linux/arch/x86/kernel/apic/io_apic.c
Sebastian Andrzej Siewior 20443598d9 x86: devicetree: Configure IOAPIC pin only once
We use io_apic_setup_irq_pin() in order to configure pin's interrupt
number polarity and type. This is done on every irq_create_of_mapping()
which happens for instance during pci enable calls. Level typed
interrupts are masked by default, edge are unmasked.

On the first ->xlate() call the level interrupt is configured and
masked. The driver calls request_irq() and the line is unmasked. Lets
assume the interrupt line is shared with another device and we call
pci_enable_device() for this device. The ->xlate() configures the pin
again and it is masked. request_irq() does not unmask the line because
it _is_ already unmasked according to its internal state. So the
interrupt will never be unmasked again.

This patch is based on an earlier work by Torben Hohn and solves the
problem by configuring the pin only once. Since all devices must agree
on the same type and polarity there is no point in configuring the pin
more than once.

[ tglx: Split out the ce4100 part into a separate patch ]

Cc: Torben Hohn <torbenh@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: http://lkml.kernel.org/r/%3C20110427143052.GA15211%40linutronix.de%3E
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2011-04-28 11:38:30 +02:00

4050 lines
98 KiB
C

/*
* Intel IO-APIC support for multi-Pentium hosts.
*
* Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
*
* Many thanks to Stig Venaas for trying out countless experimental
* patches and reporting/debugging problems patiently!
*
* (c) 1999, Multiple IO-APIC support, developed by
* Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
* Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
* further tested and cleaned up by Zach Brown <zab@redhat.com>
* and Ingo Molnar <mingo@redhat.com>
*
* Fixes
* Maciej W. Rozycki : Bits for genuine 82489DX APICs;
* thanks to Eric Gilmore
* and Rolf G. Tews
* for testing these extensively
* Paul Diefenbaugh : Added full ACPI support
*/
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/mc146818rtc.h>
#include <linux/compiler.h>
#include <linux/acpi.h>
#include <linux/module.h>
#include <linux/syscore_ops.h>
#include <linux/msi.h>
#include <linux/htirq.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/jiffies.h> /* time_after() */
#include <linux/slab.h>
#ifdef CONFIG_ACPI
#include <acpi/acpi_bus.h>
#endif
#include <linux/bootmem.h>
#include <linux/dmar.h>
#include <linux/hpet.h>
#include <asm/idle.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/cpu.h>
#include <asm/desc.h>
#include <asm/proto.h>
#include <asm/acpi.h>
#include <asm/dma.h>
#include <asm/timer.h>
#include <asm/i8259.h>
#include <asm/msidef.h>
#include <asm/hypertransport.h>
#include <asm/setup.h>
#include <asm/irq_remapping.h>
#include <asm/hpet.h>
#include <asm/hw_irq.h>
#include <asm/apic.h>
#define __apicdebuginit(type) static type __init
#define for_each_irq_pin(entry, head) \
for (entry = head; entry; entry = entry->next)
/*
* Is the SiS APIC rmw bug present ?
* -1 = don't know, 0 = no, 1 = yes
*/
int sis_apic_bug = -1;
static DEFINE_RAW_SPINLOCK(ioapic_lock);
static DEFINE_RAW_SPINLOCK(vector_lock);
/*
* # of IRQ routing registers
*/
int nr_ioapic_registers[MAX_IO_APICS];
/* I/O APIC entries */
struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
int nr_ioapics;
/* IO APIC gsi routing info */
struct mp_ioapic_gsi mp_gsi_routing[MAX_IO_APICS];
/* The one past the highest gsi number used */
u32 gsi_top;
/* MP IRQ source entries */
struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
/* # of MP IRQ source entries */
int mp_irq_entries;
/* GSI interrupts */
static int nr_irqs_gsi = NR_IRQS_LEGACY;
#if defined (CONFIG_MCA) || defined (CONFIG_EISA)
int mp_bus_id_to_type[MAX_MP_BUSSES];
#endif
DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
int skip_ioapic_setup;
/**
* disable_ioapic_support() - disables ioapic support at runtime
*/
void disable_ioapic_support(void)
{
#ifdef CONFIG_PCI
noioapicquirk = 1;
noioapicreroute = -1;
#endif
skip_ioapic_setup = 1;
}
static int __init parse_noapic(char *str)
{
/* disable IO-APIC */
disable_ioapic_support();
return 0;
}
early_param("noapic", parse_noapic);
static int io_apic_setup_irq_pin(unsigned int irq, int node,
struct io_apic_irq_attr *attr);
/* Will be called in mpparse/acpi/sfi codes for saving IRQ info */
void mp_save_irq(struct mpc_intsrc *m)
{
int i;
apic_printk(APIC_VERBOSE, "Int: type %d, pol %d, trig %d, bus %02x,"
" IRQ %02x, APIC ID %x, APIC INT %02x\n",
m->irqtype, m->irqflag & 3, (m->irqflag >> 2) & 3, m->srcbus,
m->srcbusirq, m->dstapic, m->dstirq);
for (i = 0; i < mp_irq_entries; i++) {
if (!memcmp(&mp_irqs[i], m, sizeof(*m)))
return;
}
memcpy(&mp_irqs[mp_irq_entries], m, sizeof(*m));
if (++mp_irq_entries == MAX_IRQ_SOURCES)
panic("Max # of irq sources exceeded!!\n");
}
struct irq_pin_list {
int apic, pin;
struct irq_pin_list *next;
};
static struct irq_pin_list *alloc_irq_pin_list(int node)
{
return kzalloc_node(sizeof(struct irq_pin_list), GFP_KERNEL, node);
}
/* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
#ifdef CONFIG_SPARSE_IRQ
static struct irq_cfg irq_cfgx[NR_IRQS_LEGACY];
#else
static struct irq_cfg irq_cfgx[NR_IRQS];
#endif
int __init arch_early_irq_init(void)
{
struct irq_cfg *cfg;
int count, node, i;
if (!legacy_pic->nr_legacy_irqs) {
nr_irqs_gsi = 0;
io_apic_irqs = ~0UL;
}
cfg = irq_cfgx;
count = ARRAY_SIZE(irq_cfgx);
node = cpu_to_node(0);
/* Make sure the legacy interrupts are marked in the bitmap */
irq_reserve_irqs(0, legacy_pic->nr_legacy_irqs);
for (i = 0; i < count; i++) {
irq_set_chip_data(i, &cfg[i]);
zalloc_cpumask_var_node(&cfg[i].domain, GFP_KERNEL, node);
zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_KERNEL, node);
/*
* For legacy IRQ's, start with assigning irq0 to irq15 to
* IRQ0_VECTOR to IRQ15_VECTOR on cpu 0.
*/
if (i < legacy_pic->nr_legacy_irqs) {
cfg[i].vector = IRQ0_VECTOR + i;
cpumask_set_cpu(0, cfg[i].domain);
}
}
return 0;
}
#ifdef CONFIG_SPARSE_IRQ
static struct irq_cfg *irq_cfg(unsigned int irq)
{
return irq_get_chip_data(irq);
}
static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
{
struct irq_cfg *cfg;
cfg = kzalloc_node(sizeof(*cfg), GFP_KERNEL, node);
if (!cfg)
return NULL;
if (!zalloc_cpumask_var_node(&cfg->domain, GFP_KERNEL, node))
goto out_cfg;
if (!zalloc_cpumask_var_node(&cfg->old_domain, GFP_KERNEL, node))
goto out_domain;
return cfg;
out_domain:
free_cpumask_var(cfg->domain);
out_cfg:
kfree(cfg);
return NULL;
}
static void free_irq_cfg(unsigned int at, struct irq_cfg *cfg)
{
if (!cfg)
return;
irq_set_chip_data(at, NULL);
free_cpumask_var(cfg->domain);
free_cpumask_var(cfg->old_domain);
kfree(cfg);
}
#else
struct irq_cfg *irq_cfg(unsigned int irq)
{
return irq < nr_irqs ? irq_cfgx + irq : NULL;
}
static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
{
return irq_cfgx + irq;
}
static inline void free_irq_cfg(unsigned int at, struct irq_cfg *cfg) { }
#endif
static struct irq_cfg *alloc_irq_and_cfg_at(unsigned int at, int node)
{
int res = irq_alloc_desc_at(at, node);
struct irq_cfg *cfg;
if (res < 0) {
if (res != -EEXIST)
return NULL;
cfg = irq_get_chip_data(at);
if (cfg)
return cfg;
}
cfg = alloc_irq_cfg(at, node);
if (cfg)
irq_set_chip_data(at, cfg);
else
irq_free_desc(at);
return cfg;
}
static int alloc_irq_from(unsigned int from, int node)
{
return irq_alloc_desc_from(from, node);
}
static void free_irq_at(unsigned int at, struct irq_cfg *cfg)
{
free_irq_cfg(at, cfg);
irq_free_desc(at);
}
struct io_apic {
unsigned int index;
unsigned int unused[3];
unsigned int data;
unsigned int unused2[11];
unsigned int eoi;
};
static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
{
return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
+ (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
}
static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
{
struct io_apic __iomem *io_apic = io_apic_base(apic);
writel(vector, &io_apic->eoi);
}
static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
{
struct io_apic __iomem *io_apic = io_apic_base(apic);
writel(reg, &io_apic->index);
return readl(&io_apic->data);
}
static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
{
struct io_apic __iomem *io_apic = io_apic_base(apic);
writel(reg, &io_apic->index);
writel(value, &io_apic->data);
}
/*
* Re-write a value: to be used for read-modify-write
* cycles where the read already set up the index register.
*
* Older SiS APIC requires we rewrite the index register
*/
static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
{
struct io_apic __iomem *io_apic = io_apic_base(apic);
if (sis_apic_bug)
writel(reg, &io_apic->index);
writel(value, &io_apic->data);
}
static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
{
struct irq_pin_list *entry;
unsigned long flags;
raw_spin_lock_irqsave(&ioapic_lock, flags);
for_each_irq_pin(entry, cfg->irq_2_pin) {
unsigned int reg;
int pin;
pin = entry->pin;
reg = io_apic_read(entry->apic, 0x10 + pin*2);
/* Is the remote IRR bit set? */
if (reg & IO_APIC_REDIR_REMOTE_IRR) {
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
return true;
}
}
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
return false;
}
union entry_union {
struct { u32 w1, w2; };
struct IO_APIC_route_entry entry;
};
static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
{
union entry_union eu;
unsigned long flags;
raw_spin_lock_irqsave(&ioapic_lock, flags);
eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
return eu.entry;
}
/*
* When we write a new IO APIC routing entry, we need to write the high
* word first! If the mask bit in the low word is clear, we will enable
* the interrupt, and we need to make sure the entry is fully populated
* before that happens.
*/
static void
__ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
{
union entry_union eu = {{0, 0}};
eu.entry = e;
io_apic_write(apic, 0x11 + 2*pin, eu.w2);
io_apic_write(apic, 0x10 + 2*pin, eu.w1);
}
static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
{
unsigned long flags;
raw_spin_lock_irqsave(&ioapic_lock, flags);
__ioapic_write_entry(apic, pin, e);
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
}
/*
* When we mask an IO APIC routing entry, we need to write the low
* word first, in order to set the mask bit before we change the
* high bits!
*/
static void ioapic_mask_entry(int apic, int pin)
{
unsigned long flags;
union entry_union eu = { .entry.mask = 1 };
raw_spin_lock_irqsave(&ioapic_lock, flags);
io_apic_write(apic, 0x10 + 2*pin, eu.w1);
io_apic_write(apic, 0x11 + 2*pin, eu.w2);
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
}
/*
* The common case is 1:1 IRQ<->pin mappings. Sometimes there are
* shared ISA-space IRQs, so we have to support them. We are super
* fast in the common case, and fast for shared ISA-space IRQs.
*/
static int
__add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
{
struct irq_pin_list **last, *entry;
/* don't allow duplicates */
last = &cfg->irq_2_pin;
for_each_irq_pin(entry, cfg->irq_2_pin) {
if (entry->apic == apic && entry->pin == pin)
return 0;
last = &entry->next;
}
entry = alloc_irq_pin_list(node);
if (!entry) {
printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n",
node, apic, pin);
return -ENOMEM;
}
entry->apic = apic;
entry->pin = pin;
*last = entry;
return 0;
}
static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
{
if (__add_pin_to_irq_node(cfg, node, apic, pin))
panic("IO-APIC: failed to add irq-pin. Can not proceed\n");
}
/*
* Reroute an IRQ to a different pin.
