bb9f8692f5
This driver supports Intel's full MAC wireless multicomm 802.11 hardware. Although the hardware is a 802.11agn device, we currently only support 802.11ag, in managed and ad-hoc mode (no AP mode for now). Signed-off-by: Zhu Yi <yi.zhu@intel.com> Signed-off-by: Samuel Ortiz <samuel.ortiz@intel.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
920 lines
25 KiB
C
920 lines
25 KiB
C
/*
|
|
* Intel Wireless Multicomm 3200 WiFi driver
|
|
*
|
|
* Copyright (C) 2009 Intel Corporation. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*
|
|
* Intel Corporation <ilw@linux.intel.com>
|
|
* Samuel Ortiz <samuel.ortiz@intel.com>
|
|
* Zhu Yi <yi.zhu@intel.com>
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/wireless.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/ieee80211.h>
|
|
|
|
#include "iwm.h"
|
|
#include "bus.h"
|
|
#include "hal.h"
|
|
#include "umac.h"
|
|
#include "commands.h"
|
|
#include "debug.h"
|
|
|
|
static int iwm_send_lmac_ptrough_cmd(struct iwm_priv *iwm,
|
|
u8 lmac_cmd_id,
|
|
const void *lmac_payload,
|
|
u16 lmac_payload_size,
|
|
u8 resp)
|
|
{
|
|
struct iwm_udma_wifi_cmd udma_cmd = UDMA_LMAC_INIT;
|
|
struct iwm_umac_cmd umac_cmd;
|
|
struct iwm_lmac_cmd lmac_cmd;
|
|
|
|
lmac_cmd.id = lmac_cmd_id;
|
|
|
|
umac_cmd.id = UMAC_CMD_OPCODE_WIFI_PASS_THROUGH;
|
|
umac_cmd.resp = resp;
|
|
|
|
return iwm_hal_send_host_cmd(iwm, &udma_cmd, &umac_cmd, &lmac_cmd,
|
|
lmac_payload, lmac_payload_size);
|
|
}
|
|
|
|
int iwm_send_wifi_if_cmd(struct iwm_priv *iwm, void *payload, u16 payload_size,
|
|
bool resp)
|
|
{
|
|
struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT;
|
|
struct iwm_umac_cmd umac_cmd;
|
|
|
|
umac_cmd.id = UMAC_CMD_OPCODE_WIFI_IF_WRAPPER;
|
|
umac_cmd.resp = resp;
|
|
|
|
return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd,
|
|
payload, payload_size);
|
|
}
|
|
|
|
static struct coex_event iwm_sta_xor_prio_tbl[COEX_EVENTS_NUM] =
|
|
{
|
|
{4, 3, 0, COEX_UNASSOC_IDLE_FLAGS},
|
|
{4, 3, 0, COEX_UNASSOC_MANUAL_SCAN_FLAGS},
|
|
{4, 3, 0, COEX_UNASSOC_AUTO_SCAN_FLAGS},
|
|
{4, 3, 0, COEX_CALIBRATION_FLAGS},
|
|
{4, 3, 0, COEX_PERIODIC_CALIBRATION_FLAGS},
|
|
{4, 3, 0, COEX_CONNECTION_ESTAB_FLAGS},
|
|
{4, 3, 0, COEX_ASSOCIATED_IDLE_FLAGS},
|
|
{4, 3, 0, COEX_ASSOC_MANUAL_SCAN_FLAGS},
|
|
{4, 3, 0, COEX_ASSOC_AUTO_SCAN_FLAGS},
|
|
{4, 3, 0, COEX_ASSOC_ACTIVE_LEVEL_FLAGS},
|
|
{6, 3, 0, COEX_XOR_RF_ON_FLAGS},
|
|
{4, 3, 0, COEX_RF_OFF_FLAGS},
|
|
{6, 6, 0, COEX_STAND_ALONE_DEBUG_FLAGS},
|
|
{4, 3, 0, COEX_IPAN_ASSOC_LEVEL_FLAGS},
|
|
{4, 3, 0, COEX_RSRVD1_FLAGS},
|
|
{4, 3, 0, COEX_RSRVD2_FLAGS}
|
|
};
|
|
|
|
static struct coex_event iwm_sta_cm_prio_tbl[COEX_EVENTS_NUM] =
|
|
{
|
|
{1, 1, 0, COEX_UNASSOC_IDLE_FLAGS},
|
|
{4, 3, 0, COEX_UNASSOC_MANUAL_SCAN_FLAGS},
|
|
{3, 3, 0, COEX_UNASSOC_AUTO_SCAN_FLAGS},
|
|
{5, 5, 0, COEX_CALIBRATION_FLAGS},
|
|
{4, 4, 0, COEX_PERIODIC_CALIBRATION_FLAGS},
|
|
{5, 4, 0, COEX_CONNECTION_ESTAB_FLAGS},
|
|
{4, 4, 0, COEX_ASSOCIATED_IDLE_FLAGS},
|
|
{4, 4, 0, COEX_ASSOC_MANUAL_SCAN_FLAGS},
|
|
{4, 4, 0, COEX_ASSOC_AUTO_SCAN_FLAGS},
|
|
{4, 4, 0, COEX_ASSOC_ACTIVE_LEVEL_FLAGS},
|
|
{1, 1, 0, COEX_RF_ON_FLAGS},
|
|
{1, 1, 0, COEX_RF_OFF_FLAGS},
|
|
{6, 6, 0, COEX_STAND_ALONE_DEBUG_FLAGS},
|
|
{5, 4, 0, COEX_IPAN_ASSOC_LEVEL_FLAGS},
|
|
{1, 1, 0, COEX_RSRVD1_FLAGS},
