linux/drivers/acpi/processor_perflib.c
Ingo Molnar e4233dec74 [PATCH] ACPI: fix cpufreq regression
Recently cpufreq support on my laptop (Lenovo T60) broke completely: when
it's plugged into AC it would never go higher than 1 GHz - neither 1.3 GHz
nor 1.83 GHz is possible - no matter which governor (userspace, speed or
ondemand) is used.

After some cpufreq debugging i tracked the regression back to the following
(totally correct) bug-fix commit:

   commit 0916bd3ebb
   Author: Dave Jones <davej@redhat.com>
   Date:   Wed Nov 22 20:42:01 2006 -0500

    [PATCH] Correct bound checking from the value returned from _PPC method.

This bugfix, which makes other laptops work, made a previously hidden
(BIOS) bug visible on my laptop.

The bug is the following: if the _PPC (Performance Present Capabilities)
optional ACPI object is queried /after/ bootup then the BIOS reports an
incorrect value of '2'.

My laptop (Lenovo T60) has the following performance states supported:

   0: 1833000
   1: 1333000
   2: 1000000

Per ACPI specification, a _PPC value of '0' means that all 3 performance
states are usable.  A _PPC value of '1' means states 1 ..  2 are usable, a
value of '2' means only state '2' (slowest) is usable.

now, the _PPC object is optional, and it also comes with notification.
Furthermore, when a CPU object is initialized, the _PPC object is
initialized as well.  So the following evaluation of the _PPC object is
superfluous:

 [<c028ba5f>] acpi_processor_get_platform_limit+0xa1/0xaf
 [<c028c040>] acpi_processor_register_performance+0x3b9/0x3ef
 [<c0111a85>] acpi_cpufreq_cpu_init+0xb7/0x596
 [<c03dab74>] cpufreq_add_dev+0x160/0x4a8
 [<c02bed90>] sysdev_driver_register+0x5a/0xa0
 [<c03d9c4c>] cpufreq_register_driver+0xb4/0x176
 [<c068ac08>] acpi_cpufreq_init+0xe5/0xeb
 [<c010056e>] init+0x14f/0x3dd

And this is the point where my laptop's BIOS returns the incorrect value of
'2'.  Note that it has not sent any notification event, so the value is
probably not really intentional (possibly spurious), and Windows likely
doesnt query it after bootup either.  Maybe the value is kept at '2'
normally, and is only set to the real value when a true asynchronous event
(such as AC plug event, battery switch, etc.) occurs.

So i /think/ this is a grey area of the ACPI spec: per the letter of the
spec the _PPC value only changes when notified, so there's no reason to
query it after the system has booted up.  So in my opinion the best (and
most compatible) strategy would be to do the change below, and to not
evaluate the _PPC object in the acpi_processor_get_performance_info() call,
but only evaluate it if _PPC is present during CPU object init, or if it's
notified during an asynchronous event.  This change is more permissive than
the previous logic, so it definitely shouldnt break any existing system.

This also happens to fix my laptop, which is merrily chugging along at
1.83 GHz now. Yay!

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Len Brown <lenb@kernel.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-01-26 13:50:58 -08:00