*/
static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node,
int oldapic, int oldpin,
int newapic, int newpin)
{
struct irq_pin_list *entry;
for_each_irq_pin(entry, cfg->irq_2_pin) {
if (entry->apic == oldapic && entry->pin == oldpin) {
entry->apic = newapic;
entry->pin = newpin;
/* every one is different, right? */
return;
}
}
/* old apic/pin didn't exist, so just add new ones */
add_pin_to_irq_node(cfg, node, newapic, newpin);
}
static void __io_apic_modify_irq(struct irq_pin_list *entry,
int mask_and, int mask_or,
void (*final)(struct irq_pin_list *entry))
{
unsigned int reg, pin;
pin = entry->pin;
reg = io_apic_read(entry->apic, 0x10 + pin * 2);
reg &= mask_and;
reg |= mask_or;
io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
if (final)
final(entry);
}
static void io_apic_modify_irq(struct irq_cfg *cfg,
int mask_and, int mask_or,
void (*final)(struct irq_pin_list *entry))
{
struct irq_pin_list *entry;
for_each_irq_pin(entry, cfg->irq_2_pin)
__io_apic_modify_irq(entry, mask_and, mask_or, final);
}
static void __mask_and_edge_IO_APIC_irq(struct irq_pin_list *entry)
{
__io_apic_modify_irq(entry, ~IO_APIC_REDIR_LEVEL_TRIGGER,
IO_APIC_REDIR_MASKED, NULL);
}
static void __unmask_and_level_IO_APIC_irq(struct irq_pin_list *entry)
{
__io_apic_modify_irq(entry, ~IO_APIC_REDIR_MASKED,
IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
}
static void io_apic_sync(struct irq_pin_list *entry)
{
/*
* Synchronize the IO-APIC and the CPU by doing
* a dummy read from the IO-APIC
*/
struct io_apic __iomem *io_apic;
io_apic = io_apic_base(entry->apic);
readl(&io_apic->data);
}
static void mask_ioapic(struct irq_cfg *cfg)
{
unsigned long flags;
raw_spin_lock_irqsave(&ioapic_lock, flags);
io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
}
static void mask_ioapic_irq(struct irq_data *data)
{
mask_ioapic(data->chip_data);
}
static void __unmask_ioapic(struct irq_cfg *cfg)
{
io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
}
static void unmask_ioapic(struct irq_cfg *cfg)
{
unsigned long flags;
raw_spin_lock_irqsave(&ioapic_lock, flags);
__unmask_ioapic(cfg);
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
}
static void unmask_ioapic_irq(struct irq_data *data)
{
unmask_ioapic(data->chip_data);
}
static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
{
struct IO_APIC_route_entry entry;
/* Check delivery_mode to be sure we're not clearing an SMI pin */
entry = ioapic_read_entry(apic, pin);
if (entry.delivery_mode == dest_SMI)
return;
/*
* Disable it in the IO-APIC irq-routing table:
*/
ioapic_mask_entry(apic, pin);
}
static void clear_IO_APIC (void)
{
int apic, pin;
for (apic = 0; apic < nr_ioapics; apic++)
for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
clear_IO_APIC_pin(apic, pin);
}
#ifdef CONFIG_X86_32
/*
* support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
* specific CPU-side IRQs.
*/
#define MAX_PIRQS 8
static int pirq_entries[MAX_PIRQS] = {
[0 ... MAX_PIRQS - 1] = -1
};
static int __init ioapic_pirq_setup(char *str)
{
int i, max;
int ints[MAX_PIRQS+1];
get_options(str, ARRAY_SIZE(ints), ints);
apic_printk(APIC_VERBOSE, KERN_INFO
"PIRQ redirection, working around broken MP-BIOS.\n");
max = MAX_PIRQS;
if (ints[0] < MAX_PIRQS)
max = ints[0];
for (i = 0; i < max; i++) {
apic_printk(APIC_VERBOSE, KERN_DEBUG
"... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
/*
* PIRQs are mapped upside down, usually.
*/
pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
}
return 1;
}
__setup("pirq=", ioapic_pirq_setup);
#endif /* CONFIG_X86_32 */
struct IO_APIC_route_entry **alloc_ioapic_entries(void)
{
int apic;
struct IO_APIC_route_entry **ioapic_entries;
ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
GFP_KERNEL);
if (!ioapic_entries)
return 0;
for (apic = 0; apic < nr_ioapics; apic++) {
ioapic_entries[apic] =
kzalloc(sizeof(struct IO_APIC_route_entry) *
nr_ioapic_registers[apic], GFP_KERNEL);
if (!ioapic_entries[apic])
goto nomem;
}
return ioapic_entries;
nomem:
while (--apic >= 0)
kfree(ioapic_entries[apic]);
kfree(ioapic_entries);
return 0;
}
/*
* Saves all the IO-APIC RTE's
*/
int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
{
int apic, pin;
if (!ioapic_entries)
return -ENOMEM;
for (apic = 0; apic < nr_ioapics; apic++) {
if (!ioapic_entries[apic])
return -ENOMEM;
for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
ioapic_entries[apic][pin] =
ioapic_read_entry(apic, pin);
}
return 0;
}
/*
* Mask all IO APIC entries.
*/
void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
{
int apic, pin;
if (!ioapic_entries)
return;
for (apic = 0; apic < nr_ioapics; apic++) {
if (!ioapic_entries[apic])
break;
for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
struct IO_APIC_route_entry entry;
entry = ioapic_entries[apic][pin];
if (!entry.mask) {
entry.mask = 1;
ioapic_write_entry(apic, pin, entry);
}
}
}
}
/*
* Restore IO APIC entries which was saved in ioapic_entries.
*/
int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
{
int apic, pin;
if (!ioapic_entries)
return -ENOMEM;
for (apic = 0; apic < nr_ioapics; apic++) {
if (!ioapic_entries[apic])
return -ENOMEM;
for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
ioapic_write_entry(apic, pin,
ioapic_entries[apic][pin]);
}
return 0;
}
void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
{
int apic;
for (apic = 0; apic < nr_ioapics; apic++)
kfree(ioapic_entries[apic]);
kfree(ioapic_entries);
}
/*
* Find the IRQ entry number of a certain pin.
*/
static int find_irq_entry(int apic, int pin, int type)
{
int i;
for (i = 0; i < mp_irq_entries; i++)
if (mp_irqs[i].irqtype == type &&
(mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
mp_irqs[i].dstapic == MP_APIC_ALL) &&
mp_irqs[i].dstirq == pin)
return i;
return -1;
}
/*
* Find the pin to which IRQ[irq] (ISA) is connected
*/
static int __init find_isa_irq_pin(int irq, int type)
{
int i;
for (i = 0; i < mp_irq_entries; i++) {
int lbus = mp_irqs[i].srcbus;
if (test_bit(lbus, mp_bus_not_pci) &&
(mp_irqs[i].irqtype == type) &&
(mp_irqs[i].srcbusirq == irq))
return mp_irqs[i].dstirq;
}
return -1;
}
static int __init find_isa_irq_apic(int irq, int type)
{
int i;
for (i = 0; i < mp_irq_entries; i++) {
int lbus = mp_irqs[i].srcbus;
if (test_bit(lbus, mp_bus_not_pci) &&
(mp_irqs[i].irqtype == type) &&
(mp_irqs[i].srcbusirq == irq))
break;
}
if (i < mp_irq_entries) {
int apic;
for(apic = 0; apic < nr_ioapics; apic++) {
if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
return apic;
}
}
return -1;
}
#if defined(CONFIG_EISA) || defined(CONFIG_MCA)
/*
* EISA Edge/Level control register, ELCR
*/
static int EISA_ELCR(unsigned int irq)
{
if (irq < legacy_pic->nr_legacy_irqs) {
unsigned int port = 0x4d0 + (irq >> 3);
return (inb(port) >> (irq & 7)) & 1;
}
apic_printk(APIC_VERBOSE, KERN_INFO
"Broken MPtable reports ISA irq %d\n", irq);
return 0;
}
#endif
/* ISA interrupts are always polarity zero edge triggered,
* when listed as conforming in the MP table. */
#define default_ISA_trigger(idx) (0)
#define default_ISA_polarity(idx) (0)
/* EISA interrupts are always polarity zero and can be edge or level
* trigger depending on the ELCR value. If an interrupt is listed as
* EISA conforming in the MP table, that means its trigger type must
* be read in from the ELCR */
#define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq))
#define default_EISA_polarity(idx) default_ISA_polarity(idx)
/* PCI interrupts are always polarity one level triggered,
* when listed as conforming in the MP table. */
#define default_PCI_trigger(idx) (1)
#define default_PCI_polarity(idx) (1)
/* MCA interrupts are always polarity zero level triggered,
* when listed as conforming in the MP table. */
#define default_MCA_trigger(idx) (1)
#define default_MCA_polarity(idx) default_ISA_polarity(idx)
static int irq_polarity(int idx)
{
int bus = mp_irqs[idx].srcbus;
int polarity;
/*
* Determine IRQ line polarity (high active or low active):
*/
switch (mp_irqs[idx].irqflag & 3)
{
case 0: /* conforms, ie. bus-type dependent polarity */
if (test_bit(bus, mp_bus_not_pci))
polarity = default_ISA_polarity(idx);
else
polarity = default_PCI_polarity(idx);
break;
case 1: /* high active */
{
polarity = 0;
break;
}
case 2: /* reserved */
{
printk(KERN_WARNING "broken BIOS!!\n");
polarity = 1;
break;
}
case 3: /* low active */
{
polarity = 1;
break;
}
default: /* invalid */
{
printk(KERN_WARNING "broken BIOS!!\n");
polarity = 1;
break;
}
}
return polarity;
}
static int irq_trigger(int idx)
{
int bus = mp_irqs[idx].srcbus;
int trigger;
/*
* Determine IRQ trigger mode (edge or level sensitive):
*/
switch ((mp_irqs[idx].irqflag>>2) & 3)
{
case 0: /* conforms, ie. bus-type dependent */
if (test_bit(bus, mp_bus_not_pci))
trigger = default_ISA_trigger(idx);
else
trigger = default_PCI_trigger(idx);
#if defined(CONFIG_EISA) || defined(CONFIG_MCA)
switch (mp_bus_id_to_type[bus]) {
case MP_BUS_ISA: /* ISA pin */
{
/* set before the switch */
break;
}
case MP_BUS_EISA: /* EISA pin */
{
trigger = default_EISA_trigger(idx);
break;
}
case MP_BUS_PCI: /* PCI pin */
{
/* set before the switch */
break;
}
case MP_BUS_MCA: /* MCA pin */
{
trigger = default_MCA_trigger(idx);
break;
}
default:
{
printk(KERN_WARNING "broken BIOS!!\n");
trigger = 1;
break;
}
}
#endif
break;
case 1: /* edge */
{
trigger = 0;
break;
}
case 2: /* reserved */
{
printk(KERN_WARNING "broken BIOS!!\n");
trigger = 1;
break;
}
case 3: /* level */
{
trigger = 1;
break;
}
default: /* invalid */
{
printk(KERN_WARNING "broken BIOS!!\n");
trigger = 0;
break;
}
}
return trigger;
}
static int pin_2_irq(int idx, int apic, int pin)
{
int irq;
int bus = mp_irqs[idx].srcbus;
/*
* Debugging check, we are in big trouble if this message pops up!
*/
if (mp_irqs[idx].dstirq != pin)
printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
if (test_bit(bus, mp_bus_not_pci)) {
irq = mp_irqs[idx].srcbusirq;
} else {
u32 gsi = mp_gsi_routing[apic].gsi_base + pin;
if (gsi >= NR_IRQS_LEGACY)
irq = gsi;
else
irq = gsi_top + gsi;
}
#ifdef CONFIG_X86_32
/*
* PCI IRQ command line redirection. Yes, limits are hardcoded.
*/
if ((pin >= 16) && (pin <= 23)) {
if (pirq_entries[pin-16] != -1) {
if (!pirq_entries[pin-16]) {
apic_printk(APIC_VERBOSE, KERN_DEBUG
"disabling PIRQ%d\n", pin-16);
} else {
irq = pirq_entries[pin-16];
apic_printk(APIC_VERBOSE, KERN_DEBUG
"using PIRQ%d -> IRQ %d\n",
pin-16, irq);
}
}
}
#endif
return irq;
}
/*
* Find a specific PCI IRQ entry.
* Not an __init, possibly needed by modules
*/
int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin,
struct io_apic_irq_attr *irq_attr)
{
int apic, i, best_guess = -1;
apic_printk(APIC_DEBUG,
"querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
bus, slot, pin);
if (test_bit(bus, mp_bus_not_pci)) {
apic_printk(APIC_VERBOSE,
"PCI BIOS passed nonexistent PCI bus %d!\n", bus);
return -1;
}
for (i = 0; i < mp_irq_entries; i++) {
int lbus = mp_irqs[i].srcbus;
for (apic = 0; apic < nr_ioapics; apic++)
if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
mp_irqs[i].dstapic == MP_APIC_ALL)
break;
if (!test_bit(lbus, mp_bus_not_pci) &&
!mp_irqs[i].irqtype &&
(bus == lbus) &&
(slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
if (!(apic || IO_APIC_IRQ(irq)))
continue;
if (pin == (mp_irqs[i].srcbusirq & 3)) {
set_io_apic_irq_attr(irq_attr, apic,
mp_irqs[i].dstirq,
irq_trigger(i),
irq_polarity(i));
return irq;
}
/*
* Use the first all-but-pin matching entry as a
* best-guess fuzzy result for broken mptables.