|
|
{1, 1, 0, COEX_RSRVD2_FLAGS}
|
|
};
|
|
|
|
int iwm_send_prio_table(struct iwm_priv *iwm)
|
|
{
|
|
struct iwm_coex_prio_table_cmd coex_table_cmd;
|
|
u32 coex_enabled, mode_enabled;
|
|
|
|
memset(&coex_table_cmd, 0, sizeof(struct iwm_coex_prio_table_cmd));
|
|
|
|
coex_table_cmd.flags = COEX_FLAGS_STA_TABLE_VALID_MSK;
|
|
|
|
switch (iwm->conf.coexist_mode) {
|
|
case COEX_MODE_XOR:
|
|
case COEX_MODE_CM:
|
|
coex_enabled = 1;
|
|
break;
|
|
default:
|
|
coex_enabled = 0;
|
|
break;
|
|
}
|
|
|
|
switch (iwm->conf.mode) {
|
|
case UMAC_MODE_BSS:
|
|
case UMAC_MODE_IBSS:
|
|
mode_enabled = 1;
|
|
break;
|
|
default:
|
|
mode_enabled = 0;
|
|
break;
|
|
}
|
|
|
|
if (coex_enabled && mode_enabled) {
|
|
coex_table_cmd.flags |= COEX_FLAGS_COEX_ENABLE_MSK |
|
|
COEX_FLAGS_ASSOC_WAKEUP_UMASK_MSK |
|
|
COEX_FLAGS_UNASSOC_WAKEUP_UMASK_MSK;
|
|
|
|
switch (iwm->conf.coexist_mode) {
|
|
case COEX_MODE_XOR:
|
|
memcpy(coex_table_cmd.sta_prio, iwm_sta_xor_prio_tbl,
|
|
sizeof(iwm_sta_xor_prio_tbl));
|
|
break;
|
|
case COEX_MODE_CM:
|
|
memcpy(coex_table_cmd.sta_prio, iwm_sta_cm_prio_tbl,
|
|
sizeof(iwm_sta_cm_prio_tbl));
|
|
break;
|
|
default:
|
|
IWM_ERR(iwm, "Invalid coex_mode 0x%x\n",
|
|
iwm->conf.coexist_mode);
|
|
break;
|
|
}
|
|
} else
|
|
IWM_WARN(iwm, "coexistense disabled\n");
|
|
|
|
return iwm_send_lmac_ptrough_cmd(iwm, COEX_PRIORITY_TABLE_CMD,
|
|
&coex_table_cmd,
|
|
sizeof(struct iwm_coex_prio_table_cmd), 1);
|
|
}
|
|
|
|
int iwm_send_init_calib_cfg(struct iwm_priv *iwm, u8 calib_requested)
|
|
{
|
|
struct iwm_lmac_cal_cfg_cmd cal_cfg_cmd;
|
|
|
|
memset(&cal_cfg_cmd, 0, sizeof(struct iwm_lmac_cal_cfg_cmd));
|
|
|
|
cal_cfg_cmd.ucode_cfg.init.enable = cpu_to_le32(calib_requested);
|
|
cal_cfg_cmd.ucode_cfg.init.start = cpu_to_le32(calib_requested);
|
|
cal_cfg_cmd.ucode_cfg.init.send_res = cpu_to_le32(calib_requested);
|
|
cal_cfg_cmd.ucode_cfg.flags =
|
|
cpu_to_le32(CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_AFTER_MSK);
|
|
|
|
return iwm_send_lmac_ptrough_cmd(iwm, CALIBRATION_CFG_CMD, &cal_cfg_cmd,
|
|
sizeof(struct iwm_lmac_cal_cfg_cmd), 1);
|
|
}
|
|
|
|
int iwm_send_periodic_calib_cfg(struct iwm_priv *iwm, u8 calib_requested)
|
|
{
|
|
struct iwm_lmac_cal_cfg_cmd cal_cfg_cmd;
|
|
|
|
memset(&cal_cfg_cmd, 0, sizeof(struct iwm_lmac_cal_cfg_cmd));
|
|
|
|
cal_cfg_cmd.ucode_cfg.periodic.enable = cpu_to_le32(calib_requested);
|
|
cal_cfg_cmd.ucode_cfg.periodic.start = cpu_to_le32(calib_requested);
|
|
|
|
return iwm_send_lmac_ptrough_cmd(iwm, CALIBRATION_CFG_CMD, &cal_cfg_cmd,
|
|
sizeof(struct iwm_lmac_cal_cfg_cmd), 0);
|
|
}
|
|
|
|
int iwm_store_rxiq_calib_result(struct iwm_priv *iwm)
|
|
{
|
|
struct iwm_calib_rxiq *rxiq;
|
|
u8 *eeprom_rxiq = iwm_eeprom_access(iwm, IWM_EEPROM_CALIB_RXIQ);
|
|
int grplen = sizeof(struct iwm_calib_rxiq_group);
|
|
|
|
rxiq = kzalloc(sizeof(struct iwm_calib_rxiq), GFP_KERNEL);
|
|
if (!rxiq) {
|
|
IWM_ERR(iwm, "Couldn't alloc memory for RX IQ\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
eeprom_rxiq = iwm_eeprom_access(iwm, IWM_EEPROM_CALIB_RXIQ);
|
|
if (IS_ERR(eeprom_rxiq)) {
|
|
IWM_ERR(iwm, "Couldn't access EEPROM RX IQ entry\n");
|
|
return PTR_ERR(eeprom_rxiq);
|
|
}
|
|
|
|
iwm->calib_res[SHILOH_PHY_CALIBRATE_RX_IQ_CMD].buf = (u8 *)rxiq;
|
|
iwm->calib_res[SHILOH_PHY_CALIBRATE_RX_IQ_CMD].size = sizeof(*rxiq);
