc_sw->async_tx, &ioat_chan->common);
switch (ioat_chan->device->version) {
case IOAT_VER_1_2:
desc_sw->async_tx.tx_submit = ioat1_tx_submit;
break;
case IOAT_VER_2_0:
case IOAT_VER_3_0:
desc_sw->async_tx.tx_submit = ioat2_tx_submit;
break;
}
desc_sw->hw = desc;
desc_sw->async_tx.phys = phys;
return desc_sw;
}
static int ioat_initial_desc_count = 256;
module_param(ioat_initial_desc_count, int, 0644);
MODULE_PARM_DESC(ioat_initial_desc_count,
"initial descriptors per channel (default: 256)");
/**
* ioat2_dma_massage_chan_desc - link the descriptors into a circle
* @ioat_chan: the channel to be massaged
*/
static void ioat2_dma_massage_chan_desc(struct ioat_dma_chan *ioat_chan)
{
struct ioat_desc_sw *desc, *_desc;
/* setup used_desc */
ioat_chan->used_desc.next = ioat_chan->free_desc.next;
ioat_chan->used_desc.prev = NULL;
/* pull free_desc out of the circle so that every node is a hw
* descriptor, but leave it pointing to the list
*/
ioat_chan->free_desc.prev->next = ioat_chan->free_desc.next;
ioat_chan->free_desc.next->prev = ioat_chan->free_desc.prev;
/* circle link the hw descriptors */
desc = to_ioat_desc(ioat_chan->free_desc.next);
desc->hw->next = to_ioat_desc(desc->node.next)->async_tx.phys;
list_for_each_entry_safe(desc, _desc, ioat_chan->free_desc.next, node) {
desc->hw->next = to_ioat_desc(desc->node.next)->async_tx.phys;
}
}
/**
* ioat_dma_alloc_chan_resources - returns the number of allocated descriptors
* @chan: the channel to be filled out
*/
static int ioat_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
struct ioat_desc_sw *desc;
u16 chanctrl;
u32 chanerr;
int i;
LIST_HEAD(tmp_list);
/* have we already been set up? */
if (!list_empty(&ioat_chan->free_desc))
return ioat_chan->desccount;
/* Setup register to interrupt and write completion status on error */
chanctrl = IOAT_CHANCTRL_ERR_INT_EN |
IOAT_CHANCTRL_ANY_ERR_ABORT_EN |
IOAT_CHANCTRL_ERR_COMPLETION_EN;
writew(chanctrl, ioat_chan->reg_base + IOAT_CHANCTRL_OFFSET);
chanerr = readl(ioat_chan->reg_base + IOAT_CHANERR_OFFSET);
if (chanerr) {
dev_err(&ioat_chan->device->pdev->dev,
"CHANERR = %x, clearing\n", chanerr);
writel(chanerr, ioat_chan->reg_base + IOAT_CHANERR_OFFSET);
}
/* Allocate descriptors */
for (i = 0; i < ioat_initial_desc_count; i++) {
desc = ioat_dma_alloc_descriptor(ioat_chan, GFP_KERNEL);
if (!desc) {
dev_err(&ioat_chan->device->pdev->dev,
"Only %d initial descriptors\n", i);
break;
}
list_add_tail(&desc->node, &tmp_list);
}
spin_lock_bh(&ioat_chan->desc_lock);
ioat_chan->desccount = i;
list_splice(&tmp_list, &ioat_chan->free_desc);
if (ioat_chan->device->version != IOAT_VER_1_2)
ioat2_dma_massage_chan_desc(ioat_chan);
spin_unlock_bh(&ioat_chan->desc_lock);
/* allocate a completion writeback area */
/* doing 2 32bit writes to mmio since 1 64b write doesn't work */
ioat_chan->completion_virt =
pci_pool_alloc(ioat_chan->device->completion_pool,
GFP_KERNEL,
&ioat_chan->completion_addr);
memset(ioat_chan->completion_virt, 0,
sizeof(*ioat_chan->completion_virt));
writel(((u64) ioat_chan->completion_addr) & 0x00000000FFFFFFFF,
ioat_chan->reg_base + IOAT_CHANCMP_OFFSET_LOW);
writel(((u64) ioat_chan->completion_addr) >> 32,
ioat_chan->reg_base + IOAT_CHANCMP_OFFSET_HIGH);
tasklet_enable(&ioat_chan->cleanup_task);
ioat_dma_start_null_desc(ioat_chan); /* give chain to dma device */
return ioat_chan->desccount;
}
/**
* ioat_dma_free_chan_resources - release all the descriptors
* @chan: the channel to be cleaned
*/
static void ioat_dma_free_chan_resources(struct dma_chan *chan)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
struct ioatdma_device *ioatdma_device = to_ioatdma_device(chan->device);
struct ioat_desc_sw *desc, *_desc;
int in_use_descs = 0;
/* Before freeing channel resources first check
* if they have been previously allocated for this channel.