*/
if (best_guess < 0) {
set_io_apic_irq_attr(irq_attr, apic,
mp_irqs[i].dstirq,
irq_trigger(i),
irq_polarity(i));
best_guess = irq;
}
}
}
return best_guess;
}
EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
void lock_vector_lock(void)
{
/* Used to the online set of cpus does not change
* during assign_irq_vector.
*/
raw_spin_lock(&vector_lock);
}
void unlock_vector_lock(void)
{
raw_spin_unlock(&vector_lock);
}
static int
__assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
{
/*
* NOTE! The local APIC isn't very good at handling
* multiple interrupts at the same interrupt level.
* As the interrupt level is determined by taking the
* vector number and shifting that right by 4, we
* want to spread these out a bit so that they don't
* all fall in the same interrupt level.
*
* Also, we've got to be careful not to trash gate
* 0x80, because int 0x80 is hm, kind of importantish. ;)
*/
static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
static int current_offset = VECTOR_OFFSET_START % 8;
unsigned int old_vector;
int cpu, err;
cpumask_var_t tmp_mask;
if (cfg->move_in_progress)
return -EBUSY;
if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
return -ENOMEM;
old_vector = cfg->vector;
if (old_vector) {
cpumask_and(tmp_mask, mask, cpu_online_mask);
cpumask_and(tmp_mask, cfg->domain, tmp_mask);
if (!cpumask_empty(tmp_mask)) {
free_cpumask_var(tmp_mask);
return 0;
}
}
/* Only try and allocate irqs on cpus that are present */
err = -ENOSPC;
for_each_cpu_and(cpu, mask, cpu_online_mask) {
int new_cpu;
int vector, offset;
apic->vector_allocation_domain(cpu, tmp_mask);
vector = current_vector;
offset = current_offset;
next:
vector += 8;
if (vector >= first_system_vector) {
/* If out of vectors on large boxen, must share them. */
offset = (offset + 1) % 8;
vector = FIRST_EXTERNAL_VECTOR + offset;
}
if (unlikely(current_vector == vector))
continue;
if (test_bit(vector, used_vectors))
goto next;
for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
if (per_cpu(vector_irq, new_cpu)[vector] != -1)
goto next;
/* Found one! */
current_vector = vector;
current_offset = offset;
if (old_vector) {
cfg->move_in_progress = 1;
cpumask_copy(cfg->old_domain, cfg->domain);
}
for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
per_cpu(vector_irq, new_cpu)[vector] = irq;
cfg->vector = vector;
cpumask_copy(cfg->domain, tmp_mask);
err = 0;
break;
}
free_cpumask_var(tmp_mask);
return err;
}
int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
{
int err;
unsigned long flags;
raw_spin_lock_irqsave(&vector_lock, flags);
err = __assign_irq_vector(irq, cfg, mask);
raw_spin_unlock_irqrestore(&vector_lock, flags);
return err;
}
static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
{
int cpu, vector;
BUG_ON(!cfg->vector);
vector = cfg->vector;
for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
per_cpu(vector_irq, cpu)[vector] = -1;
cfg->vector = 0;
cpumask_clear(cfg->domain);
if (likely(!cfg->move_in_progress))
return;
for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
vector++) {
if (per_cpu(vector_irq, cpu)[vector] != irq)
continue;
per_cpu(vector_irq, cpu)[vector] = -1;
break;
}
}
cfg->move_in_progress = 0;
}
void __setup_vector_irq(int cpu)
{
/* Initialize vector_irq on a new cpu */
int irq, vector;
struct irq_cfg *cfg;
/*
* vector_lock will make sure that we don't run into irq vector
* assignments that might be happening on another cpu in parallel,
* while we setup our initial vector to irq mappings.
*/
raw_spin_lock(&vector_lock);
/* Mark the inuse vectors */
for_each_active_irq(irq) {
cfg = irq_get_chip_data(irq);
if (!cfg)
continue;
/*
* If it is a legacy IRQ handled by the legacy PIC, this cpu
* will be part of the irq_cfg's domain.
*/
if (irq < legacy_pic->nr_legacy_irqs && !IO_APIC_IRQ(irq))
cpumask_set_cpu(cpu, cfg->domain);
if (!cpumask_test_cpu(cpu, cfg->domain))
continue;
vector = cfg->vector;
per_cpu(vector_irq, cpu)[vector] = irq;
}
/* Mark the free vectors */
for (vector = 0; vector < NR_VECTORS; ++vector) {
irq = per_cpu(vector_irq, cpu)[vector];
if (irq < 0)
continue;
cfg = irq_cfg(irq);
if (!cpumask_test_cpu(cpu, cfg->domain))
per_cpu(vector_irq, cpu)[vector] = -1;
}
raw_spin_unlock(&vector_lock);
}
static struct irq_chip ioapic_chip;
static struct irq_chip ir_ioapic_chip;
#ifdef CONFIG_X86_32
static inline int IO_APIC_irq_trigger(int irq)
{
int apic, idx, pin;
for (apic = 0; apic < nr_ioapics; apic++) {
for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
idx = find_irq_entry(apic, pin, mp_INT);
if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
return irq_trigger(idx);
}
}
/*
* nonexistent IRQs are edge default
*/
return 0;
}
#else
static inline int IO_APIC_irq_trigger(int irq)
{
return 1;
}
#endif
static void ioapic_register_intr(unsigned int irq, struct irq_cfg *cfg,
unsigned long trigger)
{
struct irq_chip *chip = &ioapic_chip;
irq_flow_handler_t hdl;
bool fasteoi;
if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
trigger == IOAPIC_LEVEL) {
irq_set_status_flags(irq, IRQ_LEVEL);
fasteoi = true;
} else {
irq_clear_status_flags(irq, IRQ_LEVEL);
fasteoi = false;
}
if (irq_remapped(cfg)) {
irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
chip = &ir_ioapic_chip;
fasteoi = trigger != 0;
}
hdl = fasteoi ? handle_fasteoi_irq : handle_edge_irq;
irq_set_chip_and_handler_name(irq, chip, hdl,
fasteoi ? "fasteoi" : "edge");
}
static int setup_ioapic_entry(int apic_id, int irq,
struct IO_APIC_route_entry *entry,
unsigned int destination, int trigger,
int polarity, int vector, int pin)
{
/*
* add it to the IO-APIC irq-routing table:
*/
memset(entry,0,sizeof(*entry));
if (intr_remapping_enabled) {
struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
struct irte irte;
struct IR_IO_APIC_route_entry *ir_entry =
(struct IR_IO_APIC_route_entry *) entry;
int index;
if (!iommu)
panic("No mapping iommu for ioapic %d\n", apic_id);
index = alloc_irte(iommu, irq, 1);
if (index < 0)
panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
prepare_irte(&irte, vector, destination);
/* Set source-id of interrupt request */
set_ioapic_sid(&irte, apic_id);
modify_irte(irq, &irte);
ir_entry->index2 = (index >> 15) & 0x1;
ir_entry->zero = 0;
ir_entry->format = 1;
ir_entry->index = (index & 0x7fff);
/*
* IO-APIC RTE will be configured with virtual vector.
* irq handler will do the explicit EOI to the io-apic.
*/
ir_entry->vector = pin;
} else {
entry->delivery_mode = apic->irq_delivery_mode;
entry->dest_mode = apic->irq_dest_mode;
entry->dest = destination;
entry->vector = vector;
}
entry->mask = 0; /* enable IRQ */
entry->trigger = trigger;
entry->polarity = polarity;
/* Mask level triggered irqs.
* Use IRQ_DELAYED_DISABLE for edge triggered irqs.
*/
if (trigger)
entry->mask = 1;
return 0;
}
static void setup_ioapic_irq(int apic_id, int pin, unsigned int irq,
struct irq_cfg *cfg, int trigger, int polarity)
{
struct IO_APIC_route_entry entry;
unsigned int dest;
if (!IO_APIC_IRQ(irq))
return;
/*
* For legacy irqs, cfg->domain starts with cpu 0 for legacy
* controllers like 8259. Now that IO-APIC can handle this irq, update
* the cfg->domain.
*/
if (irq < legacy_pic->nr_legacy_irqs && cpumask_test_cpu(0, cfg->domain))
apic->vector_allocation_domain(0, cfg->domain);
if (assign_irq_vector(irq, cfg, apic->target_cpus()))
return;
dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
apic_printk(APIC_VERBOSE,KERN_DEBUG
"IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
"IRQ %d Mode:%i Active:%i)\n",
apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
irq, trigger, polarity);
if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
dest, trigger, polarity, cfg->vector, pin)) {
printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
mp_ioapics[apic_id].apicid, pin);
__clear_irq_vector(irq, cfg);
return;
}
ioapic_register_intr(irq, cfg, trigger);
if (irq < legacy_pic->nr_legacy_irqs)
legacy_pic->mask(irq);
ioapic_write_entry(apic_id, pin, entry);
}
static struct {
DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1);
} mp_ioapic_routing[MAX_IO_APICS];
static bool __init io_apic_pin_not_connected(int idx, int apic_id, int pin)
{
if (idx != -1)
return false;
apic_printk(APIC_VERBOSE, KERN_DEBUG " apic %d pin %d not connected\n",
mp_ioapics[apic_id].apicid, pin);
return true;
}
static void __init __io_apic_setup_irqs(unsigned int apic_id)
{
int idx, node = cpu_to_node(0);
struct io_apic_irq_attr attr;
unsigned int pin, irq;
for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
idx = find_irq_entry(apic_id, pin, mp_INT);
if (io_apic_pin_not_connected(idx, apic_id, pin))
continue;
irq = pin_2_irq(idx, apic_id, pin);
if ((apic_id > 0) && (irq > 16))
continue;
/*
* Skip the timer IRQ if there's a quirk handler
* installed and if it returns 1:
*/
if (apic->multi_timer_check &&
apic->multi_timer_check(apic_id, irq))
continue;
set_io_apic_irq_attr(&attr, apic_id, pin, irq_trigger(idx),
irq_polarity(idx));
io_apic_setup_irq_pin(irq, node, &attr);
}
}
static void __init setup_IO_APIC_irqs(void)
{
unsigned int apic_id;
apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
for (apic_id = 0; apic_id < nr_ioapics; apic_id++)
__io_apic_setup_irqs(apic_id);
}
/*
* for the gsit that is not in first ioapic
* but could not use acpi_register_gsi()
* like some special sci in IBM x3330
*/
void setup_IO_APIC_irq_extra(u32 gsi)
{
int apic_id = 0, pin, idx, irq, node = cpu_to_node(0);
struct io_apic_irq_attr attr;
/*
* Convert 'gsi' to 'ioapic.pin'.
*/
apic_id = mp_find_ioapic(gsi);
if (apic_id < 0)
return;
pin = mp_find_ioapic_pin(apic_id, gsi);
idx = find_irq_entry(apic_id, pin, mp_INT);
if (idx == -1)
return;
irq = pin_2_irq(idx, apic_id, pin);
/* Only handle the non legacy irqs on secondary ioapics */
if (apic_id == 0 || irq < NR_IRQS_LEGACY)
return;
set_io_apic_irq_attr(&attr, apic_id, pin, irq_trigger(idx),
irq_polarity(idx));
io_apic_setup_irq_pin_once(irq, node, &attr);
}
/*
* Set up the timer pin, possibly with the 8259A-master behind.
*/
static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
int vector)
{
struct IO_APIC_route_entry entry;
if (intr_remapping_enabled)
return;
memset(&entry, 0, sizeof(entry));
/*
* We use logical delivery to get the timer IRQ
* to the first CPU.
*/
entry.dest_mode = apic->irq_dest_mode;
entry.mask = 0; /* don't mask IRQ for edge */
entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
entry.delivery_mode = apic->irq_delivery_mode;
entry.polarity = 0;
entry.trigger = 0;
entry.vector = vector;
/*
* The timer IRQ doesn't have to know that behind the
* scene we may have a 8259A-master in AEOI mode ...
*/
irq_set_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq,
"edge");
/*
* Add it to the IO-APIC irq-routing table:
*/
ioapic_write_entry(apic_id, pin, entry);
}
__apicdebuginit(void) print_IO_APIC(void)
{
int apic, i;
union IO_APIC_reg_00 reg_00;
union IO_APIC_reg_01 reg_01;
union IO_APIC_reg_02 reg_02;
union IO_APIC_reg_03 reg_03;
unsigned long flags;
struct irq_cfg *cfg;
unsigned int irq;
printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
for (i = 0; i < nr_ioapics; i++)
printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
mp_ioapics[i].apicid, nr_ioapic_registers[i]);
/*
* We are a bit conservative about what we expect. We have to
* know about every hardware change ASAP.
*/
printk(KERN_INFO "testing the IO APIC.......................\n");
for (apic = 0; apic < nr_ioapics; apic++) {
raw_spin_lock_irqsave(&ioapic_lock, flags);
reg_00.raw = io_apic_read(apic, 0);
reg_01.raw = io_apic_read(apic, 1);
if (reg_01.bits.version >= 0x10)
reg_02.raw = io_apic_read(apic, 2);
if (reg_01.bits.version >= 0x20)
reg_03.raw = io_apic_read(apic, 3);
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
printk("\n");
printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS);
printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
/*
* Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
* but the value of reg_02 is read as the previous read register
* value, so ignore it if reg_02 == reg_01.