|
|
|
|
rxiq->hdr.opcode = SHILOH_PHY_CALIBRATE_RX_IQ_CMD;
|
|
rxiq->hdr.first_grp = 0;
|
|
rxiq->hdr.grp_num = 1;
|
|
rxiq->hdr.all_data_valid = 1;
|
|
|
|
memcpy(&rxiq->group[0], eeprom_rxiq, 4 * grplen);
|
|
memcpy(&rxiq->group[4], eeprom_rxiq + 6 * grplen, grplen);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int iwm_send_calib_results(struct iwm_priv *iwm)
|
|
{
|
|
int i, ret = 0;
|
|
|
|
for (i = PHY_CALIBRATE_OPCODES_NUM; i < CALIBRATION_CMD_NUM; i++) {
|
|
if (test_bit(i - PHY_CALIBRATE_OPCODES_NUM,
|
|
&iwm->calib_done_map)) {
|
|
IWM_DBG_CMD(iwm, DBG,
|
|
"Send calibration %d result\n", i);
|
|
ret |= iwm_send_lmac_ptrough_cmd(iwm,
|
|
REPLY_PHY_CALIBRATION_CMD,
|
|
iwm->calib_res[i].buf,
|
|
iwm->calib_res[i].size, 0);
|
|
|
|
kfree(iwm->calib_res[i].buf);
|
|
iwm->calib_res[i].buf = NULL;
|
|
iwm->calib_res[i].size = 0;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int iwm_send_umac_reset(struct iwm_priv *iwm, __le32 reset_flags, bool resp)
|
|
{
|
|
struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT;
|
|
struct iwm_umac_cmd umac_cmd;
|
|
struct iwm_umac_cmd_reset reset;
|
|
|
|
reset.flags = reset_flags;
|
|
|
|
umac_cmd.id = UMAC_CMD_OPCODE_RESET;
|
|
umac_cmd.resp = resp;
|
|
|
|
return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, &reset,
|
|
sizeof(struct iwm_umac_cmd_reset));
|
|
}
|
|
|
|
int iwm_umac_set_config_fix(struct iwm_priv *iwm, u16 tbl, u16 key, u32 value)
|
|
{
|
|
struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT;
|
|
struct iwm_umac_cmd umac_cmd;
|
|
struct iwm_umac_cmd_set_param_fix param;
|
|
|
|
if ((tbl != UMAC_PARAM_TBL_CFG_FIX) &&
|
|
(tbl != UMAC_PARAM_TBL_FA_CFG_FIX))
|
|
return -EINVAL;
|
|
|
|
umac_cmd.id = UMAC_CMD_OPCODE_SET_PARAM_FIX;
|
|
umac_cmd.resp = 0;
|
|
|
|
param.tbl = cpu_to_le16(tbl);
|
|
param.key = cpu_to_le16(key);
|
|
param.value = cpu_to_le32(value);
|
|
|
|
return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, ¶m,
|
|
sizeof(struct iwm_umac_cmd_set_param_fix));
|
|
}
|
|
|
|
int iwm_umac_set_config_var(struct iwm_priv *iwm, u16 key,
|
|
void *payload, u16 payload_size)
|
|
{
|
|
struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT;
|
|
struct iwm_umac_cmd umac_cmd;
|
|
struct iwm_umac_cmd_set_param_var *param_hdr;
|
|
u8 *param;
|
|
int ret;
|
|
|
|
param = kzalloc(payload_size +
|
|
sizeof(struct iwm_umac_cmd_set_param_var), GFP_KERNEL);
|
|
if (!param) {
|
|
IWM_ERR(iwm, "Couldn't allocate param\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
param_hdr = (struct iwm_umac_cmd_set_param_var *)param;
|
|
|
|
umac_cmd.id = UMAC_CMD_OPCODE_SET_PARAM_VAR;
|
|
umac_cmd.resp = 0;
|
|
|
|
param_hdr->tbl = cpu_to_le16(UMAC_PARAM_TBL_CFG_VAR);
|
|
param_hdr->key = cpu_to_le16(key);
|
|
param_hdr->len = cpu_to_le16(payload_size);
|
|
memcpy(param + sizeof(struct iwm_umac_cmd_set_param_var),
|
|
payload, payload_size);
|
|
|
|
ret = iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, param,
|
|
sizeof(struct iwm_umac_cmd_set_param_var) +
|
|
payload_size);
|
|
kfree(param);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int iwm_send_umac_config(struct iwm_priv *iwm,
|
|
__le32 reset_flags)
|
|
{
|
|
int ret;
|
|
|
|
/* Use UMAC default values */
|
|
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
|
|
