linux/net/mac80211/scan.c
Ben Greear 8a690674e0 mac80211: Support on-channel scan option.
This based on an idea posted by Stanislaw Gruszka,
though I accept full blame for the implementation!

This has been tested with ath9k.

The idea is to let users scan on the current operating
channel without interrupting normal traffic more than
absolutely necessary (changing power level might reset
some hardware, for instance).

Signed-off-by: Ben Greear <greearb@candelatech.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2012-04-23 15:28:33 -04:00

1030 lines
26 KiB
C

/*
* Scanning implementation
*
* Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
* Copyright 2004, Instant802 Networks, Inc.
* Copyright 2005, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007, Michael Wu <flamingice@sourmilk.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/if_arp.h>
#include <linux/etherdevice.h>
#include <linux/rtnetlink.h>
#include <linux/pm_qos.h>
#include <net/sch_generic.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <net/mac80211.h>
#include "ieee80211_i.h"
#include "driver-ops.h"
#include "mesh.h"
#define IEEE80211_PROBE_DELAY (HZ / 33)
#define IEEE80211_CHANNEL_TIME (HZ / 33)
#define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 8)
static void ieee80211_rx_bss_free(struct cfg80211_bss *cbss)
{
struct ieee80211_bss *bss = (void *)cbss->priv;
kfree(bss_mesh_id(bss));
kfree(bss_mesh_cfg(bss));
}
void ieee80211_rx_bss_put(struct ieee80211_local *local,
struct ieee80211_bss *bss)
{
if (!bss)
return;
cfg80211_put_bss(container_of((void *)bss, struct cfg80211_bss, priv));
}
static bool is_uapsd_supported(struct ieee802_11_elems *elems)
{
u8 qos_info;
if (elems->wmm_info && elems->wmm_info_len == 7
&& elems->wmm_info[5] == 1)
qos_info = elems->wmm_info[6];
else if (elems->wmm_param && elems->wmm_param_len == 24
&& elems->wmm_param[5] == 1)
qos_info = elems->wmm_param[6];
else
/* no valid wmm information or parameter element found */
return false;
return qos_info & IEEE80211_WMM_IE_AP_QOSINFO_UAPSD;
}
struct ieee80211_bss *
ieee80211_bss_info_update(struct ieee80211_local *local,
struct ieee80211_rx_status *rx_status,
struct ieee80211_mgmt *mgmt,
size_t len,
struct ieee802_11_elems *elems,
struct ieee80211_channel *channel,
bool beacon)
{
struct cfg80211_bss *cbss;
struct ieee80211_bss *bss;
int clen, srlen;
s32 signal = 0;
if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
signal = rx_status->signal * 100;
else if (local->hw.flags & IEEE80211_HW_SIGNAL_UNSPEC)
signal = (rx_status->signal * 100) / local->hw.max_signal;
cbss = cfg80211_inform_bss_frame(local->hw.wiphy, channel,
mgmt, len, signal, GFP_ATOMIC);
if (!cbss)
return NULL;
cbss->free_priv = ieee80211_rx_bss_free;
bss = (void *)cbss->priv;
if (elems->parse_error) {
if (beacon)
bss->corrupt_data |= IEEE80211_BSS_CORRUPT_BEACON;
else
bss->corrupt_data |= IEEE80211_BSS_CORRUPT_PROBE_RESP;
} else {
if (beacon)
bss->corrupt_data &= ~IEEE80211_BSS_CORRUPT_BEACON;
else
bss->corrupt_data &= ~IEEE80211_BSS_CORRUPT_PROBE_RESP;
}
/* save the ERP value so that it is available at association time */
if (elems->erp_info && elems->erp_info_len >= 1 &&
(!elems->parse_error ||
!(bss->valid_data & IEEE80211_BSS_VALID_ERP))) {
bss->erp_value = elems->erp_info[0];
bss->has_erp_value = true;
if (!elems->parse_error)