*/
if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
}
/*
* Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
* or reg_03, but the value of reg_0[23] is read as the previous read
* register value, so ignore it if reg_03 == reg_0[12].
*/
if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
reg_03.raw != reg_01.raw) {
printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT);
}
printk(KERN_DEBUG ".... IRQ redirection table:\n");
printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
" Stat Dmod Deli Vect:\n");
for (i = 0; i <= reg_01.bits.entries; i++) {
struct IO_APIC_route_entry entry;
entry = ioapic_read_entry(apic, i);
printk(KERN_DEBUG " %02x %03X ",
i,
entry.dest
);
printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
entry.mask,
entry.trigger,
entry.irr,
entry.polarity,
entry.delivery_status,
entry.dest_mode,
entry.delivery_mode,
entry.vector
);
}
}
printk(KERN_DEBUG "IRQ to pin mappings:\n");
for_each_active_irq(irq) {
struct irq_pin_list *entry;
cfg = irq_get_chip_data(irq);
if (!cfg)
continue;
entry = cfg->irq_2_pin;
if (!entry)
continue;
printk(KERN_DEBUG "IRQ%d ", irq);
for_each_irq_pin(entry, cfg->irq_2_pin)
printk("-> %d:%d", entry->apic, entry->pin);
printk("\n");
}
printk(KERN_INFO ".................................... done.\n");
return;
}
__apicdebuginit(void) print_APIC_field(int base)
{
int i;
printk(KERN_DEBUG);
for (i = 0; i < 8; i++)
printk(KERN_CONT "%08x", apic_read(base + i*0x10));
printk(KERN_CONT "\n");
}
__apicdebuginit(void) print_local_APIC(void *dummy)
{
unsigned int i, v, ver, maxlvt;
u64 icr;
printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
smp_processor_id(), hard_smp_processor_id());
v = apic_read(APIC_ID);
printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
v = apic_read(APIC_LVR);
printk(KERN_INFO "... APIC VERSION: %08x\n", v);
ver = GET_APIC_VERSION(v);
maxlvt = lapic_get_maxlvt();
v = apic_read(APIC_TASKPRI);
printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
if (APIC_INTEGRATED(ver)) { /* !82489DX */
if (!APIC_XAPIC(ver)) {
v = apic_read(APIC_ARBPRI);
printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
v & APIC_ARBPRI_MASK);
}
v = apic_read(APIC_PROCPRI);
printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
}
/*
* Remote read supported only in the 82489DX and local APIC for
* Pentium processors.
*/
if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
v = apic_read(APIC_RRR);
printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
}
v = apic_read(APIC_LDR);
printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
if (!x2apic_enabled()) {
v = apic_read(APIC_DFR);
printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
}
v = apic_read(APIC_SPIV);
printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
printk(KERN_DEBUG "... APIC ISR field:\n");
print_APIC_field(APIC_ISR);
printk(KERN_DEBUG "... APIC TMR field:\n");
print_APIC_field(APIC_TMR);
printk(KERN_DEBUG "... APIC IRR field:\n");
print_APIC_field(APIC_IRR);
if (APIC_INTEGRATED(ver)) { /* !82489DX */
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
apic_write(APIC_ESR, 0);
v = apic_read(APIC_ESR);
printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
}
icr = apic_icr_read();
printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
v = apic_read(APIC_LVTT);
printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
if (maxlvt > 3) { /* PC is LVT#4. */
v = apic_read(APIC_LVTPC);
printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
}
v = apic_read(APIC_LVT0);
printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
v = apic_read(APIC_LVT1);
printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
if (maxlvt > 2) { /* ERR is LVT#3. */
v = apic_read(APIC_LVTERR);
printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
}
v = apic_read(APIC_TMICT);
printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
v = apic_read(APIC_TMCCT);
printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
v = apic_read(APIC_TDCR);
printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
v = apic_read(APIC_EFEAT);
maxlvt = (v >> 16) & 0xff;
printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
v = apic_read(APIC_ECTRL);
printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
for (i = 0; i < maxlvt; i++) {
v = apic_read(APIC_EILVTn(i));
printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
}
}
printk("\n");
}
__apicdebuginit(void) print_local_APICs(int maxcpu)
{
int cpu;
if (!maxcpu)
return;
preempt_disable();
for_each_online_cpu(cpu) {
if (cpu >= maxcpu)
break;
smp_call_function_single(cpu, print_local_APIC, NULL, 1);
}
preempt_enable();
}
__apicdebuginit(void) print_PIC(void)
{
unsigned int v;
unsigned long flags;
if (!legacy_pic->nr_legacy_irqs)
return;
printk(KERN_DEBUG "\nprinting PIC contents\n");
raw_spin_lock_irqsave(&i8259A_lock, flags);
v = inb(0xa1) << 8 | inb(0x21);
printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
v = inb(0xa0) << 8 | inb(0x20);
printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
outb(0x0b,0xa0);
outb(0x0b,0x20);
v = inb(0xa0) << 8 | inb(0x20);
outb(0x0a,0xa0);
outb(0x0a,0x20);
raw_spin_unlock_irqrestore(&i8259A_lock, flags);
printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
v = inb(0x4d1) << 8 | inb(0x4d0);
printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
}
static int __initdata show_lapic = 1;
static __init int setup_show_lapic(char *arg)
{
int num = -1;
if (strcmp(arg, "all") == 0) {
show_lapic = CONFIG_NR_CPUS;
} else {
get_option(&arg, &num);
if (num >= 0)
show_lapic = num;
}
return 1;
}
__setup("show_lapic=", setup_show_lapic);
__apicdebuginit(int) print_ICs(void)
{
if (apic_verbosity == APIC_QUIET)
return 0;
print_PIC();
/* don't print out if apic is not there */
if (!cpu_has_apic && !apic_from_smp_config())
return 0;
print_local_APICs(show_lapic);
print_IO_APIC();
return 0;
}
fs_initcall(print_ICs);
/* Where if anywhere is the i8259 connect in external int mode */
static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
void __init enable_IO_APIC(void)
{
int i8259_apic, i8259_pin;
int apic;
if (!legacy_pic->nr_legacy_irqs)
return;
for(apic = 0; apic < nr_ioapics; apic++) {
int pin;
/* See if any of the pins is in ExtINT mode */
for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
struct IO_APIC_route_entry entry;
entry = ioapic_read_entry(apic, pin);
/* If the interrupt line is enabled and in ExtInt mode
* I have found the pin where the i8259 is connected.
*/
if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
ioapic_i8259.apic = apic;
ioapic_i8259.pin = pin;
goto found_i8259;
}
}
}
found_i8259:
/* Look to see what if the MP table has reported the ExtINT */
/* If we could not find the appropriate pin by looking at the ioapic
* the i8259 probably is not connected the ioapic but give the
* mptable a chance anyway.
*/
i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
/* Trust the MP table if nothing is setup in the hardware */
if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
ioapic_i8259.pin = i8259_pin;
ioapic_i8259.apic = i8259_apic;
}
/* Complain if the MP table and the hardware disagree */
if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
(i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
{
printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
}
/*
* Do not trust the IO-APIC being empty at bootup
*/
clear_IO_APIC();
}
/*
* Not an __init, needed by the reboot code
*/
void disable_IO_APIC(void)
{
/*
* Clear the IO-APIC before rebooting:
*/
clear_IO_APIC();
if (!legacy_pic->nr_legacy_irqs)
return;
/*
* If the i8259 is routed through an IOAPIC
* Put that IOAPIC in virtual wire mode
* so legacy interrupts can be delivered.
*
* With interrupt-remapping, for now we will use virtual wire A mode,
* as virtual wire B is little complex (need to configure both
* IOAPIC RTE as well as interrupt-remapping table entry).
* As this gets called during crash dump, keep this simple for now.
*/
if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
struct IO_APIC_route_entry entry;
memset(&entry, 0, sizeof(entry));
entry.mask = 0; /* Enabled */
entry.trigger = 0; /* Edge */
entry.irr = 0;
entry.polarity = 0; /* High */
entry.delivery_status = 0;
entry.dest_mode = 0; /* Physical */
entry.delivery_mode = dest_ExtINT; /* ExtInt */
entry.vector = 0;
entry.dest = read_apic_id();
/*
* Add it to the IO-APIC irq-routing table:
*/
ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
}
/*
* Use virtual wire A mode when interrupt remapping is enabled.
*/
if (cpu_has_apic || apic_from_smp_config())
disconnect_bsp_APIC(!intr_remapping_enabled &&
ioapic_i8259.pin != -1);
}
#ifdef CONFIG_X86_32
/*
* function to set the IO-APIC physical IDs based on the
* values stored in the MPC table.
*
* by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999
*/
void __init setup_ioapic_ids_from_mpc_nocheck(void)
{
union IO_APIC_reg_00 reg_00;
physid_mask_t phys_id_present_map;
int apic_id;
int i;
unsigned char old_id;
unsigned long flags;
/*
* This is broken; anything with a real cpu count has to
* circumvent this idiocy regardless.
*/
apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map);
/*
* Set the IOAPIC ID to the value stored in the MPC table.
*/
for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
/* Read the register 0 value */
raw_spin_lock_irqsave(&ioapic_lock, flags);
reg_00.raw = io_apic_read(apic_id, 0);
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
old_id = mp_ioapics[apic_id].apicid;
if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
apic_id, mp_ioapics[apic_id].apicid);
printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
reg_00.bits.ID);
mp_ioapics[apic_id].apicid = reg_00.bits.ID;
}
/*
* Sanity check, is the ID really free? Every APIC in a
* system must have a unique ID or we get lots of nice
* 'stuck on smp_invalidate_needed IPI wait' messages.
*/
if (apic->check_apicid_used(&phys_id_present_map,
mp_ioapics[apic_id].apicid)) {
printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
apic_id, mp_ioapics[apic_id].apicid);
for (i = 0; i < get_physical_broadcast(); i++)
if (!physid_isset(i, phys_id_present_map))
break;
if (i >= get_physical_broadcast())
panic("Max APIC ID exceeded!\n");
printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
i);
physid_set(i, phys_id_present_map);
mp_ioapics[apic_id].apicid = i;
} else {
physid_mask_t tmp;
apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid, &tmp);
apic_printk(APIC_VERBOSE, "Setting %d in the "
"phys_id_present_map\n",
mp_ioapics[apic_id].apicid);
physids_or(phys_id_present_map, phys_id_present_map, tmp);
}
/*
* We need to adjust the IRQ routing table
* if the ID changed.
*/
if (old_id != mp_ioapics[apic_id].apicid)
for (i = 0; i < mp_irq_entries; i++)
if (mp_irqs[i].dstapic == old_id)
mp_irqs[i].dstapic
= mp_ioapics[apic_id].apicid;
/*
* Update the ID register according to the right value
* from the MPC table if they are different.
*/
if (mp_ioapics[apic_id].apicid == reg_00.bits.ID)
continue;
apic_printk(APIC_VERBOSE, KERN_INFO
"...changing IO-APIC physical APIC ID to %d ...",
mp_ioapics[apic_id].apicid);
reg_00.bits.ID = mp_ioapics[apic_id].apicid;
raw_spin_lock_irqsave(&ioapic_lock, flags);
io_apic_write(apic_id, 0, reg_00.raw);
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
/*
* Sanity check
*/
raw_spin_lock_irqsave(&ioapic_lock, flags);
reg_00.raw = io_apic_read(apic_id, 0);
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
printk("could not set ID!\n");
else
apic_printk(APIC_VERBOSE, " ok.\n");
}
}
void __init setup_ioapic_ids_from_mpc(void)
{
if (acpi_ioapic)
return;
/*
* Don't check I/O APIC IDs for xAPIC systems. They have
* no meaning without the serial APIC bus.
*/
if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
|| APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
return;
setup_ioapic_ids_from_mpc_nocheck();
}
#endif
int no_timer_check __initdata;
static int __init notimercheck(char *s)
{
no_timer_check = 1;
return 1;
}
__setup("no_timer_check", notimercheck);
/*
* There is a nasty bug in some older SMP boards, their mptable lies
* about the timer IRQ. We do the following to work around the situation:
*
* - timer IRQ defaults to IO-APIC IRQ
* - if this function detects that timer IRQs are defunct, then we fall
* back to ISA timer IRQs
*/
static int __init timer_irq_works(void)
{
unsigned long t1 = jiffies;
unsigned long flags;
if (no_timer_check)
return 1;
local_save_flags(flags);
local_irq_enable();
/* Let ten ticks pass... */
mdelay((10 * 1000) / HZ);
local_irq_restore(flags);
/*
* Expect a few ticks at least, to be sure some possible
* glue logic does not lock up after one or two first
* ticks in a non-ExtINT mode. Also the local APIC
* might have cached one ExtINT interrupt. Finally, at
* least one tick may be lost due to delays.