CFG_POWER_INDEX, iwm->conf.power_index);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_FA_CFG_FIX,
|
|
CFG_FRAG_THRESHOLD,
|
|
iwm->conf.frag_threshold);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
|
|
CFG_RTS_THRESHOLD,
|
|
iwm->conf.rts_threshold);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
|
|
CFG_CTS_TO_SELF, iwm->conf.cts_to_self);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
|
|
CFG_COEX_MODE, iwm->conf.coexist_mode);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/*
|
|
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
|
|
CFG_ASSOCIATION_TIMEOUT,
|
|
iwm->conf.assoc_timeout);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
|
|
CFG_ROAM_TIMEOUT,
|
|
iwm->conf.roam_timeout);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
|
|
CFG_WIRELESS_MODE,
|
|
WIRELESS_MODE_11A | WIRELESS_MODE_11G);
|
|
if (ret < 0)
|
|
return ret;
|
|
*/
|
|
|
|
ret = iwm_umac_set_config_var(iwm, CFG_NET_ADDR,
|
|
iwm_to_ndev(iwm)->dev_addr, ETH_ALEN);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* UMAC PM static configurations */
|
|
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
|
|
CFG_PM_LEGACY_RX_TIMEOUT, 0x12C);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
|
|
CFG_PM_LEGACY_TX_TIMEOUT, 0x15E);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
|
|
CFG_PM_CTRL_FLAGS, 0x30001);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
|
|
CFG_PM_KEEP_ALIVE_IN_BEACONS, 0x80);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* reset UMAC */
|
|
ret = iwm_send_umac_reset(iwm, reset_flags, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = iwm_notif_handle(iwm, UMAC_CMD_OPCODE_RESET, IWM_SRC_UMAC,
|
|
WAIT_NOTIF_TIMEOUT);
|
|
if (ret) {
|
|
IWM_ERR(iwm, "Wait for UMAC RESET timeout\n");
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int iwm_send_packet(struct iwm_priv *iwm, struct sk_buff *skb, int pool_id)
|
|
{
|
|
struct iwm_udma_wifi_cmd udma_cmd;
|
|
struct iwm_umac_cmd umac_cmd;
|
|
struct iwm_tx_info *tx_info = skb_to_tx_info(skb);
|
|
|
|
udma_cmd.eop = 1; /* always set eop for non-concatenated Tx */
|
|
udma_cmd.credit_group = pool_id;
|
|
udma_cmd.ra_tid = tx_info->sta << 4 | tx_info->tid;
|
|
udma_cmd.lmac_offset = 0;
|
|
|
|
umac_cmd.id = REPLY_TX;
|
|
umac_cmd.color = tx_info->color;
|
|
umac_cmd.resp = 0;
|
|
|
|
return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd,
|
|
skb->data, skb->len);
|
|
}
|
|
|
|
static int iwm_target_read(struct iwm_priv *iwm, __le32 address,
|
|
u8 *response, u32 resp_size)
|
|
{
|
|
struct iwm_udma_nonwifi_cmd target_cmd;
|
|
struct iwm_nonwifi_cmd *cmd;
|
|
u16 seq_num;
|
|
int ret = 0;
|
|
|
|
target_cmd.opcode = UMAC_HDI_OUT_OPCODE_READ;
|
|
target_cmd.addr = address;
|
|
target_cmd.op1_sz = cpu_to_le32(resp_size);
|
|
target_cmd.op2 = 0;
|
|
target_cmd.handle_by_hw = 0;
|
|
target_cmd.resp = 1;
|
|
target_cmd.eop = 1;
|
|
|
|
ret = iwm_hal_send_target_cmd(iwm, &target_cmd, NULL);
|
|
if (ret < 0)
|
|
IWM_ERR(iwm, "Couldn't send READ command\n");
|
|
|
|
/* When succeding, the send_target routine returns the seq number */
|
|
seq_num = ret;
|
|
|
|
ret = wait_event_interruptible_timeout(iwm->nonwifi_queue,
|
|
(cmd = iwm_get_pending_nonwifi_cmd(iwm, seq_num,
|
|
UMAC_HDI_OUT_OPCODE_READ)) != NULL,
|
|
2 * HZ);
|
|
|
|
if (!ret) {
|
|