*/
if (ioat_chan->desccount == 0)
return;
tasklet_disable(&ioat_chan->cleanup_task);
ioat_dma_memcpy_cleanup(ioat_chan);
/* Delay 100ms after reset to allow internal DMA logic to quiesce
* before removing DMA descriptor resources.
*/
writeb(IOAT_CHANCMD_RESET,
ioat_chan->reg_base
+ IOAT_CHANCMD_OFFSET(ioat_chan->device->version));
mdelay(100);
spin_lock_bh(&ioat_chan->desc_lock);
switch (ioat_chan->device->version) {
case IOAT_VER_1_2:
list_for_each_entry_safe(desc, _desc,
&ioat_chan->used_desc, node) {
in_use_descs++;
list_del(&desc->node);
pci_pool_free(ioatdma_device->dma_pool, desc->hw,
desc->async_tx.phys);
kfree(desc);
}
list_for_each_entry_safe(desc, _desc,
&ioat_chan->free_desc, node) {
list_del(&desc->node);
pci_pool_free(ioatdma_device->dma_pool, desc->hw,
desc->async_tx.phys);
kfree(desc);
}
break;
case IOAT_VER_2_0:
case IOAT_VER_3_0:
list_for_each_entry_safe(desc, _desc,
ioat_chan->free_desc.next, node) {
list_del(&desc->node);
pci_pool_free(ioatdma_device->dma_pool, desc->hw,
desc->async_tx.phys);
kfree(desc);
}
desc = to_ioat_desc(ioat_chan->free_desc.next);
pci_pool_free(ioatdma_device->dma_pool, desc->hw,
desc->async_tx.phys);
kfree(desc);
INIT_LIST_HEAD(&ioat_chan->free_desc);
INIT_LIST_HEAD(&ioat_chan->used_desc);
break;
}
spin_unlock_bh(&ioat_chan->desc_lock);
pci_pool_free(ioatdma_device->completion_pool,
ioat_chan->completion_virt,
ioat_chan->completion_addr);
/* one is ok since we left it on there on purpose */
if (in_use_descs > 1)
dev_err(&ioat_chan->device->pdev->dev,
"Freeing %d in use descriptors!\n",
in_use_descs - 1);
ioat_chan->last_completion = ioat_chan->completion_addr = 0;
ioat_chan->pending = 0;
ioat_chan->dmacount = 0;
ioat_chan->desccount = 0;
ioat_chan->watchdog_completion = 0;
ioat_chan->last_compl_desc_addr_hw = 0;
ioat_chan->watchdog_tcp_cookie =
ioat_chan->watchdog_last_tcp_cookie = 0;
}
/**
* ioat_dma_get_next_descriptor - return the next available descriptor
* @ioat_chan: IOAT DMA channel handle
*
* Gets the next descriptor from the chain, and must be called with the
* channel's desc_lock held. Allocates more descriptors if the channel
* has run out.