822 lines
20 KiB
C

/*
* processor_perflib.c - ACPI Processor P-States Library ($Revision: 71 $)
*
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
* Copyright (C) 2004 Dominik Brodowski <linux@brodo.de>
* Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
* - Added processor hotplug support
*
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#ifdef CONFIG_X86_ACPI_CPUFREQ_PROC_INTF
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/mutex.h>
#include <asm/uaccess.h>
#endif
#include <acpi/acpi_bus.h>
#include <acpi/processor.h>
#define ACPI_PROCESSOR_COMPONENT 0x01000000
#define ACPI_PROCESSOR_CLASS "processor"
#define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor Driver"
#define ACPI_PROCESSOR_FILE_PERFORMANCE "performance"
#define _COMPONENT ACPI_PROCESSOR_COMPONENT
ACPI_MODULE_NAME("acpi_processor")
static DEFINE_MUTEX(performance_mutex);
/*
* _PPC support is implemented as a CPUfreq policy notifier:
* This means each time a CPUfreq driver registered also with
* the ACPI core is asked to change the speed policy, the maximum
* value is adjusted so that it is within the platform limit.
*
* Also, when a new platform limit value is detected, the CPUfreq
* policy is adjusted accordingly.
*/
#define PPC_REGISTERED 1
#define PPC_IN_USE 2
static int acpi_processor_ppc_status = 0;
static int acpi_processor_ppc_notifier(struct notifier_block *nb,
unsigned long event, void *data)
{
struct cpufreq_policy *policy = data;
struct acpi_processor *pr;
unsigned int ppc = 0;
mutex_lock(&performance_mutex);
if (event != CPUFREQ_INCOMPATIBLE)
goto out;
pr = processors[policy->cpu];
if (!pr || !pr->performance)
goto out;
ppc = (unsigned int)pr->performance_platform_limit;
if (ppc >= pr->performance->state_count)
goto out;
cpufreq_verify_within_limits(policy, 0,
pr->performance->states[ppc].
core_frequency * 1000);
out:
mutex_unlock(&performance_mutex);
return 0;
}
static struct notifier_block acpi_ppc_notifier_block = {
.notifier_call = acpi_processor_ppc_notifier,
};
static int acpi_processor_get_platform_limit(struct acpi_processor *pr)
{
acpi_status status = 0;
unsigned long ppc = 0;
if (!pr)
return -EINVAL;
/*
* _PPC indicates the maximum state currently supported by the platform
* (e.g. 0 = states 0..n; 1 = states 1..n; etc.
*/
status = acpi_evaluate_integer(pr->handle, "_PPC", NULL, &ppc);
if (status != AE_NOT_FOUND)
acpi_processor_ppc_status |= PPC_IN_USE;
if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PPC"));
return -ENODEV;
}
pr->performance_platform_limit = (int)ppc;
return 0;
}
int acpi_processor_ppc_has_changed(struct acpi_processor *pr)
{
int ret = acpi_processor_get_platform_limit(pr);
if (ret < 0)
return (ret);
else
return cpufreq_update_policy(pr->id);
}
void acpi_processor_ppc_init(void)
{
if (!cpufreq_register_notifier
(&acpi_ppc_notifier_block, CPUFREQ_POLICY_NOTIFIER))
acpi_processor_ppc_status |= PPC_REGISTERED;
else
printk(KERN_DEBUG
"Warning: Processor Platform Limit not supported.\n");
}
void acpi_processor_ppc_exit(void)
{
if (acpi_processor_ppc_status & PPC_REGISTERED)
cpufreq_unregister_notifier(&acpi_ppc_notifier_block,
CPUFREQ_POLICY_NOTIFIER);
acpi_processor_ppc_status &= ~PPC_REGISTERED;
}
static int acpi_processor_get_performance_control(struct acpi_processor *pr)
{
int result = 0;
acpi_status status = 0;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *pct = NULL;
union acpi_object obj = { 0 };
status = acpi_evaluate_object(pr->handle, "_PCT", NULL, &buffer);
if (ACPI_FAILURE(status)) {
ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PCT"));
return -ENODEV;
}
pct = (union acpi_object *)buffer.pointer;
if (!pct || (pct->type != ACPI_TYPE_PACKAGE)
|| (pct->package.count != 2)) {
printk(KERN_ERR PREFIX "Invalid _PCT data\n");
result = -EFAULT;
goto end;
}
/*
* control_register
*/
obj = pct->package.elements[0];
if ((obj.type != ACPI_TYPE_BUFFER)
|| (obj.buffer.length < sizeof(struct acpi_pct_register))
|| (obj.buffer.pointer == NULL)) {
printk(KERN_ERR PREFIX "Invalid _PCT data (control_register)\n");
result = -EFAULT;
goto end;
}
memcpy(&pr->performance->control_register, obj.buffer.pointer,
sizeof(struct acpi_pct_register));
/*
* status_register
*/
obj = pct->package.elements[1];
if ((obj.type != ACPI_TYPE_BUFFER)
|| (obj.buffer.length < sizeof(struct acpi_pct_register))
|| (obj.buffer.pointer == NULL)) {
printk(KERN_ERR PREFIX "Invalid _PCT data (status_register)\n");