IWM_ERR(iwm, "Didn't receive a target READ answer\n");
|
|
return ret;
|
|
}
|
|
|
|
memcpy(response, cmd->buf.hdr + sizeof(struct iwm_udma_in_hdr),
|
|
resp_size);
|
|
|
|
kfree(cmd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int iwm_read_mac(struct iwm_priv *iwm, u8 *mac)
|
|
{
|
|
int ret;
|
|
u8 mac_align[ALIGN(ETH_ALEN, 8)];
|
|
|
|
ret = iwm_target_read(iwm, cpu_to_le32(WICO_MAC_ADDRESS_ADDR),
|
|
mac_align, sizeof(mac_align));
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (is_valid_ether_addr(mac_align))
|
|
memcpy(mac, mac_align, ETH_ALEN);
|
|
else {
|
|
IWM_ERR(iwm, "Invalid EEPROM MAC\n");
|
|
memcpy(mac, iwm->conf.mac_addr, ETH_ALEN);
|
|
get_random_bytes(&mac[3], 3);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int iwm_set_tx_key(struct iwm_priv *iwm, u8 key_idx)
|
|
{
|
|
struct iwm_umac_tx_key_id tx_key_id;
|
|
|
|
if (!iwm->default_key || !iwm->default_key->in_use)
|
|
return -EINVAL;
|
|
|
|
tx_key_id.hdr.oid = UMAC_WIFI_IF_CMD_GLOBAL_TX_KEY_ID;
|
|
tx_key_id.hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_tx_key_id) -
|
|
sizeof(struct iwm_umac_wifi_if));
|
|
|
|
tx_key_id.key_idx = key_idx;
|
|
|
|
return iwm_send_wifi_if_cmd(iwm, &tx_key_id, sizeof(tx_key_id), 1);
|
|
}
|
|
|
|
static int iwm_check_profile(struct iwm_priv *iwm)
|
|
{
|
|
if (!iwm->umac_profile_active)
|
|
return -EAGAIN;
|
|
|
|
if (iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_WEP_40 &&
|
|
iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_WEP_104 &&
|
|
iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_TKIP &&
|
|
iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_CCMP) {
|
|
IWM_ERR(iwm, "Wrong unicast cipher: 0x%x\n",
|
|
iwm->umac_profile->sec.ucast_cipher);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (iwm->umac_profile->sec.mcast_cipher != UMAC_CIPHER_TYPE_WEP_40 &&
|
|
iwm->umac_profile->sec.mcast_cipher != UMAC_CIPHER_TYPE_WEP_104 &&
|
|
iwm->umac_profile->sec.mcast_cipher != UMAC_CIPHER_TYPE_TKIP &&
|
|
iwm->umac_profile->sec.mcast_cipher != UMAC_CIPHER_TYPE_CCMP) {
|
|
IWM_ERR(iwm, "Wrong multicast cipher: 0x%x\n",
|
|
iwm->umac_profile->sec.mcast_cipher);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if ((iwm->umac_profile->sec.ucast_cipher == UMAC_CIPHER_TYPE_WEP_40 ||
|
|
iwm->umac_profile->sec.ucast_cipher == UMAC_CIPHER_TYPE_WEP_104) &&
|
|
(iwm->umac_profile->sec.ucast_cipher !=
|
|
iwm->umac_profile->sec.mcast_cipher)) {
|
|
IWM_ERR(iwm, "Unicast and multicast ciphers differ for WEP\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int iwm_set_key(struct iwm_priv *iwm, bool remove, bool set_tx_key,
|
|
struct iwm_key *key)
|
|
{
|
|
int ret;
|
|
u8 cmd[64], *sta_addr, *key_data, key_len;
|
|
s8 key_idx;
|
|
u16 cmd_size = 0;
|
|
struct iwm_umac_key_hdr *key_hdr = &key->hdr;
|
|
struct iwm_umac_key_wep40 *wep40 = (struct iwm_umac_key_wep40 *)cmd;
|
|
struct iwm_umac_key_wep104 *wep104 = (struct iwm_umac_key_wep104 *)cmd;
|
|
struct iwm_umac_key_tkip *tkip = (struct iwm_umac_key_tkip *)cmd;
|
|
struct iwm_umac_key_ccmp *ccmp = (struct iwm_umac_key_ccmp *)cmd;
|
|
|
|
if (set_tx_key)
|
|
iwm->default_key = key;
|
|
|
|
/*
|
|
* We check if our current profile is valid.
|
|
* If not, we dont push the key, we just cache them,
|
|
* so that with the next siwsessid call, the keys
|
|
* will be actually pushed.