*/
static struct ioat_desc_sw *
ioat1_dma_get_next_descriptor(struct ioat_dma_chan *ioat_chan)
{
struct ioat_desc_sw *new;
if (!list_empty(&ioat_chan->free_desc)) {
new = to_ioat_desc(ioat_chan->free_desc.next);
list_del(&new->node);
} else {
/* try to get another desc */
new = ioat_dma_alloc_descriptor(ioat_chan, GFP_ATOMIC);
if (!new) {
dev_err(&ioat_chan->device->pdev->dev,
"alloc failed\n");
return NULL;
}
}
prefetch(new->hw);
return new;
}
static struct ioat_desc_sw *
ioat2_dma_get_next_descriptor(struct ioat_dma_chan *ioat_chan)
{
struct ioat_desc_sw *new;
/*
* used.prev points to where to start processing
* used.next points to next free descriptor
* if used.prev == NULL, there are none waiting to be processed
* if used.next == used.prev.prev, there is only one free descriptor,
* and we need to use it to as a noop descriptor before
* linking in a new set of descriptors, since the device
* has probably already read the pointer to it
*/
if (ioat_chan->used_desc.prev &&
ioat_chan->used_desc.next == ioat_chan->used_desc.prev->prev) {
struct ioat_desc_sw *desc;
struct ioat_desc_sw *noop_desc;
int i;
/* set up the noop descriptor */
noop_desc = to_ioat_desc(ioat_chan->used_desc.next);
/* set size to non-zero value (channel returns error when size is 0) */
noop_desc->hw->size = NULL_DESC_BUFFER_SIZE;
noop_desc->hw->ctl = IOAT_DMA_DESCRIPTOR_NUL;
noop_desc->hw->src_addr = 0;
noop_desc->hw->dst_addr = 0;
ioat_chan->used_desc.next = ioat_chan->used_desc.next->next;
ioat_chan->pending++;
ioat_chan->dmacount++;
/* try to get a few more descriptors */
for (i = 16; i; i--) {
desc = ioat_dma_alloc_descriptor(ioat_chan, GFP_ATOMIC);
if (!desc) {
dev_err(&ioat_chan->device->pdev->dev,
"alloc failed\n");
break;
}
list_add_tail(&desc->node, ioat_chan->used_desc.next);
desc->hw->next
= to_ioat_desc(desc->node.next)->async_tx.phys;
to_ioat_desc(desc->node.prev)->hw->next
= desc->async_tx.phys;
ioat_chan->desccount++;
}
ioat_chan->used_desc.next = noop_desc->node.next;
}
new = to_ioat_desc(ioat_chan->used_desc.next);
prefetch(new);
ioat_chan->used_desc.next = new->node.next;
if (ioat_chan->used_desc.prev == NULL)
ioat_chan->used_desc.prev = &new->node;
prefetch(new->hw);
return new;
}
static struct ioat_desc_sw *ioat_dma_get_next_descriptor(
struct ioat_dma_chan *ioat_chan)
{
if (!ioat_chan)
return NULL;
switch (ioat_chan->device->version) {
case IOAT_VER_1_2:
return ioat1_dma_get_next_descriptor(ioat_chan);
case IOAT_VER_2_0:
case IOAT_VER_3_0:
return ioat2_dma_get_next_descriptor(ioat_chan);
}
return NULL;
}
static struct dma_async_tx_descriptor *ioat1_dma_prep_memcpy(
struct dma_chan *chan,
dma_addr_t dma_dest,
dma_addr_t dma_src,
size_t len,
unsigned long flags)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
struct ioat_desc_sw *new;
spin_lock_bh(&ioat_chan->desc_lock);
new = ioat_dma_get_next_descriptor(ioat_chan);
spin_unlock_bh(&ioat_chan->desc_lock);
if (new) {
new->len = len;
new->dst = dma_dest;
new->src = dma_src;
new->async_tx.flags = flags;
return &new->async_tx;
} else {
dev_err(&ioat_chan->device->pdev->dev,
"chan%d - get_next_desc failed: %d descs waiting, %d total desc\n",
chan_num(ioat_chan), ioat_chan->dmacount, ioat_chan->desccount);
return NULL;
}
}
static struct dma_async_tx_descriptor *ioat2_dma_prep_memcpy(
struct dma_chan *chan,
dma_addr_t dma_dest,
dma_addr_t dma_src,
size_t len,
unsigned long flags)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
struct ioat_desc_sw *new;
spin_lock_bh(&ioat_chan->desc_lock);