result = -EFAULT;
goto end;
}
memcpy(&pr->performance->status_register, obj.buffer.pointer,
sizeof(struct acpi_pct_register));
end:
kfree(buffer.pointer);
return result;
}
static int acpi_processor_get_performance_states(struct acpi_processor *pr)
{
int result = 0;
acpi_status status = AE_OK;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
struct acpi_buffer format = { sizeof("NNNNNN"), "NNNNNN" };
struct acpi_buffer state = { 0, NULL };
union acpi_object *pss = NULL;
int i;
status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
if (ACPI_FAILURE(status)) {
ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PSS"));
return -ENODEV;
}
pss = buffer.pointer;
if (!pss || (pss->type != ACPI_TYPE_PACKAGE)) {
printk(KERN_ERR PREFIX "Invalid _PSS data\n");
result = -EFAULT;
goto end;
}
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d performance states\n",
pss->package.count));
pr->performance->state_count = pss->package.count;
pr->performance->states =
kmalloc(sizeof(struct acpi_processor_px) * pss->package.count,
GFP_KERNEL);
if (!pr->performance->states) {
result = -ENOMEM;
goto end;
}
for (i = 0; i < pr->performance->state_count; i++) {
struct acpi_processor_px *px = &(pr->performance->states[i]);
state.length = sizeof(struct acpi_processor_px);
state.pointer = px;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Extracting state %d\n", i));
status = acpi_extract_package(&(pss->package.elements[i]),
&format, &state);
if (ACPI_FAILURE(status)) {
ACPI_EXCEPTION((AE_INFO, status, "Invalid _PSS data"));
result = -EFAULT;
kfree(pr->performance->states);
goto end;
}
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"State [%d]: core_frequency[%d] power[%d] transition_latency[%d] bus_master_latency[%d] control[0x%x] status[0x%x]\n",
i,
(u32) px->core_frequency,
(u32) px->power,
(u32) px->transition_latency,
(u32) px->bus_master_latency,
(u32) px->control, (u32) px->status));
if (!px->core_frequency) {
printk(KERN_ERR PREFIX
"Invalid _PSS data: freq is zero\n");
result = -EFAULT;
kfree(pr->performance->states);
goto end;
}
}
end:
kfree(buffer.pointer);
return result;
}
static int acpi_processor_get_performance_info(struct acpi_processor *pr)
{
int result = 0;
acpi_status status = AE_OK;
acpi_handle handle = NULL;
if (!pr || !pr->performance || !pr->handle)
return -EINVAL;
status = acpi_get_handle(pr->handle, "_PCT", &handle);
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"ACPI-based processor performance control unavailable\n"));
return -ENODEV;
}
result = acpi_processor_get_performance_control(pr);
if (result)
return result;
result = acpi_processor_get_performance_states(pr);
if (result)
return result;
return 0;
}
int acpi_processor_notify_smm(struct module *calling_module)
{
acpi_status status;
static int is_done = 0;
if (!(acpi_processor_ppc_status & PPC_REGISTERED))
return -EBUSY;
if (!try_module_get(calling_module))
return -EINVAL;
/* is_done is set to negative if an error occured,
* and to postitive if _no_ error occured, but SMM
* was already notified. This avoids double notification
* which might lead to unexpected results...
*/
if (is_done > 0) {
module_put(calling_module);
return 0;
} else if (is_done < 0) {
module_put(calling_module);
return is_done;
}
is_done = -EIO;
/* Can't write pstate_cnt to smi_cmd if either value is zero */
if ((!acpi_fadt.smi_cmd) || (!acpi_fadt.pstate_cnt)) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No SMI port or pstate_cnt\n"));
module_put(calling_module);
return 0;
}
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Writing pstate_cnt [0x%x] to smi_cmd [0x%x]\n",
acpi_fadt.pstate_cnt, acpi_fadt.smi_cmd));
/* FADT v1 doesn't support pstate_cnt, many BIOS vendors use
* it anyway, so we need to support it... */
if (acpi_fadt_is_v1) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Using v1.0 FADT reserved value for pstate_cnt\n"));
}
status = acpi_os_write_port(acpi_fadt.smi_cmd,
(u32) acpi_fadt.pstate_cnt, 8);
if (ACPI_FAILURE(status)) {
ACPI_EXCEPTION((AE_INFO, status,
"Failed to write pstate_cnt [0x%x] to "
"smi_cmd [0x%x]", acpi_fadt.pstate_cnt,
acpi_fadt.smi_cmd));
module_put(calling_module);
return status;
}
/* Success. If there's no _PPC, we need to fear nothing, so
* we can allow the cpufreq driver to be rmmod'ed. */
is_done = 1;
if (!(acpi_processor_ppc_status & PPC_IN_USE))
module_put(calling_module);