|
|
*/
|
|
if (!remove) {
|
|
ret = iwm_check_profile(iwm);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
sta_addr = key->hdr.mac;
|
|
key_data = key->key;
|
|
key_len = key->key_len;
|
|
key_idx = key->hdr.key_idx;
|
|
|
|
if (!remove) {
|
|
IWM_DBG_WEXT(iwm, DBG, "key_idx:%d set tx key:%d\n",
|
|
key_idx, set_tx_key);
|
|
IWM_DBG_WEXT(iwm, DBG, "key_len:%d\n", key_len);
|
|
IWM_DBG_WEXT(iwm, DBG, "MAC:%pM, idx:%d, multicast:%d\n",
|
|
key_hdr->mac, key_hdr->key_idx, key_hdr->multicast);
|
|
|
|
IWM_DBG_WEXT(iwm, DBG, "profile: mcast:0x%x, ucast:0x%x\n",
|
|
iwm->umac_profile->sec.mcast_cipher,
|
|
iwm->umac_profile->sec.ucast_cipher);
|
|
IWM_DBG_WEXT(iwm, DBG, "profile: auth_type:0x%x, flags:0x%x\n",
|
|
iwm->umac_profile->sec.auth_type,
|
|
iwm->umac_profile->sec.flags);
|
|
|
|
switch (key->alg) {
|
|
case UMAC_CIPHER_TYPE_WEP_40:
|
|
wep40->hdr.oid = UMAC_WIFI_IF_CMD_ADD_WEP40_KEY;
|
|
wep40->hdr.buf_size =
|
|
cpu_to_le16(sizeof(struct iwm_umac_key_wep40) -
|
|
sizeof(struct iwm_umac_wifi_if));
|
|
|
|
memcpy(&wep40->key_hdr, key_hdr,
|
|
sizeof(struct iwm_umac_key_hdr));
|
|
memcpy(wep40->key, key_data, key_len);
|
|
wep40->static_key = 1;
|
|
|
|
cmd_size = sizeof(struct iwm_umac_key_wep40);
|
|
break;
|
|
|
|
case UMAC_CIPHER_TYPE_WEP_104:
|
|
wep104->hdr.oid = UMAC_WIFI_IF_CMD_ADD_WEP104_KEY;
|
|
wep104->hdr.buf_size =
|
|
cpu_to_le16(sizeof(struct iwm_umac_key_wep104) -
|
|
sizeof(struct iwm_umac_wifi_if));
|
|
|
|
memcpy(&wep104->key_hdr, key_hdr,
|
|
sizeof(struct iwm_umac_key_hdr));
|
|
memcpy(wep104->key, key_data, key_len);
|
|
wep104->static_key = 1;
|
|
|
|
cmd_size = sizeof(struct iwm_umac_key_wep104);
|
|
break;
|
|
|
|
case UMAC_CIPHER_TYPE_CCMP:
|
|
key_hdr->key_idx++;
|
|
ccmp->hdr.oid = UMAC_WIFI_IF_CMD_ADD_CCMP_KEY;
|
|
ccmp->hdr.buf_size =
|
|
cpu_to_le16(sizeof(struct iwm_umac_key_ccmp) -
|
|
sizeof(struct iwm_umac_wifi_if));
|
|
|
|
memcpy(&ccmp->key_hdr, key_hdr,
|
|
sizeof(struct iwm_umac_key_hdr));
|
|
|
|
memcpy(ccmp->key, key_data, key_len);
|
|
|
|
if (key->flags & IW_ENCODE_EXT_RX_SEQ_VALID)
|
|
memcpy(ccmp->iv_count, key->rx_seq, 6);
|
|
|
|
cmd_size = sizeof(struct iwm_umac_key_ccmp);
|
|
break;
|
|
|
|
case UMAC_CIPHER_TYPE_TKIP:
|
|
key_hdr->key_idx++;
|
|
tkip->hdr.oid = UMAC_WIFI_IF_CMD_ADD_TKIP_KEY;
|
|
tkip->hdr.buf_size =
|
|
cpu_to_le16(sizeof(struct iwm_umac_key_tkip) -
|
|
sizeof(struct iwm_umac_wifi_if));
|
|
|
|
memcpy(&tkip->key_hdr, key_hdr,
|
|
sizeof(struct iwm_umac_key_hdr));
|
|
|
|
memcpy(tkip->tkip_key, key_data, IWM_TKIP_KEY_SIZE);
|
|
memcpy(tkip->mic_tx_key, key_data + IWM_TKIP_KEY_SIZE,
|
|
IWM_TKIP_MIC_SIZE);
|
|
memcpy(tkip->mic_rx_key,
|
|
key_data + IWM_TKIP_KEY_SIZE + IWM_TKIP_MIC_SIZE,
|
|
IWM_TKIP_MIC_SIZE);
|
|
|
|
if (key->flags & IW_ENCODE_EXT_RX_SEQ_VALID)
|
|
memcpy(ccmp->iv_count, key->rx_seq, 6);
|
|
|
|
cmd_size = sizeof(struct iwm_umac_key_tkip);
|
|
break;
|
|
|
|
default:
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
if ((key->alg == UMAC_CIPHER_TYPE_CCMP) ||
|
|
(key->alg == UMAC_CIPHER_TYPE_TKIP))
|
|
/*
|
|
* UGLY_UGLY_UGLY
|
|
* Copied HACK from the MWG driver.