new = ioat2_dma_get_next_descriptor(ioat_chan);
/*
* leave ioat_chan->desc_lock set in ioat 2 path
* it will get unlocked at end of tx_submit
*/
if (new) {
new->len = len;
new->dst = dma_dest;
new->src = dma_src;
new->async_tx.flags = flags;
return &new->async_tx;
} else {
spin_unlock_bh(&ioat_chan->desc_lock);
dev_err(&ioat_chan->device->pdev->dev,
"chan%d - get_next_desc failed: %d descs waiting, %d total desc\n",
chan_num(ioat_chan), ioat_chan->dmacount, ioat_chan->desccount);
return NULL;
}
}
static void ioat_dma_cleanup_tasklet(unsigned long data)
{
struct ioat_dma_chan *chan = (void *)data;
ioat_dma_memcpy_cleanup(chan);
writew(IOAT_CHANCTRL_INT_DISABLE,
chan->reg_base + IOAT_CHANCTRL_OFFSET);
}
static void
ioat_dma_unmap(struct ioat_dma_chan *ioat_chan, struct ioat_desc_sw *desc)
{
if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
if (desc->async_tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
pci_unmap_single(ioat_chan->device->pdev,
pci_unmap_addr(desc, dst),
pci_unmap_len(desc, len),
PCI_DMA_FROMDEVICE);
else
pci_unmap_page(ioat_chan->device->pdev,
pci_unmap_addr(desc, dst),
pci_unmap_len(desc, len),
PCI_DMA_FROMDEVICE);
}
if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
if (desc->async_tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
pci_unmap_single(ioat_chan->device->pdev,
pci_unmap_addr(desc, src),
pci_unmap_len(desc, len),
PCI_DMA_TODEVICE);
else
pci_unmap_page(ioat_chan->device->pdev,
pci_unmap_addr(desc, src),
pci_unmap_len(desc, len),
PCI_DMA_TODEVICE);
}
}
/**
* ioat_dma_memcpy_cleanup - cleanup up finished descriptors
* @chan: ioat channel to be cleaned up
*/
static void ioat_dma_memcpy_cleanup(struct ioat_dma_chan *ioat_chan)
{
unsigned long phys_complete;
struct ioat_desc_sw *desc, *_desc;
dma_cookie_t cookie = 0;
unsigned long desc_phys;
struct ioat_desc_sw *latest_desc;
prefetch(ioat_chan->completion_virt);
if (!spin_trylock_bh(&ioat_chan->cleanup_lock))
return;
/* The completion writeback can happen at any time,
so reads by the driver need to be atomic operations
The descriptor physical addresses are limited to 32-bits
when the CPU can only do a 32-bit mov */
#if (BITS_PER_LONG == 64)
phys_complete =
ioat_chan->completion_virt->full
& IOAT_CHANSTS_COMPLETED_DESCRIPTOR_ADDR;
#else
phys_complete =
ioat_chan->completion_virt->low & IOAT_LOW_COMPLETION_MASK;
#endif
if ((ioat_chan->completion_virt->full
& IOAT_CHANSTS_DMA_TRANSFER_STATUS) ==
IOAT_CHANSTS_DMA_TRANSFER_STATUS_HALTED) {
dev_err(&ioat_chan->device->pdev->dev,
"Channel halted, chanerr = %x\n",
readl(ioat_chan->reg_base + IOAT_CHANERR_OFFSET));
/* TODO do something to salvage the situation */
}
if (phys_complete == ioat_chan->last_completion) {
spin_unlock_bh(&ioat_chan->cleanup_lock);
/*
* perhaps we're stuck so hard that the watchdog can't go off?
* try to catch it after 2 seconds
*/
if (ioat_chan->device->version != IOAT_VER_3_0) {
if (time_after(jiffies,
ioat_chan->last_completion_time + HZ*WATCHDOG_DELAY)) {
ioat_dma_chan_watchdog(&(ioat_chan->device->work.work));
ioat_chan->last_completion_time = jiffies;
}
}
return;
}
ioat_chan->last_completion_time = jiffies;
cookie = 0;
if (!spin_trylock_bh(&ioat_chan->desc_lock)) {
spin_unlock_bh(&ioat_chan->cleanup_lock);
return;
}
switch (ioat_chan->device->version) {
case IOAT_VER_1_2:
list_for_each_entry_safe(desc, _desc,
&ioat_chan->used_desc, node) {
/*
* Incoming DMA requests may use multiple descriptors,
* due to exceeding xfercap, perhaps. If so, only the
* last one will have a cookie, and require unmapping.