*/
/* jiffies wrap? */
if (time_after(jiffies, t1 + 4))
return 1;
return 0;
}
/*
* In the SMP+IOAPIC case it might happen that there are an unspecified
* number of pending IRQ events unhandled. These cases are very rare,
* so we 'resend' these IRQs via IPIs, to the same CPU. It's much
* better to do it this way as thus we do not have to be aware of
* 'pending' interrupts in the IRQ path, except at this point.
*/
/*
* Edge triggered needs to resend any interrupt
* that was delayed but this is now handled in the device
* independent code.
*/
/*
* Starting up a edge-triggered IO-APIC interrupt is
* nasty - we need to make sure that we get the edge.
* If it is already asserted for some reason, we need
* return 1 to indicate that is was pending.
*
* This is not complete - we should be able to fake
* an edge even if it isn't on the 8259A...
*/
static unsigned int startup_ioapic_irq(struct irq_data *data)
{
int was_pending = 0, irq = data->irq;
unsigned long flags;
raw_spin_lock_irqsave(&ioapic_lock, flags);
if (irq < legacy_pic->nr_legacy_irqs) {
legacy_pic->mask(irq);
if (legacy_pic->irq_pending(irq))
was_pending = 1;
}
__unmask_ioapic(data->chip_data);
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
return was_pending;
}
static int ioapic_retrigger_irq(struct irq_data *data)
{
struct irq_cfg *cfg = data->chip_data;
unsigned long flags;
raw_spin_lock_irqsave(&vector_lock, flags);
apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
raw_spin_unlock_irqrestore(&vector_lock, flags);
return 1;
}
/*
* Level and edge triggered IO-APIC interrupts need different handling,
* so we use two separate IRQ descriptors. Edge triggered IRQs can be
* handled with the level-triggered descriptor, but that one has slightly
* more overhead. Level-triggered interrupts cannot be handled with the
* edge-triggered handler, without risking IRQ storms and other ugly
* races.
*/
#ifdef CONFIG_SMP
void send_cleanup_vector(struct irq_cfg *cfg)
{
cpumask_var_t cleanup_mask;
if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
unsigned int i;
for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
} else {
cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
free_cpumask_var(cleanup_mask);
}
cfg->move_in_progress = 0;
}
static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
{
int apic, pin;
struct irq_pin_list *entry;
u8 vector = cfg->vector;
for_each_irq_pin(entry, cfg->irq_2_pin) {
unsigned int reg;
apic = entry->apic;
pin = entry->pin;
/*
* With interrupt-remapping, destination information comes
* from interrupt-remapping table entry.
*/
if (!irq_remapped(cfg))
io_apic_write(apic, 0x11 + pin*2, dest);
reg = io_apic_read(apic, 0x10 + pin*2);
reg &= ~IO_APIC_REDIR_VECTOR_MASK;
reg |= vector;
io_apic_modify(apic, 0x10 + pin*2, reg);
}
}
/*
* Either sets data->affinity to a valid value, and returns
* ->cpu_mask_to_apicid of that in dest_id, or returns -1 and
* leaves data->affinity untouched.
*/
int __ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
unsigned int *dest_id)
{
struct irq_cfg *cfg = data->chip_data;
if (!cpumask_intersects(mask, cpu_online_mask))
return -1;
if (assign_irq_vector(data->irq, data->chip_data, mask))
return -1;
cpumask_copy(data->affinity, mask);
*dest_id = apic->cpu_mask_to_apicid_and(mask, cfg->domain);
return 0;
}
static int
ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
bool force)
{
unsigned int dest, irq = data->irq;
unsigned long flags;
int ret;
raw_spin_lock_irqsave(&ioapic_lock, flags);
ret = __ioapic_set_affinity(data, mask, &dest);
if (!ret) {
/* Only the high 8 bits are valid. */
dest = SET_APIC_LOGICAL_ID(dest);
__target_IO_APIC_irq(irq, dest, data->chip_data);
}
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
return ret;
}
#ifdef CONFIG_INTR_REMAP
/*
* Migrate the IO-APIC irq in the presence of intr-remapping.
*
* For both level and edge triggered, irq migration is a simple atomic
* update(of vector and cpu destination) of IRTE and flush the hardware cache.
*
* For level triggered, we eliminate the io-apic RTE modification (with the
* updated vector information), by using a virtual vector (io-apic pin number).
* Real vector that is used for interrupting cpu will be coming from
* the interrupt-remapping table entry.
*/
static int
ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
bool force)
{
struct irq_cfg *cfg = data->chip_data;
unsigned int dest, irq = data->irq;
struct irte irte;
if (!cpumask_intersects(mask, cpu_online_mask))
return -EINVAL;
if (get_irte(irq, &irte))
return -EBUSY;
if (assign_irq_vector(irq, cfg, mask))
return -EBUSY;
dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
irte.vector = cfg->vector;
irte.dest_id = IRTE_DEST(dest);
/*
* Modified the IRTE and flushes the Interrupt entry cache.
*/
modify_irte(irq, &irte);
if (cfg->move_in_progress)
send_cleanup_vector(cfg);
cpumask_copy(data->affinity, mask);
return 0;
}
#else
static inline int
ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
bool force)
{
return 0;
}
#endif
asmlinkage void smp_irq_move_cleanup_interrupt(void)
{
unsigned vector, me;
ack_APIC_irq();
exit_idle();
irq_enter();
me = smp_processor_id();
for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
unsigned int irq;
unsigned int irr;
struct irq_desc *desc;
struct irq_cfg *cfg;
irq = __this_cpu_read(vector_irq[vector]);
if (irq == -1)
continue;
desc = irq_to_desc(irq);
if (!desc)
continue;
cfg = irq_cfg(irq);
raw_spin_lock(&desc->lock);
/*
* Check if the irq migration is in progress. If so, we
* haven't received the cleanup request yet for this irq.
*/
if (cfg->move_in_progress)
goto unlock;
if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
goto unlock;
irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
/*
* Check if the vector that needs to be cleanedup is
* registered at the cpu's IRR. If so, then this is not
* the best time to clean it up. Lets clean it up in the
* next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
* to myself.
*/
if (irr & (1 << (vector % 32))) {
apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
goto unlock;
}
__this_cpu_write(vector_irq[vector], -1);
unlock:
raw_spin_unlock(&desc->lock);
}
irq_exit();
}
static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
{
unsigned me;
if (likely(!cfg->move_in_progress))
return;
me = smp_processor_id();
if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
send_cleanup_vector(cfg);
}
static void irq_complete_move(struct irq_cfg *cfg)
{
__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
}
void irq_force_complete_move(int irq)
{
struct irq_cfg *cfg = irq_get_chip_data(irq);
if (!cfg)
return;
__irq_complete_move(cfg, cfg->vector);
}
#else
static inline void irq_complete_move(struct irq_cfg *cfg) { }
#endif
static void ack_apic_edge(struct irq_data *data)
{
irq_complete_move(data->chip_data);
irq_move_irq(data);
ack_APIC_irq();
}
atomic_t irq_mis_count;
/*
* IO-APIC versions below 0x20 don't support EOI register.
* For the record, here is the information about various versions:
* 0Xh 82489DX
* 1Xh I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant
* 2Xh I/O(x)APIC which is PCI 2.2 Compliant
* 30h-FFh Reserved
*
* Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic
* version as 0x2. This is an error with documentation and these ICH chips
* use io-apic's of version 0x20.
*
* For IO-APIC's with EOI register, we use that to do an explicit EOI.
* Otherwise, we simulate the EOI message manually by changing the trigger
* mode to edge and then back to level, with RTE being masked during this.
*/
static void eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
{
struct irq_pin_list *entry;
unsigned long flags;
raw_spin_lock_irqsave(&ioapic_lock, flags);
for_each_irq_pin(entry, cfg->irq_2_pin) {
if (mp_ioapics[entry->apic].apicver >= 0x20) {
/*
* Intr-remapping uses pin number as the virtual vector
* in the RTE. Actual vector is programmed in
* intr-remapping table entry. Hence for the io-apic
* EOI we use the pin number.
*/
if (irq_remapped(cfg))
io_apic_eoi(entry->apic, entry->pin);
else
io_apic_eoi(entry->apic, cfg->vector);
} else {
__mask_and_edge_IO_APIC_irq(entry);
__unmask_and_level_IO_APIC_irq(entry);
}
}
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
}
static void ack_apic_level(struct irq_data *data)
{
struct irq_cfg *cfg = data->chip_data;
int i, do_unmask_irq = 0, irq = data->irq;
unsigned long v;
irq_complete_move(cfg);
#ifdef CONFIG_GENERIC_PENDING_IRQ
/* If we are moving the irq we need to mask it */
if (unlikely(irqd_is_setaffinity_pending(data))) {
do_unmask_irq = 1;
mask_ioapic(cfg);
}
#endif
/*
* It appears there is an erratum which affects at least version 0x11
* of I/O APIC (that's the 82093AA and cores integrated into various
* chipsets). Under certain conditions a level-triggered interrupt is
* erroneously delivered as edge-triggered one but the respective IRR
* bit gets set nevertheless. As a result the I/O unit expects an EOI
* message but it will never arrive and further interrupts are blocked
* from the source. The exact reason is so far unknown, but the
* phenomenon was observed when two consecutive interrupt requests
* from a given source get delivered to the same CPU and the source is
* temporarily disabled in between.
*
* A workaround is to simulate an EOI message manually. We achieve it
* by setting the trigger mode to edge and then to level when the edge
* trigger mode gets detected in the TMR of a local APIC for a
* level-triggered interrupt. We mask the source for the time of the
* operation to prevent an edge-triggered interrupt escaping meanwhile.
* The idea is from Manfred Spraul. --macro
*
* Also in the case when cpu goes offline, fixup_irqs() will forward
* any unhandled interrupt on the offlined cpu to the new cpu
* destination that is handling the corresponding interrupt. This
* interrupt forwarding is done via IPI's. Hence, in this case also
* level-triggered io-apic interrupt will be seen as an edge
* interrupt in the IRR. And we can't rely on the cpu's EOI
* to be broadcasted to the IO-APIC's which will clear the remoteIRR
* corresponding to the level-triggered interrupt. Hence on IO-APIC's
* supporting EOI register, we do an explicit EOI to clear the
* remote IRR and on IO-APIC's which don't have an EOI register,
* we use the above logic (mask+edge followed by unmask+level) from
* Manfred Spraul to clear the remote IRR.
*/
i = cfg->vector;
v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
/*
* We must acknowledge the irq before we move it or the acknowledge will
* not propagate properly.
*/
ack_APIC_irq();
/*
* Tail end of clearing remote IRR bit (either by delivering the EOI
* message via io-apic EOI register write or simulating it using
* mask+edge followed by unnask+level logic) manually when the
* level triggered interrupt is seen as the edge triggered interrupt
* at the cpu.
*/
if (!(v & (1 << (i & 0x1f)))) {
atomic_inc(&irq_mis_count);
eoi_ioapic_irq(irq, cfg);
}
/* Now we can move and renable the irq */
if (unlikely(do_unmask_irq)) {
/* Only migrate the irq if the ack has been received.
*
* On rare occasions the broadcast level triggered ack gets
* delayed going to ioapics, and if we reprogram the
* vector while Remote IRR is still set the irq will never
* fire again.
*
* To prevent this scenario we read the Remote IRR bit
* of the ioapic. This has two effects.
* - On any sane system the read of the ioapic will
* flush writes (and acks) going to the ioapic from
* this cpu.
* - We get to see if the ACK has actually been delivered.
*
* Based on failed experiments of reprogramming the
* ioapic entry from outside of irq context starting
* with masking the ioapic entry and then polling until
* Remote IRR was clear before reprogramming the
* ioapic I don't trust the Remote IRR bit to be
* completey accurate.
*
* However there appears to be no other way to plug
* this race, so if the Remote IRR bit is not
* accurate and is causing problems then it is a hardware bug
* and you can go talk to the chipset vendor about it.
*/
if (!io_apic_level_ack_pending(cfg))
irq_move_masked_irq(data);
unmask_ioapic(cfg);
}
}
#ifdef CONFIG_INTR_REMAP
static void ir_ack_apic_edge(struct irq_data *data)
{
ack_APIC_irq();
}
static void ir_ack_apic_level(struct irq_data *data)
{
ack_APIC_irq();
eoi_ioapic_irq(data->irq, data->chip_data);
}
#endif /* CONFIG_INTR_REMAP */
static struct irq_chip ioapic_chip __read_mostly = {
.name = "IO-APIC",
.irq_startup = startup_ioapic_irq,
.irq_mask = mask_ioapic_irq,
.irq_unmask = unmask_ioapic_irq,
.irq_ack = ack_apic_edge,
.irq_eoi = ack_apic_level,
#ifdef CONFIG_SMP
.irq_set_affinity = ioapic_set_affinity,
#endif
.irq_retrigger = ioapic_retrigger_irq,
};
static struct irq_chip ir_ioapic_chip __read_mostly = {
.name = "IR-IO-APIC",
.irq_startup = startup_ioapic_irq,
.irq_mask = mask_ioapic_irq,
.irq_unmask = unmask_ioapic_irq,
#ifdef CONFIG_INTR_REMAP
.irq_ack = ir_ack_apic_edge,
.irq_eoi = ir_ack_apic_level,
#ifdef CONFIG_SMP
.irq_set_affinity = ir_ioapic_set_affinity,
#endif
#endif
.irq_retrigger = ioapic_retrigger_irq,
};
static inline void init_IO_APIC_traps(void)
{
struct irq_cfg *cfg;
unsigned int irq;
/*
* NOTE! The local APIC isn't very good at handling
* multiple interrupts at the same interrupt level.