|
|
* Without it, the key is set before the second
|
|
* EAPOL frame is sent, and the latter is thus
|
|
* encrypted.
|
|
*/
|
|
schedule_timeout_interruptible(usecs_to_jiffies(300));
|
|
|
|
ret = iwm_send_wifi_if_cmd(iwm, cmd, cmd_size, 1);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
/*
|
|
* We need a default key only if it is set and
|
|
* if we're doing WEP.
|
|
*/
|
|
if (iwm->default_key == key &&
|
|
((key->alg == UMAC_CIPHER_TYPE_WEP_40) ||
|
|
(key->alg == UMAC_CIPHER_TYPE_WEP_104))) {
|
|
ret = iwm_set_tx_key(iwm, key_idx);
|
|
if (ret < 0)
|
|
goto err;
|
|
}
|
|
} else {
|
|
struct iwm_umac_key_remove key_remove;
|
|
|
|
key_remove.hdr.oid = UMAC_WIFI_IF_CMD_REMOVE_KEY;
|
|
key_remove.hdr.buf_size =
|
|
cpu_to_le16(sizeof(struct iwm_umac_key_remove) -
|
|
sizeof(struct iwm_umac_wifi_if));
|
|
memcpy(&key_remove.key_hdr, key_hdr,
|
|
sizeof(struct iwm_umac_key_hdr));
|
|
|
|
ret = iwm_send_wifi_if_cmd(iwm, &key_remove,
|
|
sizeof(struct iwm_umac_key_remove),
|
|
1);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
iwm->keys[key_idx].in_use = 0;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
kfree(key);
|
|
return ret;
|
|
}
|
|
|
|
|
|
int iwm_send_mlme_profile(struct iwm_priv *iwm)
|
|
{
|
|
int ret, i;
|
|
struct iwm_umac_profile profile;
|
|
|
|
memcpy(&profile, iwm->umac_profile, sizeof(profile));
|
|
|
|
profile.hdr.oid = UMAC_WIFI_IF_CMD_SET_PROFILE;
|
|
profile.hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_profile) -
|
|
sizeof(struct iwm_umac_wifi_if));
|
|
|
|
ret = iwm_send_wifi_if_cmd(iwm, &profile, sizeof(profile), 1);
|
|
if (ret < 0) {
|
|
IWM_ERR(iwm, "Send profile command failed\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Wait for the profile to be active */
|
|
ret = wait_event_interruptible_timeout(iwm->mlme_queue,
|
|
iwm->umac_profile_active == 1,
|
|
3 * HZ);
|
|
if (!ret)
|
|
return -EBUSY;
|
|
|
|
|
|
for (i = 0; i < IWM_NUM_KEYS; i++)
|
|
if (iwm->keys[i].in_use) {
|
|
int default_key = 0;
|
|
struct iwm_key *key = &iwm->keys[i];
|
|
|
|
if (key == iwm->default_key)
|
|
default_key = 1;
|
|
|
|
/* Wait for the profile before sending the keys */
|
|
wait_event_interruptible_timeout(iwm->mlme_queue,
|
|
(test_bit(IWM_STATUS_ASSOCIATING, &iwm->status) ||
|
|
test_bit(IWM_STATUS_ASSOCIATED, &iwm->status)),
|
|
3 * HZ);
|
|
|
|
ret = iwm_set_key(iwm, 0, default_key, key);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int iwm_invalidate_mlme_profile(struct iwm_priv *iwm)
|
|
{
|
|
int ret;
|
|
struct iwm_umac_invalidate_profile invalid;
|
|
|
|
invalid.hdr.oid = UMAC_WIFI_IF_CMD_INVALIDATE_PROFILE;
|
|
invalid.hdr.buf_size =
|
|
cpu_to_le16(sizeof(struct iwm_umac_invalidate_profile) -
|
|
sizeof(struct iwm_umac_wifi_if));
|
|
|
|
invalid.reason = WLAN_REASON_UNSPECIFIED;
|
|
|
|
ret = iwm_send_wifi_if_cmd(iwm, &invalid, sizeof(invalid), 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = wait_event_interruptible_timeout(iwm->mlme_queue,
|
|
(iwm->umac_profile_active == 0),
|
|
2 * HZ);
|
|
if (!ret)
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int iwm_send_umac_stats_req(struct iwm_priv *iwm, u32 flags)
|
|
{
|
|
struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT;
|
|
struct iwm_umac_cmd umac_cmd;
|
|
struct iwm_umac_cmd_stats_req stats_req;
|
|
|
|
stats_req.flags = cpu_to_le32(flags);
|
|
|
|