*/
if (desc->async_tx.cookie) {
cookie = desc->async_tx.cookie;
ioat_dma_unmap(ioat_chan, desc);
if (desc->async_tx.callback) {
desc->async_tx.callback(desc->async_tx.callback_param);
desc->async_tx.callback = NULL;
}
}
if (desc->async_tx.phys != phys_complete) {
/*
* a completed entry, but not the last, so clean
* up if the client is done with the descriptor
*/
if (async_tx_test_ack(&desc->async_tx)) {
list_move_tail(&desc->node,
&ioat_chan->free_desc);
} else
desc->async_tx.cookie = 0;
} else {
/*
* last used desc. Do not remove, so we can
* append from it, but don't look at it next
* time, either
*/
desc->async_tx.cookie = 0;
/* TODO check status bits? */
break;
}
}
break;
case IOAT_VER_2_0:
case IOAT_VER_3_0:
/* has some other thread has already cleaned up? */
if (ioat_chan->used_desc.prev == NULL)
break;
/* work backwards to find latest finished desc */
desc = to_ioat_desc(ioat_chan->used_desc.next);
latest_desc = NULL;
do {
desc = to_ioat_desc(desc->node.prev);
desc_phys = (unsigned long)desc->async_tx.phys
& IOAT_CHANSTS_COMPLETED_DESCRIPTOR_ADDR;
if (desc_phys == phys_complete) {
latest_desc = desc;
break;
}
} while (&desc->node != ioat_chan->used_desc.prev);
if (latest_desc != NULL) {
/* work forwards to clear finished descriptors */
for (desc = to_ioat_desc(ioat_chan->used_desc.prev);
&desc->node != latest_desc->node.next &&
&desc->node != ioat_chan->used_desc.next;
desc = to_ioat_desc(desc->node.next)) {
if (desc->async_tx.cookie) {
cookie = desc->async_tx.cookie;
desc->async_tx.cookie = 0;
ioat_dma_unmap(ioat_chan, desc);
if (desc->async_tx.callback) {
desc->async_tx.callback(desc->async_tx.callback_param);
desc->async_tx.callback = NULL;
}
}
}
/* move used.prev up beyond those that are finished */
if (&desc->node == ioat_chan->used_desc.next)
ioat_chan->used_desc.prev = NULL;
else
ioat_chan->used_desc.prev = &desc->node;
}
break;
}
spin_unlock_bh(&ioat_chan->desc_lock);
ioat_chan->last_completion = phys_complete;
if (cookie != 0)
ioat_chan->completed_cookie = cookie;
spin_unlock_bh(&ioat_chan->cleanup_lock);
}
/**
* ioat_dma_is_complete - poll the status of a IOAT DMA transaction
* @chan: IOAT DMA channel handle
* @cookie: DMA transaction identifier
* @done: if not %NULL, updated with last completed transaction
* @used: if not %NULL, updated with last used transaction
*/
static enum dma_status ioat_dma_is_complete(struct dma_chan *chan,
dma_cookie_t cookie,
dma_cookie_t *done,
dma_cookie_t *used)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
dma_cookie_t last_used;
dma_cookie_t last_complete;
enum dma_status ret;
last_used = chan->cookie;
last_complete = ioat_chan->completed_cookie;
ioat_chan->watchdog_tcp_cookie = cookie;
if (done)
*done = last_complete;
if (used)
*used = last_used;
ret = dma_async_is_complete(cookie, last_complete, last_used);
if (ret == DMA_SUCCESS)
return ret;
ioat_dma_memcpy_cleanup(ioat_chan);
last_used = chan->cookie;
last_complete = ioat_chan->completed_cookie;
if (done)
*done = last_complete;
if (used)
*used = last_used;
return dma_async_is_complete(cookie, last_complete, last_used);
}
static void ioat_dma_start_null_desc(struct ioat_dma_chan *ioat_chan)
{
struct ioat_desc_sw *desc;
spin_lock_bh(&ioat_chan->desc_lock);
desc = ioat_dma_get_next_descriptor(ioat_chan);
if (!desc) {
dev_err(&ioat_chan->device->pdev->dev,
"Unable to start null desc - get next desc failed\n");
spin_unlock_bh(&ioat_chan->desc_lock);
return;
}
desc->hw->ctl = IOAT_DMA_DESCRIPTOR_NUL
| IOAT_DMA_DESCRIPTOR_CTL_INT_GN
| IOAT_DMA_DESCRIPTOR_CTL_CP_STS;
/* set size to non-zero value (channel returns error when size is 0) */
desc->hw->size = NULL_DESC_BUFFER_SIZE;
desc->hw->src_addr = 0;
desc->hw->dst_addr = 0;
async_tx_ack(&desc->async_tx);
switch (ioat_chan->device->version) {
case IOAT_VER_1_2:
desc->hw->next = 0;
list_add_tail(&desc->node, &ioat_chan->used_desc);
writel(((u64) desc->async_tx.phys) & 0x00000000FFFFFFFF,
ioat_chan->reg_base + IOAT1_CHAINADDR_OFFSET_LOW);
writel(((u64) desc->async_tx.phys) >> 32,
ioat_chan->reg_base + IOAT1_CHAINADDR_OFFSET_HIGH);
writeb(IOAT_CHANCMD_START, ioat_chan->reg_base
+ IOAT_CHANCMD_OFFSET(ioat_chan->device->version));
break;
case IOAT_VER_2_0:
case IOAT_VER_3_0:
writel(((u64) desc->async_tx.phys) & 0x00000000FFFFFFFF,
ioat_chan->reg_base + IOAT2_CHAINADDR_OFFSET_LOW);
writel(((u64) desc->async_tx.phys) >> 32,
ioat_chan->reg_base + IOAT2_CHAINADDR_OFFSET_HIGH);
ioat_chan->dmacount++;
__ioat2_dma_memcpy_issue_pending(ioat_chan);
break;
}
spin_unlock_bh(&ioat_chan->desc_lock);
}
/*
* Perform a IOAT transaction to verify the HW works.