* As the interrupt level is determined by taking the
* vector number and shifting that right by 4, we
* want to spread these out a bit so that they don't
* all fall in the same interrupt level.
*
* Also, we've got to be careful not to trash gate
* 0x80, because int 0x80 is hm, kind of importantish. ;)
*/
for_each_active_irq(irq) {
cfg = irq_get_chip_data(irq);
if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
/*
* Hmm.. We don't have an entry for this,
* so default to an old-fashioned 8259
* interrupt if we can..
*/
if (irq < legacy_pic->nr_legacy_irqs)
legacy_pic->make_irq(irq);
else
/* Strange. Oh, well.. */
irq_set_chip(irq, &no_irq_chip);
}
}
}
/*
* The local APIC irq-chip implementation:
*/
static void mask_lapic_irq(struct irq_data *data)
{
unsigned long v;
v = apic_read(APIC_LVT0);
apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
}
static void unmask_lapic_irq(struct irq_data *data)
{
unsigned long v;
v = apic_read(APIC_LVT0);
apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
}
static void ack_lapic_irq(struct irq_data *data)
{
ack_APIC_irq();
}
static struct irq_chip lapic_chip __read_mostly = {
.name = "local-APIC",
.irq_mask = mask_lapic_irq,
.irq_unmask = unmask_lapic_irq,
.irq_ack = ack_lapic_irq,
};
static void lapic_register_intr(int irq)
{
irq_clear_status_flags(irq, IRQ_LEVEL);
irq_set_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
"edge");
}
/*
* This looks a bit hackish but it's about the only one way of sending
* a few INTA cycles to 8259As and any associated glue logic. ICR does
* not support the ExtINT mode, unfortunately. We need to send these
* cycles as some i82489DX-based boards have glue logic that keeps the
* 8259A interrupt line asserted until INTA. --macro
*/
static inline void __init unlock_ExtINT_logic(void)
{
int apic, pin, i;
struct IO_APIC_route_entry entry0, entry1;
unsigned char save_control, save_freq_select;
pin = find_isa_irq_pin(8, mp_INT);
if (pin == -1) {
WARN_ON_ONCE(1);
return;
}
apic = find_isa_irq_apic(8, mp_INT);
if (apic == -1) {
WARN_ON_ONCE(1);
return;
}
entry0 = ioapic_read_entry(apic, pin);
clear_IO_APIC_pin(apic, pin);
memset(&entry1, 0, sizeof(entry1));
entry1.dest_mode = 0; /* physical delivery */
entry1.mask = 0; /* unmask IRQ now */
entry1.dest = hard_smp_processor_id();
entry1.delivery_mode = dest_ExtINT;
entry1.polarity = entry0.polarity;
entry1.trigger = 0;
entry1.vector = 0;
ioapic_write_entry(apic, pin, entry1);
save_control = CMOS_READ(RTC_CONTROL);
save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
RTC_FREQ_SELECT);
CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
i = 100;
while (i-- > 0) {
mdelay(10);
if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
i -= 10;
}
CMOS_WRITE(save_control, RTC_CONTROL);
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
clear_IO_APIC_pin(apic, pin);
ioapic_write_entry(apic, pin, entry0);
}
static int disable_timer_pin_1 __initdata;
/* Actually the next is obsolete, but keep it for paranoid reasons -AK */
static int __init disable_timer_pin_setup(char *arg)
{
disable_timer_pin_1 = 1;
return 0;
}
early_param("disable_timer_pin_1", disable_timer_pin_setup);
int timer_through_8259 __initdata;
/*
* This code may look a bit paranoid, but it's supposed to cooperate with
* a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
* is so screwy. Thanks to Brian Perkins for testing/hacking this beast
* fanatically on his truly buggy board.
*
* FIXME: really need to revamp this for all platforms.
*/
static inline void __init check_timer(void)
{
struct irq_cfg *cfg = irq_get_chip_data(0);
int node = cpu_to_node(0);
int apic1, pin1, apic2, pin2;
unsigned long flags;
int no_pin1 = 0;
local_irq_save(flags);
/*
* get/set the timer IRQ vector:
*/
legacy_pic->mask(0);
assign_irq_vector(0, cfg, apic->target_cpus());
/*
* As IRQ0 is to be enabled in the 8259A, the virtual
* wire has to be disabled in the local APIC. Also
* timer interrupts need to be acknowledged manually in
* the 8259A for the i82489DX when using the NMI
* watchdog as that APIC treats NMIs as level-triggered.
* The AEOI mode will finish them in the 8259A
* automatically.
*/
apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
legacy_pic->init(1);
pin1 = find_isa_irq_pin(0, mp_INT);
apic1 = find_isa_irq_apic(0, mp_INT);
pin2 = ioapic_i8259.pin;
apic2 = ioapic_i8259.apic;
apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
"apic1=%d pin1=%d apic2=%d pin2=%d\n",
cfg->vector, apic1, pin1, apic2, pin2);
/*
* Some BIOS writers are clueless and report the ExtINTA
* I/O APIC input from the cascaded 8259A as the timer
* interrupt input. So just in case, if only one pin
* was found above, try it both directly and through the
* 8259A.
*/
if (pin1 == -1) {
if (intr_remapping_enabled)
panic("BIOS bug: timer not connected to IO-APIC");
pin1 = pin2;
apic1 = apic2;
no_pin1 = 1;
} else if (pin2 == -1) {
pin2 = pin1;
apic2 = apic1;
}
if (pin1 != -1) {
/*
* Ok, does IRQ0 through the IOAPIC work?
*/
if (no_pin1) {
add_pin_to_irq_node(cfg, node, apic1, pin1);
setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
} else {
/* for edge trigger, setup_ioapic_irq already
* leave it unmasked.
* so only need to unmask if it is level-trigger
* do we really have level trigger timer?
*/
int idx;
idx = find_irq_entry(apic1, pin1, mp_INT);
if (idx != -1 && irq_trigger(idx))
unmask_ioapic(cfg);
}
if (timer_irq_works()) {
if (disable_timer_pin_1 > 0)
clear_IO_APIC_pin(0, pin1);
goto out;
}
if (intr_remapping_enabled)
panic("timer doesn't work through Interrupt-remapped IO-APIC");
local_irq_disable();
clear_IO_APIC_pin(apic1, pin1);
if (!no_pin1)
apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
"8254 timer not connected to IO-APIC\n");
apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
"(IRQ0) through the 8259A ...\n");
apic_printk(APIC_QUIET, KERN_INFO
"..... (found apic %d pin %d) ...\n", apic2, pin2);
/*
* legacy devices should be connected to IO APIC #0
*/
replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2);
setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
legacy_pic->unmask(0);
if (timer_irq_works()) {
apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
timer_through_8259 = 1;
goto out;
}
/*
* Cleanup, just in case ...
*/
local_irq_disable();
legacy_pic->mask(0);
clear_IO_APIC_pin(apic2, pin2);
apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
}
apic_printk(APIC_QUIET, KERN_INFO
"...trying to set up timer as Virtual Wire IRQ...\n");
lapic_register_intr(0);
apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
legacy_pic->unmask(0);
if (timer_irq_works()) {
apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
goto out;
}
local_irq_disable();
legacy_pic->mask(0);
apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
apic_printk(APIC_QUIET, KERN_INFO
"...trying to set up timer as ExtINT IRQ...\n");
legacy_pic->init(0);
legacy_pic->make_irq(0);
apic_write(APIC_LVT0, APIC_DM_EXTINT);
unlock_ExtINT_logic();
if (timer_irq_works()) {
apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
goto out;
}
local_irq_disable();
apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
"report. Then try booting with the 'noapic' option.\n");
out:
local_irq_restore(flags);
}
/*
* Traditionally ISA IRQ2 is the cascade IRQ, and is not available
* to devices. However there may be an I/O APIC pin available for
* this interrupt regardless. The pin may be left unconnected, but
* typically it will be reused as an ExtINT cascade interrupt for
* the master 8259A. In the MPS case such a pin will normally be
* reported as an ExtINT interrupt in the MP table. With ACPI
* there is no provision for ExtINT interrupts, and in the absence
* of an override it would be treated as an ordinary ISA I/O APIC
* interrupt, that is edge-triggered and unmasked by default. We
* used to do this, but it caused problems on some systems because
* of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
* the same ExtINT cascade interrupt to drive the local APIC of the
* bootstrap processor. Therefore we refrain from routing IRQ2 to
* the I/O APIC in all cases now. No actual device should request
* it anyway. --macro
*/
#define PIC_IRQS (1UL << PIC_CASCADE_IR)
void __init setup_IO_APIC(void)
{
/*
* calling enable_IO_APIC() is moved to setup_local_APIC for BP
*/
io_apic_irqs = legacy_pic->nr_legacy_irqs ? ~PIC_IRQS : ~0UL;
apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
/*
* Set up IO-APIC IRQ routing.
*/
x86_init.mpparse.setup_ioapic_ids();
sync_Arb_IDs();
setup_IO_APIC_irqs();
init_IO_APIC_traps();
if (legacy_pic->nr_legacy_irqs)
check_timer();
}
/*
* Called after all the initialization is done. If we didn't find any
* APIC bugs then we can allow the modify fast path
*/
static int __init io_apic_bug_finalize(void)
{
if (sis_apic_bug == -1)
sis_apic_bug = 0;
return 0;
}
late_initcall(io_apic_bug_finalize);
static struct IO_APIC_route_entry *ioapic_saved_data[MAX_IO_APICS];
static void suspend_ioapic(int ioapic_id)
{
struct IO_APIC_route_entry *saved_data = ioapic_saved_data[ioapic_id];
int i;
if (!saved_data)
return;
for (i = 0; i < nr_ioapic_registers[ioapic_id]; i++)
saved_data[i] = ioapic_read_entry(ioapic_id, i);
}
static int ioapic_suspend(void)
{
int ioapic_id;
for (ioapic_id = 0; ioapic_id < nr_ioapics; ioapic_id++)
suspend_ioapic(ioapic_id);
return 0;
}
static void resume_ioapic(int ioapic_id)
{
struct IO_APIC_route_entry *saved_data = ioapic_saved_data[ioapic_id];
unsigned long flags;
union IO_APIC_reg_00 reg_00;
int i;
if (!saved_data)
return;
raw_spin_lock_irqsave(&ioapic_lock, flags);
reg_00.raw = io_apic_read(ioapic_id, 0);
if (reg_00.bits.ID != mp_ioapics[ioapic_id].apicid) {
reg_00.bits.ID = mp_ioapics[ioapic_id].apicid;
io_apic_write(ioapic_id, 0, reg_00.raw);
}
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
for (i = 0; i < nr_ioapic_registers[ioapic_id]; i++)
ioapic_write_entry(ioapic_id, i, saved_data[i]);
}
static void ioapic_resume(void)
{
int ioapic_id;
for (ioapic_id = nr_ioapics - 1; ioapic_id >= 0; ioapic_id--)
resume_ioapic(ioapic_id);
}
static struct syscore_ops ioapic_syscore_ops = {
.suspend = ioapic_suspend,
.resume = ioapic_resume,
};
static int __init ioapic_init_ops(void)
{
int i;
for (i = 0; i < nr_ioapics; i++) {
unsigned int size;
size = nr_ioapic_registers[i]
* sizeof(struct IO_APIC_route_entry);
ioapic_saved_data[i] = kzalloc(size, GFP_KERNEL);
if (!ioapic_saved_data[i])
pr_err("IOAPIC %d: suspend/resume impossible!\n", i);
}
register_syscore_ops(&ioapic_syscore_ops);
return 0;
}
device_initcall(ioapic_init_ops);
/*
* Dynamic irq allocate and deallocation
*/
unsigned int create_irq_nr(unsigned int from, int node)
{
struct irq_cfg *cfg;
unsigned long flags;
unsigned int ret = 0;
int irq;
if (from < nr_irqs_gsi)
from = nr_irqs_gsi;
irq = alloc_irq_from(from, node);
if (irq < 0)
return 0;
cfg = alloc_irq_cfg(irq, node);
if (!cfg) {
free_irq_at(irq, NULL);
return 0;
}
raw_spin_lock_irqsave(&vector_lock, flags);
if (!__assign_irq_vector(irq, cfg, apic->target_cpus()))
ret = irq;
raw_spin_unlock_irqrestore(&vector_lock, flags);
if (ret) {
irq_set_chip_data(irq, cfg);
irq_clear_status_flags(irq, IRQ_NOREQUEST);
} else {
free_irq_at(irq, cfg);
}
return ret;
}
int create_irq(void)
{
int node = cpu_to_node(0);
unsigned int irq_want;
int irq;
irq_want = nr_irqs_gsi;
irq = create_irq_nr(irq_want, node);
if (irq == 0)
irq = -1;
return irq;
}
void destroy_irq(unsigned int irq)
{
struct irq_cfg *cfg = irq_get_chip_data(irq);
unsigned long flags;
irq_set_status_flags(irq, IRQ_NOREQUEST|IRQ_NOPROBE);
if (irq_remapped(cfg))
free_irte(irq);
raw_spin_lock_irqsave(&vector_lock, flags);
__clear_irq_vector(irq, cfg);
raw_spin_unlock_irqrestore(&vector_lock, flags);
free_irq_at(irq, cfg);
}
/*
* MSI message composition
*/
#ifdef CONFIG_PCI_MSI
static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq,
struct msi_msg *msg, u8 hpet_id)
{
struct irq_cfg *cfg;
int err;
unsigned dest;
if (disable_apic)
return -ENXIO;
cfg = irq_cfg(irq);
err = assign_irq_vector(irq, cfg, apic->target_cpus());
if (err)
return err;
dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
if (irq_remapped(cfg)) {
struct irte irte;
int ir_index;
u16 sub_handle;
ir_index = map_irq_to_irte_handle(irq, &sub_handle);
BUG_ON(ir_index == -1);
prepare_irte(&irte, cfg->vector, dest);
/* Set source-id of interrupt request */
if (pdev)
set_msi_sid(&irte, pdev);
else
set_hpet_sid(&irte, hpet_id);
modify_irte(irq, &irte);
msg->address_hi = MSI_ADDR_BASE_HI;
msg->data = sub_handle;
msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
MSI_ADDR_IR_SHV |
MSI_ADDR_IR_INDEX1(ir_index) |
MSI_ADDR_IR_INDEX2(ir_index);
} else {
if (x2apic_enabled())
msg->address_hi = MSI_ADDR_BASE_HI |
MSI_ADDR_EXT_DEST_ID(dest);
else
msg->address_hi = MSI_ADDR_BASE_HI;
msg->address_lo =
MSI_ADDR_BASE_LO |
((apic->irq_dest_mode == 0) ?