umac_cmd.id = UMAC_CMD_OPCODE_STATISTIC_REQUEST;
|
|
umac_cmd.resp = 0;
|
|
|
|
return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, &stats_req,
|
|
sizeof(struct iwm_umac_cmd_stats_req));
|
|
}
|
|
|
|
int iwm_send_umac_channel_list(struct iwm_priv *iwm)
|
|
{
|
|
struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT;
|
|
struct iwm_umac_cmd umac_cmd;
|
|
struct iwm_umac_cmd_get_channel_list *ch_list;
|
|
int size = sizeof(struct iwm_umac_cmd_get_channel_list) +
|
|
sizeof(struct iwm_umac_channel_info) * 4;
|
|
int ret;
|
|
|
|
ch_list = kzalloc(size, GFP_KERNEL);
|
|
if (!ch_list) {
|
|
IWM_ERR(iwm, "Couldn't allocate channel list cmd\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ch_list->ch[0].band = UMAC_BAND_2GHZ;
|
|
ch_list->ch[0].type = UMAC_CHANNEL_WIDTH_20MHZ;
|
|
ch_list->ch[0].flags = UMAC_CHANNEL_FLAG_VALID;
|
|
|
|
ch_list->ch[1].band = UMAC_BAND_5GHZ;
|
|
ch_list->ch[1].type = UMAC_CHANNEL_WIDTH_20MHZ;
|
|
ch_list->ch[1].flags = UMAC_CHANNEL_FLAG_VALID;
|
|
|
|
ch_list->ch[2].band = UMAC_BAND_2GHZ;
|
|
ch_list->ch[2].type = UMAC_CHANNEL_WIDTH_20MHZ;
|
|
ch_list->ch[2].flags = UMAC_CHANNEL_FLAG_VALID | UMAC_CHANNEL_FLAG_IBSS;
|
|
|
|
ch_list->ch[3].band = UMAC_BAND_5GHZ;
|
|
ch_list->ch[3].type = UMAC_CHANNEL_WIDTH_20MHZ;
|
|
ch_list->ch[3].flags = UMAC_CHANNEL_FLAG_VALID | UMAC_CHANNEL_FLAG_IBSS;
|
|
|
|
ch_list->count = cpu_to_le16(4);
|
|
|
|
umac_cmd.id = UMAC_CMD_OPCODE_GET_CHAN_INFO_LIST;
|
|
umac_cmd.resp = 1;
|
|
|
|
ret = iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, ch_list, size);
|
|
|
|
kfree(ch_list);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int iwm_scan_ssids(struct iwm_priv *iwm, struct cfg80211_ssid *ssids,
|
|
int ssid_num)
|
|
{
|
|
struct iwm_umac_cmd_scan_request req;
|
|
int i, ret;
|
|
|
|
memset(&req, 0, sizeof(struct iwm_umac_cmd_scan_request));
|
|
|
|
req.hdr.oid = UMAC_WIFI_IF_CMD_SCAN_REQUEST;
|
|
req.hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_cmd_scan_request)
|
|
- sizeof(struct iwm_umac_wifi_if));
|
|
req.type = UMAC_WIFI_IF_SCAN_TYPE_USER;
|
|
req.timeout = 2;
|
|
req.seq_num = iwm->scan_id;
|
|
req.ssid_num = min(ssid_num, UMAC_WIFI_IF_PROBE_OPTION_MAX);
|
|
|
|
for (i = 0; i < req.ssid_num; i++) {
|
|
memcpy(req.ssids[i].ssid, ssids[i].ssid, ssids[i].ssid_len);
|
|
req.ssids[i].ssid_len = ssids[i].ssid_len;
|
|
}
|
|
|
|
ret = iwm_send_wifi_if_cmd(iwm, &req, sizeof(req), 0);
|
|
if (ret < 0) {
|
|
IWM_ERR(iwm, "Couldn't send scan request\n");
|
|
return ret;
|
|
}
|
|
|
|
iwm->scan_id = iwm->scan_id++ % IWM_SCAN_ID_MAX;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int iwm_scan_one_ssid(struct iwm_priv *iwm, u8 *ssid, int ssid_len)
|
|
{
|
|
struct cfg80211_ssid one_ssid;
|
|
|
|
if (test_and_set_bit(IWM_STATUS_SCANNING, &iwm->status))
|
|
return 0;
|
|
|
|
one_ssid.ssid_len = min(ssid_len, IEEE80211_MAX_SSID_LEN);
|
|
memcpy(&one_ssid.ssid, ssid, one_ssid.ssid_len);
|
|
|
|
return iwm_scan_ssids(iwm, &one_ssid, 1);
|
|
}
|
|
|
|
int iwm_target_reset(struct iwm_priv *iwm)
|
|
{
|
|
struct iwm_udma_nonwifi_cmd target_cmd;
|
|
|
|
target_cmd.opcode = UMAC_HDI_OUT_OPCODE_REBOOT;
|
|
target_cmd.addr = 0;
|
|
target_cmd.op1_sz = 0;
|
|
target_cmd.op2 = 0;
|
|
target_cmd.handle_by_hw = 0;
|
|
target_cmd.resp = 0;
|
|
target_cmd.eop = 1;
|
|
|
|
return iwm_hal_send_target_cmd(iwm, &target_cmd, NULL);
|
|
}
|