*/
#define IOAT_TEST_SIZE 2000
static void ioat_dma_test_callback(void *dma_async_param)
{
struct completion *cmp = dma_async_param;
complete(cmp);
}
/**
* ioat_dma_self_test - Perform a IOAT transaction to verify the HW works.
* @device: device to be tested
*/
static int ioat_dma_self_test(struct ioatdma_device *device)
{
int i;
u8 *src;
u8 *dest;
struct dma_chan *dma_chan;
struct dma_async_tx_descriptor *tx;
dma_addr_t dma_dest, dma_src;
dma_cookie_t cookie;
int err = 0;
struct completion cmp;
unsigned long tmo;
unsigned long flags;
src = kzalloc(sizeof(u8) * IOAT_TEST_SIZE, GFP_KERNEL);
if (!src)
return -ENOMEM;
dest = kzalloc(sizeof(u8) * IOAT_TEST_SIZE, GFP_KERNEL);
if (!dest) {
kfree(src);
return -ENOMEM;
}
/* Fill in src buffer */
for (i = 0; i < IOAT_TEST_SIZE; i++)
src[i] = (u8)i;
/* Start copy, using first DMA channel */
dma_chan = container_of(device->common.channels.next,
struct dma_chan,
device_node);
if (device->common.device_alloc_chan_resources(dma_chan) < 1) {
dev_err(&device->pdev->dev,
"selftest cannot allocate chan resource\n");
err = -ENODEV;
goto out;
}
dma_src = dma_map_single(dma_chan->device->dev, src, IOAT_TEST_SIZE,
DMA_TO_DEVICE);
dma_dest = dma_map_single(dma_chan->device->dev, dest, IOAT_TEST_SIZE,
DMA_FROM_DEVICE);
flags = DMA_COMPL_SRC_UNMAP_SINGLE | DMA_COMPL_DEST_UNMAP_SINGLE;
tx = device->common.device_prep_dma_memcpy(dma_chan, dma_dest, dma_src,
IOAT_TEST_SIZE, flags);
if (!tx) {
dev_err(&device->pdev->dev,
"Self-test prep failed, disabling\n");
err = -ENODEV;
goto free_resources;
}
async_tx_ack(tx);
init_completion(&cmp);
tx->callback = ioat_dma_test_callback;
tx->callback_param = &cmp;
cookie = tx->tx_submit(tx);
if (cookie < 0) {
dev_err(&device->pdev->dev,
"Self-test setup failed, disabling\n");
err = -ENODEV;
goto free_resources;
}
device->common.device_issue_pending(dma_chan);
tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
if (tmo == 0 ||
device->common.device_is_tx_complete(dma_chan, cookie, NULL, NULL)
!= DMA_SUCCESS) {
dev_err(&device->pdev->dev,
"Self-test copy timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
if (memcmp(src, dest, IOAT_TEST_SIZE)) {
dev_err(&device->pdev->dev,
"Self-test copy failed compare, disabling\n");
err = -ENODEV;
goto free_resources;
}
free_resources:
device->common.device_free_chan_resources(dma_chan);
out:
kfree(src);
kfree(dest);
return err;
}
static char ioat_interrupt_style[32] = "msix";
module_param_string(ioat_interrupt_style, ioat_interrupt_style,
sizeof(ioat_interrupt_style), 0644);
MODULE_PARM_DESC(ioat_interrupt_style,
"set ioat interrupt style: msix (default), "
"msix-single-vector, msi, intx)");
/**
* ioat_dma_setup_interrupts - setup interrupt handler
* @device: ioat device
*/
static int ioat_dma_setup_interrupts(struct ioatdma_device *device)
{
struct ioat_dma_chan *ioat_chan;
int err, i, j, msixcnt;
u8 intrctrl = 0;
if (!strcmp(ioat_interrupt_style, "msix"))
goto msix;
if (!strcmp(ioat_interrupt_style, "msix-single-vector"))
goto msix_single_vector;
if (!strcmp(ioat_interrupt_style, "msi"))
goto msi;
if (!strcmp(ioat_interrupt_style, "intx"))
goto intx;