MSI_ADDR_DEST_MODE_PHYSICAL:
MSI_ADDR_DEST_MODE_LOGICAL) |
((apic->irq_delivery_mode != dest_LowestPrio) ?
MSI_ADDR_REDIRECTION_CPU:
MSI_ADDR_REDIRECTION_LOWPRI) |
MSI_ADDR_DEST_ID(dest);
msg->data =
MSI_DATA_TRIGGER_EDGE |
MSI_DATA_LEVEL_ASSERT |
((apic->irq_delivery_mode != dest_LowestPrio) ?
MSI_DATA_DELIVERY_FIXED:
MSI_DATA_DELIVERY_LOWPRI) |
MSI_DATA_VECTOR(cfg->vector);
}
return err;
}
#ifdef CONFIG_SMP
static int
msi_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
{
struct irq_cfg *cfg = data->chip_data;
struct msi_msg msg;
unsigned int dest;
if (__ioapic_set_affinity(data, mask, &dest))
return -1;
__get_cached_msi_msg(data->msi_desc, &msg);
msg.data &= ~MSI_DATA_VECTOR_MASK;
msg.data |= MSI_DATA_VECTOR(cfg->vector);
msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
msg.address_lo |= MSI_ADDR_DEST_ID(dest);
__write_msi_msg(data->msi_desc, &msg);
return 0;
}
#ifdef CONFIG_INTR_REMAP
/*
* Migrate the MSI irq to another cpumask. This migration is
* done in the process context using interrupt-remapping hardware.
*/
static int
ir_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
bool force)
{
struct irq_cfg *cfg = data->chip_data;
unsigned int dest, irq = data->irq;
struct irte irte;
if (get_irte(irq, &irte))
return -1;
if (__ioapic_set_affinity(data, mask, &dest))
return -1;
irte.vector = cfg->vector;
irte.dest_id = IRTE_DEST(dest);
/*
* atomically update the IRTE with the new destination and vector.
*/
modify_irte(irq, &irte);
/*
* After this point, all the interrupts will start arriving
* at the new destination. So, time to cleanup the previous
* vector allocation.
*/
if (cfg->move_in_progress)
send_cleanup_vector(cfg);
return 0;
}
#endif
#endif /* CONFIG_SMP */
/*
* IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
* which implement the MSI or MSI-X Capability Structure.
*/
static struct irq_chip msi_chip = {
.name = "PCI-MSI",
.irq_unmask = unmask_msi_irq,
.irq_mask = mask_msi_irq,
.irq_ack = ack_apic_edge,
#ifdef CONFIG_SMP
.irq_set_affinity = msi_set_affinity,
#endif
.irq_retrigger = ioapic_retrigger_irq,
};
static struct irq_chip msi_ir_chip = {
.name = "IR-PCI-MSI",
.irq_unmask = unmask_msi_irq,
.irq_mask = mask_msi_irq,
#ifdef CONFIG_INTR_REMAP
.irq_ack = ir_ack_apic_edge,
#ifdef CONFIG_SMP
.irq_set_affinity = ir_msi_set_affinity,
#endif
#endif
.irq_retrigger = ioapic_retrigger_irq,
};
/*
* Map the PCI dev to the corresponding remapping hardware unit
* and allocate 'nvec' consecutive interrupt-remapping table entries
* in it.
*/
static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
{
struct intel_iommu *iommu;
int index;
iommu = map_dev_to_ir(dev);
if (!iommu) {
printk(KERN_ERR
"Unable to map PCI %s to iommu\n", pci_name(dev));
return -ENOENT;
}
index = alloc_irte(iommu, irq, nvec);
if (index < 0) {
printk(KERN_ERR
"Unable to allocate %d IRTE for PCI %s\n", nvec,
pci_name(dev));
return -ENOSPC;
}
return index;
}
static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
{
struct irq_chip *chip = &msi_chip;
struct msi_msg msg;
int ret;
ret = msi_compose_msg(dev, irq, &msg, -1);
if (ret < 0)
return ret;
irq_set_msi_desc(irq, msidesc);
write_msi_msg(irq, &msg);
if (irq_remapped(irq_get_chip_data(irq))) {
irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
chip = &msi_ir_chip;
}
irq_set_chip_and_handler_name(irq, chip, handle_edge_irq, "edge");
dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
return 0;
}
int native_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
{
int node, ret, sub_handle, index = 0;
unsigned int irq, irq_want;
struct msi_desc *msidesc;
struct intel_iommu *iommu = NULL;
/* x86 doesn't support multiple MSI yet */
if (type == PCI_CAP_ID_MSI && nvec > 1)
return 1;
node = dev_to_node(&dev->dev);
irq_want = nr_irqs_gsi;
sub_handle = 0;
list_for_each_entry(msidesc, &dev->msi_list, list) {
irq = create_irq_nr(irq_want, node);
if (irq == 0)
return -1;
irq_want = irq + 1;
if (!intr_remapping_enabled)
goto no_ir;
if (!sub_handle) {
/*
* allocate the consecutive block of IRTE's
* for 'nvec'
*/
index = msi_alloc_irte(dev, irq, nvec);
if (index < 0) {
ret = index;
goto error;
}
} else {
iommu = map_dev_to_ir(dev);
if (!iommu) {
ret = -ENOENT;
goto error;
}
/*
* setup the mapping between the irq and the IRTE
* base index, the sub_handle pointing to the
* appropriate interrupt remap table entry.
*/
set_irte_irq(irq, iommu, index, sub_handle);
}
no_ir:
ret = setup_msi_irq(dev, msidesc, irq);
if (ret < 0)
goto error;
sub_handle++;
}
return 0;
error:
destroy_irq(irq);
return ret;
}
void native_teardown_msi_irq(unsigned int irq)
{
destroy_irq(irq);
}
#if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
#ifdef CONFIG_SMP
static int
dmar_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
bool force)
{
struct irq_cfg *cfg = data->chip_data;
unsigned int dest, irq = data->irq;
struct msi_msg msg;
if (__ioapic_set_affinity(data, mask, &dest))
return -1;
dmar_msi_read(irq, &msg);
msg.data &= ~MSI_DATA_VECTOR_MASK;
msg.data |= MSI_DATA_VECTOR(cfg->vector);
msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
msg.address_lo |= MSI_ADDR_DEST_ID(dest);
msg.address_hi = MSI_ADDR_BASE_HI | MSI_ADDR_EXT_DEST_ID(dest);
dmar_msi_write(irq, &msg);
return 0;
}
#endif /* CONFIG_SMP */
static struct irq_chip dmar_msi_type = {
.name = "DMAR_MSI",
.irq_unmask = dmar_msi_unmask,
.irq_mask = dmar_msi_mask,
.irq_ack = ack_apic_edge,
#ifdef CONFIG_SMP
.irq_set_affinity = dmar_msi_set_affinity,
#endif
.irq_retrigger = ioapic_retrigger_irq,
};
int arch_setup_dmar_msi(unsigned int irq)
{
int ret;
struct msi_msg msg;
ret = msi_compose_msg(NULL, irq, &msg, -1);
if (ret < 0)
return ret;
dmar_msi_write(irq, &msg);
irq_set_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
"edge");
return 0;
}
#endif
#ifdef CONFIG_HPET_TIMER
#ifdef CONFIG_SMP
static int hpet_msi_set_affinity(struct irq_data *data,
const struct cpumask *mask, bool force)
{
struct irq_cfg *cfg = data->chip_data;
struct msi_msg msg;
unsigned int dest;
if (__ioapic_set_affinity(data, mask, &dest))
return -1;
hpet_msi_read(data->handler_data, &msg);
msg.data &= ~MSI_DATA_VECTOR_MASK;
msg.data |= MSI_DATA_VECTOR(cfg->vector);
msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
msg.address_lo |= MSI_ADDR_DEST_ID(dest);
hpet_msi_write(data->handler_data, &msg);
return 0;
}
#endif /* CONFIG_SMP */
static struct irq_chip ir_hpet_msi_type = {
.name = "IR-HPET_MSI",
.irq_unmask = hpet_msi_unmask,
.irq_mask = hpet_msi_mask,
#ifdef CONFIG_INTR_REMAP
.irq_ack = ir_ack_apic_edge,
#ifdef CONFIG_SMP
.irq_set_affinity = ir_msi_set_affinity,
#endif
#endif
.irq_retrigger = ioapic_retrigger_irq,
};
static struct irq_chip hpet_msi_type = {
.name = "HPET_MSI",
.irq_unmask = hpet_msi_unmask,
.irq_mask = hpet_msi_mask,
.irq_ack = ack_apic_edge,
#ifdef CONFIG_SMP
.irq_set_affinity = hpet_msi_set_affinity,
#endif
.irq_retrigger = ioapic_retrigger_irq,
};
int arch_setup_hpet_msi(unsigned int irq, unsigned int id)
{
struct irq_chip *chip = &hpet_msi_type;
struct msi_msg msg;
int ret;
if (intr_remapping_enabled) {
struct intel_iommu *iommu = map_hpet_to_ir(id);
int index;
if (!iommu)
return -1;
index = alloc_irte(iommu, irq, 1);
if (index < 0)
return -1;
}
ret = msi_compose_msg(NULL, irq, &msg, id);
if (ret < 0)
return ret;
hpet_msi_write(irq_get_handler_data(irq), &msg);
irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
if (irq_remapped(irq_get_chip_data(irq)))
chip = &ir_hpet_msi_type;
irq_set_chip_and_handler_name(irq, chip, handle_edge_irq, "edge");
return 0;
}
#endif
#endif /* CONFIG_PCI_MSI */
/*
* Hypertransport interrupt support
*/
#ifdef CONFIG_HT_IRQ
#ifdef CONFIG_SMP
static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
{
struct ht_irq_msg msg;
fetch_ht_irq_msg(irq, &msg);
msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
write_ht_irq_msg(irq, &msg);
}
static int
ht_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
{
struct irq_cfg *cfg = data->chip_data;
unsigned int dest;
if (__ioapic_set_affinity(data, mask, &dest))
return -1;
target_ht_irq(data->irq, dest, cfg->vector);
return 0;
}
#endif
static struct irq_chip ht_irq_chip = {
.name = "PCI-HT",
.irq_mask = mask_ht_irq,
.irq_unmask = unmask_ht_irq,
.irq_ack = ack_apic_edge,
#ifdef CONFIG_SMP
.irq_set_affinity = ht_set_affinity,
#endif
.irq_retrigger = ioapic_retrigger_irq,
};
int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
{
struct irq_cfg *cfg;
int err;
if (disable_apic)
return -ENXIO;
cfg = irq_cfg(irq);
err = assign_irq_vector(irq, cfg, apic->target_cpus());
if (!err) {
struct ht_irq_msg msg;
unsigned dest;
dest = apic->cpu_mask_to_apicid_and(cfg->domain,
apic->target_cpus());
msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
msg.address_lo =
HT_IRQ_LOW_BASE |
HT_IRQ_LOW_DEST_ID(dest) |
HT_IRQ_LOW_VECTOR(cfg->vector) |
((apic->irq_dest_mode == 0) ?