return 0;
}
EXPORT_SYMBOL(acpi_processor_notify_smm);
#ifdef CONFIG_X86_ACPI_CPUFREQ_PROC_INTF
/* /proc/acpi/processor/../performance interface (DEPRECATED) */
static int acpi_processor_perf_open_fs(struct inode *inode, struct file *file);
static struct file_operations acpi_processor_perf_fops = {
.open = acpi_processor_perf_open_fs,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int acpi_processor_perf_seq_show(struct seq_file *seq, void *offset)
{
struct acpi_processor *pr = seq->private;
int i;
if (!pr)
goto end;
if (!pr->performance) {
seq_puts(seq, "<not supported>\n");
goto end;
}
seq_printf(seq, "state count: %d\n"
"active state: P%d\n",
pr->performance->state_count, pr->performance->state);
seq_puts(seq, "states:\n");
for (i = 0; i < pr->performance->state_count; i++)
seq_printf(seq,
" %cP%d: %d MHz, %d mW, %d uS\n",
(i == pr->performance->state ? '*' : ' '), i,
(u32) pr->performance->states[i].core_frequency,
(u32) pr->performance->states[i].power,
(u32) pr->performance->states[i].transition_latency);
end:
return 0;
}
static int acpi_processor_perf_open_fs(struct inode *inode, struct file *file)
{
return single_open(file, acpi_processor_perf_seq_show,
PDE(inode)->data);
}
static ssize_t
acpi_processor_write_performance(struct file *file,
const char __user * buffer,
size_t count, loff_t * data)
{
int result = 0;
struct seq_file *m = file->private_data;
struct acpi_processor *pr = m->private;
struct acpi_processor_performance *perf;
char state_string[12] = { '\0' };
unsigned int new_state = 0;
struct cpufreq_policy policy;
if (!pr || (count > sizeof(state_string) - 1))
return -EINVAL;
perf = pr->performance;
if (!perf)
return -EINVAL;
if (copy_from_user(state_string, buffer, count))
return -EFAULT;
state_string[count] = '\0';
new_state = simple_strtoul(state_string, NULL, 0);
if (new_state >= perf->state_count)
return -EINVAL;
cpufreq_get_policy(&policy, pr->id);
policy.cpu = pr->id;
policy.min = perf->states[new_state].core_frequency * 1000;
policy.max = perf->states[new_state].core_frequency * 1000;
result = cpufreq_set_policy(&policy);
if (result)
return result;
return count;
}
static void acpi_cpufreq_add_file(struct acpi_processor *pr)
{
struct proc_dir_entry *entry = NULL;
struct acpi_device *device = NULL;
if (acpi_bus_get_device(pr->handle, &device))
return;
/* add file 'performance' [R/W] */
entry = create_proc_entry(ACPI_PROCESSOR_FILE_PERFORMANCE,
S_IFREG | S_IRUGO | S_IWUSR,
acpi_device_dir(device));
if (entry){
acpi_processor_perf_fops.write = acpi_processor_write_performance;
entry->proc_fops = &acpi_processor_perf_fops;
entry->data = acpi_driver_data(device);
entry->owner = THIS_MODULE;
}
return;
}
static void acpi_cpufreq_remove_file(struct acpi_processor *pr)
{
struct acpi_device *device = NULL;
if (acpi_bus_get_device(pr->handle, &device))
return;
/* remove file 'performance' */
remove_proc_entry(ACPI_PROCESSOR_FILE_PERFORMANCE,
acpi_device_dir(device));
return;
}
#else
static void acpi_cpufreq_add_file(struct acpi_processor *pr)
{
return;
}
static void acpi_cpufreq_remove_file(struct acpi_processor *pr)
{
return;
}
#endif /* CONFIG_X86_ACPI_CPUFREQ_PROC_INTF */
static int acpi_processor_get_psd(struct acpi_processor *pr)
{
int result = 0;
acpi_status status = AE_OK;
struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
struct acpi_buffer state = {0, NULL};
union acpi_object *psd = NULL;
struct acpi_psd_package *pdomain;
status = acpi_evaluate_object(pr->handle, "_PSD", NULL, &buffer);
if (ACPI_FAILURE(status)) {
return -ENODEV;
}
psd = buffer.pointer;
if (!psd || (psd->type != ACPI_TYPE_PACKAGE)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSD data\n"));
result = -EFAULT;
goto end;
}
if (psd->package.count != 1) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSD data\n"));
result = -EFAULT;
goto end;
}
pdomain = &(pr->performance->domain_info);
state.length = sizeof(struct acpi_psd_package);
state.pointer = pdomain;
status = acpi_extract_package(&(psd->package.elements[0]),
&format, &state);
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSD data\n"));
result = -EFAULT;
goto end;
}
if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unknown _PSD:num_entries\n"));
result = -EFAULT;
goto end;
}
if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unknown _PSD:revision\n"));
result = -EFAULT;
goto end;
}
end:
kfree(buffer.pointer);
return result;