dev_err(&device->pdev->dev, "invalid ioat_interrupt_style %s\n",
ioat_interrupt_style);
goto err_no_irq;
msix:
/* The number of MSI-X vectors should equal the number of channels */
msixcnt = device->common.chancnt;
for (i = 0; i < msixcnt; i++)
device->msix_entries[i].entry = i;
err = pci_enable_msix(device->pdev, device->msix_entries, msixcnt);
if (err < 0)
goto msi;
if (err > 0)
goto msix_single_vector;
for (i = 0; i < msixcnt; i++) {
ioat_chan = ioat_lookup_chan_by_index(device, i);
err = request_irq(device->msix_entries[i].vector,
ioat_dma_do_interrupt_msix,
0, "ioat-msix", ioat_chan);
if (err) {
for (j = 0; j < i; j++) {
ioat_chan =
ioat_lookup_chan_by_index(device, j);
free_irq(device->msix_entries[j].vector,
ioat_chan);
}
goto msix_single_vector;
}
}
intrctrl |= IOAT_INTRCTRL_MSIX_VECTOR_CONTROL;
device->irq_mode = msix_multi_vector;
goto done;
msix_single_vector:
device->msix_entries[0].entry = 0;
err = pci_enable_msix(device->pdev, device->msix_entries, 1);
if (err)
goto msi;
err = request_irq(device->msix_entries[0].vector, ioat_dma_do_interrupt,
0, "ioat-msix", device);
if (err) {
pci_disable_msix(device->pdev);
goto msi;
}
device->irq_mode = msix_single_vector;
goto done;
msi:
err = pci_enable_msi(device->pdev);
if (err)
goto intx;
err = request_irq(device->pdev->irq, ioat_dma_do_interrupt,
0, "ioat-msi", device);
if (err) {
pci_disable_msi(device->pdev);
goto intx;
}
/*
* CB 1.2 devices need a bit set in configuration space to enable MSI
*/
if (device->version == IOAT_VER_1_2) {
u32 dmactrl;
pci_read_config_dword(device->pdev,
IOAT_PCI_DMACTRL_OFFSET, &dmactrl);
dmactrl |= IOAT_PCI_DMACTRL_MSI_EN;
pci_write_config_dword(device->pdev,
IOAT_PCI_DMACTRL_OFFSET, dmactrl);
}
device->irq_mode = msi;
goto done;
intx:
err = request_irq(device->pdev->irq, ioat_dma_do_interrupt,
IRQF_SHARED, "ioat-intx", device);
if (err)
goto err_no_irq;
device->irq_mode = intx;
done:
intrctrl |= IOAT_INTRCTRL_MASTER_INT_EN;
writeb(intrctrl, device->reg_base + IOAT_INTRCTRL_OFFSET);
return 0;
err_no_irq:
/* Disable all interrupt generation */
writeb(0, device->reg_base + IOAT_INTRCTRL_OFFSET);
dev_err(&device->pdev->dev, "no usable interrupts\n");
device->irq_mode = none;
return -1;
}
/**
* ioat_dma_remove_interrupts - remove whatever interrupts were set
* @device: ioat device
*/
static void ioat_dma_remove_interrupts(struct ioatdma_device *device)
{
struct ioat_dma_chan *ioat_chan;
int i;
/* Disable all interrupt generation */
writeb(0, device->reg_base + IOAT_INTRCTRL_OFFSET);
switch (device->irq_mode) {
case msix_multi_vector:
for (i = 0; i < device->common.chancnt; i++) {
ioat_chan = ioat_lookup_chan_by_index(device, i);
free_irq(device->msix_entries[i].vector, ioat_chan);
}
pci_disable_msix(device->pdev);
break;
case msix_single_vector:
free_irq(device->msix_entries[0].vector, device);
pci_disable_msix(device->pdev);
break;
case msi:
free_irq(device->pdev->irq, device);
pci_disable_msi(device->pdev);
break;
case intx:
free_irq(device->pdev->irq, device);
break;
case none:
dev_warn(&device->pdev->dev,
"call to %s without interrupts setup\n", __func__);
}
device->irq_mode = none;
}