HT_IRQ_LOW_DM_PHYSICAL :
HT_IRQ_LOW_DM_LOGICAL) |
HT_IRQ_LOW_RQEOI_EDGE |
((apic->irq_delivery_mode != dest_LowestPrio) ?
HT_IRQ_LOW_MT_FIXED :
HT_IRQ_LOW_MT_ARBITRATED) |
HT_IRQ_LOW_IRQ_MASKED;
write_ht_irq_msg(irq, &msg);
irq_set_chip_and_handler_name(irq, &ht_irq_chip,
handle_edge_irq, "edge");
dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
}
return err;
}
#endif /* CONFIG_HT_IRQ */
static int
io_apic_setup_irq_pin(unsigned int irq, int node, struct io_apic_irq_attr *attr)
{
struct irq_cfg *cfg = alloc_irq_and_cfg_at(irq, node);
int ret;
if (!cfg)
return -EINVAL;
ret = __add_pin_to_irq_node(cfg, node, attr->ioapic, attr->ioapic_pin);
if (!ret)
setup_ioapic_irq(attr->ioapic, attr->ioapic_pin, irq, cfg,
attr->trigger, attr->polarity);
return ret;
}
int io_apic_setup_irq_pin_once(unsigned int irq, int node,
struct io_apic_irq_attr *attr)
{
unsigned int id = attr->ioapic, pin = attr->ioapic_pin;
int ret;
/* Avoid redundant programming */
if (test_bit(pin, mp_ioapic_routing[id].pin_programmed)) {
pr_debug("Pin %d-%d already programmed\n",
mp_ioapics[id].apicid, pin);
return 0;
}
ret = io_apic_setup_irq_pin(irq, node, attr);
if (!ret)
set_bit(pin, mp_ioapic_routing[id].pin_programmed);
return ret;
}
static int __init io_apic_get_redir_entries(int ioapic)
{
union IO_APIC_reg_01 reg_01;
unsigned long flags;
raw_spin_lock_irqsave(&ioapic_lock, flags);
reg_01.raw = io_apic_read(ioapic, 1);
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
/* The register returns the maximum index redir index
* supported, which is one less than the total number of redir
* entries.
*/
return reg_01.bits.entries + 1;
}
static void __init probe_nr_irqs_gsi(void)
{
int nr;
nr = gsi_top + NR_IRQS_LEGACY;
if (nr > nr_irqs_gsi)
nr_irqs_gsi = nr;
printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
}
int get_nr_irqs_gsi(void)
{
return nr_irqs_gsi;
}
#ifdef CONFIG_SPARSE_IRQ
int __init arch_probe_nr_irqs(void)
{
int nr;
if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
nr_irqs = NR_VECTORS * nr_cpu_ids;
nr = nr_irqs_gsi + 8 * nr_cpu_ids;
#if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
/*
* for MSI and HT dyn irq
*/
nr += nr_irqs_gsi * 16;
#endif
if (nr < nr_irqs)
nr_irqs = nr;
return NR_IRQS_LEGACY;
}
#endif
int io_apic_set_pci_routing(struct device *dev, int irq,
struct io_apic_irq_attr *irq_attr)
{
int node;
if (!IO_APIC_IRQ(irq)) {
apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
irq_attr->ioapic);
return -EINVAL;
}
node = dev ? dev_to_node(dev) : cpu_to_node(0);
return io_apic_setup_irq_pin_once(irq, node, irq_attr);
}
#ifdef CONFIG_X86_32
static int __init io_apic_get_unique_id(int ioapic, int apic_id)
{
union IO_APIC_reg_00 reg_00;
static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
physid_mask_t tmp;
unsigned long flags;
int i = 0;
/*
* The P4 platform supports up to 256 APIC IDs on two separate APIC
* buses (one for LAPICs, one for IOAPICs), where predecessors only
* supports up to 16 on one shared APIC bus.
*
* TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
* advantage of new APIC bus architecture.
*/
if (physids_empty(apic_id_map))
apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map);
raw_spin_lock_irqsave(&ioapic_lock, flags);
reg_00.raw = io_apic_read(ioapic, 0);
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
if (apic_id >= get_physical_broadcast()) {
printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
"%d\n", ioapic, apic_id, reg_00.bits.ID);
apic_id = reg_00.bits.ID;
}
/*
* Every APIC in a system must have a unique ID or we get lots of nice
* 'stuck on smp_invalidate_needed IPI wait' messages.
*/
if (apic->check_apicid_used(&apic_id_map, apic_id)) {
for (i = 0; i < get_physical_broadcast(); i++) {
if (!apic->check_apicid_used(&apic_id_map, i))
break;
}
if (i == get_physical_broadcast())
panic("Max apic_id exceeded!\n");
printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
"trying %d\n", ioapic, apic_id, i);
apic_id = i;
}
apic->apicid_to_cpu_present(apic_id, &tmp);
physids_or(apic_id_map, apic_id_map, tmp);
if (reg_00.bits.ID != apic_id) {
reg_00.bits.ID = apic_id;
raw_spin_lock_irqsave(&ioapic_lock, flags);
io_apic_write(ioapic, 0, reg_00.raw);
reg_00.raw = io_apic_read(ioapic, 0);
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
/* Sanity check */
if (reg_00.bits.ID != apic_id) {
printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
return -1;
}
}
apic_printk(APIC_VERBOSE, KERN_INFO
"IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
return apic_id;
}
static u8 __init io_apic_unique_id(u8 id)
{
if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
!APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
return io_apic_get_unique_id(nr_ioapics, id);
else
return id;
}
#else
static u8 __init io_apic_unique_id(u8 id)
{
int i;
DECLARE_BITMAP(used, 256);
bitmap_zero(used, 256);
for (i = 0; i < nr_ioapics; i++) {
struct mpc_ioapic *ia = &mp_ioapics[i];
__set_bit(ia->apicid, used);
}
if (!test_bit(id, used))
return id;
return find_first_zero_bit(used, 256);
}
#endif
static int __init io_apic_get_version(int ioapic)
{
union IO_APIC_reg_01 reg_01;
unsigned long flags;
raw_spin_lock_irqsave(&ioapic_lock, flags);
reg_01.raw = io_apic_read(ioapic, 1);
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
return reg_01.bits.version;
}
int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity)
{
int ioapic, pin, idx;
if (skip_ioapic_setup)
return -1;
ioapic = mp_find_ioapic(gsi);
if (ioapic < 0)
return -1;
pin = mp_find_ioapic_pin(ioapic, gsi);
if (pin < 0)
return -1;
idx = find_irq_entry(ioapic, pin, mp_INT);
if (idx < 0)
return -1;
*trigger = irq_trigger(idx);
*polarity = irq_polarity(idx);
return 0;
}
/*
* This function currently is only a helper for the i386 smp boot process where
* we need to reprogram the ioredtbls to cater for the cpus which have come online
* so mask in all cases should simply be apic->target_cpus()
*/
#ifdef CONFIG_SMP
void __init setup_ioapic_dest(void)
{
int pin, ioapic, irq, irq_entry;
const struct cpumask *mask;
struct irq_data *idata;
if (skip_ioapic_setup == 1)
return;
for (ioapic = 0; ioapic < nr_ioapics; ioapic++)
for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
irq_entry = find_irq_entry(ioapic, pin, mp_INT);
if (irq_entry == -1)
continue;
irq = pin_2_irq(irq_entry, ioapic, pin);
if ((ioapic > 0) && (irq > 16))
continue;
idata = irq_get_irq_data(irq);
/*
* Honour affinities which have been set in early boot
*/
if (!irqd_can_balance(idata) || irqd_affinity_was_set(idata))
mask = idata->affinity;
else
mask = apic->target_cpus();
if (intr_remapping_enabled)
ir_ioapic_set_affinity(idata, mask, false);
else
ioapic_set_affinity(idata, mask, false);
}
}
#endif
#define IOAPIC_RESOURCE_NAME_SIZE 11
static struct resource *ioapic_resources;
static struct resource * __init ioapic_setup_resources(int nr_ioapics)
{
unsigned long n;
struct resource *res;
char *mem;
int i;
if (nr_ioapics <= 0)
return NULL;
n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
n *= nr_ioapics;
mem = alloc_bootmem(n);
res = (void *)mem;
mem += sizeof(struct resource) * nr_ioapics;
for (i = 0; i < nr_ioapics; i++) {
res[i].name = mem;
res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i);
mem += IOAPIC_RESOURCE_NAME_SIZE;
}
ioapic_resources = res;
return res;
}
void __init ioapic_and_gsi_init(void)
{
unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
struct resource *ioapic_res;
int i;
ioapic_res = ioapic_setup_resources(nr_ioapics);
for (i = 0; i < nr_ioapics; i++) {
if (smp_found_config) {
ioapic_phys = mp_ioapics[i].apicaddr;
#ifdef CONFIG_X86_32
if (!ioapic_phys) {
printk(KERN_ERR
"WARNING: bogus zero IO-APIC "
"address found in MPTABLE, "
"disabling IO/APIC support!\n");
smp_found_config = 0;
skip_ioapic_setup = 1;
goto fake_ioapic_page;
}
#endif
} else {
#ifdef CONFIG_X86_32
fake_ioapic_page:
#endif
ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
ioapic_phys = __pa(ioapic_phys);
}
set_fixmap_nocache(idx, ioapic_phys);
apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n",
__fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK),
ioapic_phys);
idx++;
ioapic_res->start = ioapic_phys;
ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1;
ioapic_res++;
}
probe_nr_irqs_gsi();
}
void __init ioapic_insert_resources(void)
{
int i;
struct resource *r = ioapic_resources;
if (!r) {
if (nr_ioapics > 0)
printk(KERN_ERR
"IO APIC resources couldn't be allocated.\n");
return;
}
for (i = 0; i < nr_ioapics; i++) {
insert_resource(&iomem_resource, r);
r++;
}
}
int mp_find_ioapic(u32 gsi)
{
int i = 0;
if (nr_ioapics == 0)
return -1;
/* Find the IOAPIC that manages this GSI. */
for (i = 0; i < nr_ioapics; i++) {
if ((gsi >= mp_gsi_routing[i].gsi_base)
&& (gsi <= mp_gsi_routing[i].gsi_end))
return i;
}
printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi);
return -1;
}
int mp_find_ioapic_pin(int ioapic, u32 gsi)
{
if (WARN_ON(ioapic == -1))
return -1;
if (WARN_ON(gsi > mp_gsi_routing[ioapic].gsi_end))
return -1;
return gsi - mp_gsi_routing[ioapic].gsi_base;
}
static __init int bad_ioapic(unsigned long address)
{
if (nr_ioapics >= MAX_IO_APICS) {
printk(KERN_WARNING "WARNING: Max # of I/O APICs (%d) exceeded "
"(found %d), skipping\n", MAX_IO_APICS, nr_ioapics);
return 1;
}
if (!address) {
printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address"
" found in table, skipping!\n");
return 1;
}
return 0;
}
void __init mp_register_ioapic(int id, u32 address, u32 gsi_base)
{
int idx = 0;
int entries;
if (bad_ioapic(address))
return;
idx = nr_ioapics;
mp_ioapics[idx].type = MP_IOAPIC;
mp_ioapics[idx].flags = MPC_APIC_USABLE;
mp_ioapics[idx].apicaddr = address;
set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address);
mp_ioapics[idx].apicid = io_apic_unique_id(id);
mp_ioapics[idx].apicver = io_apic_get_version(idx);
/*
* Build basic GSI lookup table to facilitate gsi->io_apic lookups
* and to prevent reprogramming of IOAPIC pins (PCI GSIs).
*/
entries = io_apic_get_redir_entries(idx);
mp_gsi_routing[idx].gsi_base = gsi_base;
mp_gsi_routing[idx].gsi_end = gsi_base + entries - 1;
/*
* The number of IO-APIC IRQ registers (== #pins):
*/
nr_ioapic_registers[idx] = entries;
if (mp_gsi_routing[idx].gsi_end >= gsi_top)
gsi_top = mp_gsi_routing[idx].gsi_end + 1;
printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, "
"GSI %d-%d\n", idx, mp_ioapics[idx].apicid,
mp_ioapics[idx].apicver, mp_ioapics[idx].apicaddr,
mp_gsi_routing[idx].gsi_base, mp_gsi_routing[idx].gsi_end);
nr_ioapics++;
}
/* Enable IOAPIC early just for system timer */
void __init pre_init_apic_IRQ0(void)
{
struct io_apic_irq_attr attr = { 0, 0, 0, 0 };
printk(KERN_INFO "Early APIC setup for system timer0\n");
#ifndef CONFIG_SMP
physid_set_mask_of_physid(boot_cpu_physical_apicid,
&phys_cpu_present_map);
#endif
setup_local_APIC();
io_apic_setup_irq_pin(0, 0, &attr);
irq_set_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq,
"edge");
}