}
int acpi_processor_preregister_performance(
struct acpi_processor_performance **performance)
{
int count, count_target;
int retval = 0;
unsigned int i, j;
cpumask_t covered_cpus;
struct acpi_processor *pr;
struct acpi_psd_package *pdomain;
struct acpi_processor *match_pr;
struct acpi_psd_package *match_pdomain;
mutex_lock(&performance_mutex);
retval = 0;
/* Call _PSD for all CPUs */
for_each_possible_cpu(i) {
pr = processors[i];
if (!pr) {
/* Look only at processors in ACPI namespace */
continue;
}
if (pr->performance) {
retval = -EBUSY;
continue;
}
if (!performance || !performance[i]) {
retval = -EINVAL;
continue;
}
pr->performance = performance[i];
cpu_set(i, pr->performance->shared_cpu_map);
if (acpi_processor_get_psd(pr)) {
retval = -EINVAL;
continue;
}
}
if (retval)
goto err_ret;
/*
* Now that we have _PSD data from all CPUs, lets setup P-state
* domain info.
*/
for_each_possible_cpu(i) {
pr = processors[i];
if (!pr)
continue;
/* Basic validity check for domain info */
pdomain = &(pr->performance->domain_info);
if ((pdomain->revision != ACPI_PSD_REV0_REVISION) ||
(pdomain->num_entries != ACPI_PSD_REV0_ENTRIES)) {
retval = -EINVAL;
goto err_ret;
}
if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
retval = -EINVAL;
goto err_ret;
}
}
cpus_clear(covered_cpus);
for_each_possible_cpu(i) {
pr = processors[i];
if (!pr)
continue;
if (cpu_isset(i, covered_cpus))
continue;
pdomain = &(pr->performance->domain_info);
cpu_set(i, pr->performance->shared_cpu_map);
cpu_set(i, covered_cpus);
if (pdomain->num_processors <= 1)
continue;
/* Validate the Domain info */
count_target = pdomain->num_processors;
count = 1;
if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ALL;
else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
pr->performance->shared_type = CPUFREQ_SHARED_TYPE_HW;
else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ANY;
for_each_possible_cpu(j) {
if (i == j)
continue;
match_pr = processors[j];
if (!match_pr)
continue;
match_pdomain = &(match_pr->performance->domain_info);
if (match_pdomain->domain != pdomain->domain)
continue;
/* Here i and j are in the same domain */
if (match_pdomain->num_processors != count_target) {
retval = -EINVAL;
goto err_ret;
}
if (pdomain->coord_type != match_pdomain->coord_type) {
retval = -EINVAL;
goto err_ret;
}
cpu_set(j, covered_cpus);
cpu_set(j, pr->performance->shared_cpu_map);
count++;
}
for_each_possible_cpu(j) {
if (i == j)
continue;
match_pr = processors[j];
if (!match_pr)
continue;
match_pdomain = &(match_pr->performance->domain_info);
if (match_pdomain->domain != pdomain->domain)
continue;
match_pr->performance->shared_type =
pr->performance->shared_type;
match_pr->performance->shared_cpu_map =
pr->performance->shared_cpu_map;
}
}
err_ret:
for_each_possible_cpu(i) {
pr = processors[i];
if (!pr || !pr->performance)
continue;
/* Assume no coordination on any error parsing domain info */
if (retval) {
cpus_clear(pr->performance->shared_cpu_map);
cpu_set(i, pr->performance->shared_cpu_map);
pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ALL;
}
pr->performance = NULL; /* Will be set for real in register */
}
mutex_unlock(&performance_mutex);
return retval;
}
EXPORT_SYMBOL(acpi_processor_preregister_performance);
int
acpi_processor_register_performance(struct acpi_processor_performance
*performance, unsigned int cpu)
{
struct acpi_processor *pr;
if (!(acpi_processor_ppc_status & PPC_REGISTERED))
return -EINVAL;
mutex_lock(&performance_mutex);
pr = processors[cpu];
if (!pr) {
mutex_unlock(&performance_mutex);
return -ENODEV;
}
if (pr->performance) {
mutex_unlock(&performance_mutex);
return -EBUSY;
}
WARN_ON(!performance);
pr->performance = performance;
if (acpi_processor_get_performance_info(pr)) {
pr->performance = NULL;
mutex_unlock(&performance_mutex);
return -EIO;
}
acpi_cpufreq_add_file(pr);
mutex_unlock(&performance_mutex);
return 0;
}
EXPORT_SYMBOL(acpi_processor_register_performance);
void
acpi_processor_unregister_performance(struct acpi_processor_performance
*performance, unsigned int cpu)
{
struct acpi_processor *pr;
mutex_lock(&performance_mutex);
pr = processors[cpu];
if (!pr) {
mutex_unlock(&performance_mutex);
return;
}
if (pr->performance)
kfree(pr->performance->states);
pr->performance = NULL;
acpi_cpufreq_remove_file(pr);
mutex_unlock(&performance_mutex);
return;
}
EXPORT_SYMBOL(acpi_processor_unregister_performance);