struct ioatdma_device *ioat_dma_probe(struct pci_dev *pdev,
void __iomem *iobase)
{
int err;
struct ioatdma_device *device;
device = kzalloc(sizeof(*device), GFP_KERNEL);
if (!device) {
err = -ENOMEM;
goto err_kzalloc;
}
device->pdev = pdev;
device->reg_base = iobase;
device->version = readb(device->reg_base + IOAT_VER_OFFSET);
/* DMA coherent memory pool for DMA descriptor allocations */
device->dma_pool = pci_pool_create("dma_desc_pool", pdev,
sizeof(struct ioat_dma_descriptor),
64, 0);
if (!device->dma_pool) {
err = -ENOMEM;
goto err_dma_pool;
}
device->completion_pool = pci_pool_create("completion_pool", pdev,
sizeof(u64), SMP_CACHE_BYTES,
SMP_CACHE_BYTES);
if (!device->completion_pool) {
err = -ENOMEM;
goto err_completion_pool;
}
INIT_LIST_HEAD(&device->common.channels);
ioat_dma_enumerate_channels(device);
device->common.device_alloc_chan_resources =
ioat_dma_alloc_chan_resources;
device->common.device_free_chan_resources =
ioat_dma_free_chan_resources;
device->common.dev = &pdev->dev;
dma_cap_set(DMA_MEMCPY, device->common.cap_mask);
device->common.device_is_tx_complete = ioat_dma_is_complete;
switch (device->version) {
case IOAT_VER_1_2:
device->common.device_prep_dma_memcpy = ioat1_dma_prep_memcpy;
device->common.device_issue_pending =
ioat1_dma_memcpy_issue_pending;
break;
case IOAT_VER_2_0:
case IOAT_VER_3_0:
device->common.device_prep_dma_memcpy = ioat2_dma_prep_memcpy;
device->common.device_issue_pending =
ioat2_dma_memcpy_issue_pending;
break;
}
dev_err(&device->pdev->dev,
"Intel(R) I/OAT DMA Engine found,"
" %d channels, device version 0x%02x, driver version %s\n",
device->common.chancnt, device->version, IOAT_DMA_VERSION);
if (!device->common.chancnt) {
dev_err(&device->pdev->dev,
"Intel(R) I/OAT DMA Engine problem found: "
"zero channels detected\n");
goto err_setup_interrupts;
}
err = ioat_dma_setup_interrupts(device);
if (err)
goto err_setup_interrupts;
err = ioat_dma_self_test(device);
if (err)
goto err_self_test;
ioat_set_tcp_copy_break(device);
dma_async_device_register(&device->common);
if (device->version != IOAT_VER_3_0) {
INIT_DELAYED_WORK(&device->work, ioat_dma_chan_watchdog);
schedule_delayed_work(&device->work,
WATCHDOG_DELAY);
}
return device;
err_self_test:
ioat_dma_remove_interrupts(device);
err_setup_interrupts:
pci_pool_destroy(device->completion_pool);
err_completion_pool:
pci_pool_destroy(device->dma_pool);
err_dma_pool:
kfree(device);
err_kzalloc:
dev_err(&pdev->dev,
"Intel(R) I/OAT DMA Engine initialization failed\n");
return NULL;
}
void ioat_dma_remove(struct ioatdma_device *device)
{
struct dma_chan *chan, *_chan;
struct ioat_dma_chan *ioat_chan;
if (device->version != IOAT_VER_3_0)
cancel_delayed_work(&device->work);
ioat_dma_remove_interrupts(device);
dma_async_device_unregister(&device->common);
pci_pool_destroy(device->dma_pool);
pci_pool_destroy(device->completion_pool);
iounmap(device->reg_base);
pci_release_regions(device->pdev);
pci_disable_device(device->pdev);
list_for_each_entry_safe(chan, _chan,
&device->common.channels, device_node) {
ioat_chan = to_ioat_chan(chan);
list_del(&chan->device_node);
kfree(ioat_chan);
}
kfree(device);
}