bss->valid_data |= IEEE80211_BSS_VALID_ERP;
}
if (elems->tim && (!elems->parse_error ||
!(bss->valid_data & IEEE80211_BSS_VALID_DTIM))) {
struct ieee80211_tim_ie *tim_ie =
(struct ieee80211_tim_ie *)elems->tim;
bss->dtim_period = tim_ie->dtim_period;
if (!elems->parse_error)
bss->valid_data |= IEEE80211_BSS_VALID_DTIM;
}
/* If the beacon had no TIM IE, or it was invalid, use 1 */
if (beacon && !bss->dtim_period)
bss->dtim_period = 1;
/* replace old supported rates if we get new values */
if (!elems->parse_error ||
!(bss->valid_data & IEEE80211_BSS_VALID_RATES)) {
srlen = 0;
if (elems->supp_rates) {
clen = IEEE80211_MAX_SUPP_RATES;
if (clen > elems->supp_rates_len)
clen = elems->supp_rates_len;
memcpy(bss->supp_rates, elems->supp_rates, clen);
srlen += clen;
}
if (elems->ext_supp_rates) {
clen = IEEE80211_MAX_SUPP_RATES - srlen;
if (clen > elems->ext_supp_rates_len)
clen = elems->ext_supp_rates_len;
memcpy(bss->supp_rates + srlen, elems->ext_supp_rates,
clen);
srlen += clen;
}
if (srlen) {
bss->supp_rates_len = srlen;
if (!elems->parse_error)
bss->valid_data |= IEEE80211_BSS_VALID_RATES;
}
}
if (!elems->parse_error ||
!(bss->valid_data & IEEE80211_BSS_VALID_WMM)) {
bss->wmm_used = elems->wmm_param || elems->wmm_info;
bss->uapsd_supported = is_uapsd_supported(elems);
if (!elems->parse_error)
bss->valid_data |= IEEE80211_BSS_VALID_WMM;
}
if (!beacon)
bss->last_probe_resp = jiffies;
return bss;
}
ieee80211_rx_result
ieee80211_scan_rx(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb)
{
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_mgmt *mgmt;
struct ieee80211_bss *bss;
u8 *elements;
struct ieee80211_channel *channel;
size_t baselen;
int freq;
__le16 fc;
bool presp, beacon = false;
struct ieee802_11_elems elems;
if (skb->len < 2)
return RX_DROP_UNUSABLE;
mgmt = (struct ieee80211_mgmt *) skb->data;
fc = mgmt->frame_control;
if (ieee80211_is_ctl(fc))
return RX_CONTINUE;
if (skb->len < 24)
return RX_CONTINUE;
presp = ieee80211_is_probe_resp(fc);
if (presp) {
/* ignore ProbeResp to foreign address */
if (compare_ether_addr(mgmt->da, sdata->vif.addr))
return RX_DROP_MONITOR;
presp = true;
elements = mgmt->u.probe_resp.variable;
baselen = offsetof(struct ieee80211_mgmt, u.probe_resp.variable);
} else {
beacon = ieee80211_is_beacon(fc);
baselen = offsetof(struct ieee80211_mgmt, u.beacon.variable);
elements = mgmt->u.beacon.variable;
}
if (!presp && !beacon)
return RX_CONTINUE;
if (baselen > skb->len)
return RX_DROP_MONITOR;
ieee802_11_parse_elems(elements, skb->len - baselen, &elems);
if (elems.ds_params && elems.ds_params_len == 1)
freq = ieee80211_channel_to_frequency(elems.ds_params[0],
rx_status->band);
else
freq = rx_status->freq;
channel = ieee80211_get_channel(sdata->local->hw.wiphy, freq);
if (!channel || channel->flags & IEEE80211_CHAN_DISABLED)
return RX_DROP_MONITOR;
bss = ieee80211_bss_info_update(sdata->local, rx_status,
mgmt, skb->len, &elems,
channel, beacon);
if (bss)
ieee80211_rx_bss_put(sdata->local, bss);
if (channel == sdata->local->oper_channel)
return RX_CONTINUE;
dev_kfree_skb(skb);
return RX_QUEUED;
}
/* return false if no more work */
static bool ieee80211_prep_hw_scan(struct ieee80211_local *local)
{
struct cfg80211_scan_request *req = local->scan_req;
enum ieee80211_band band;
int i, ielen, n_chans;
do {
if (local->hw_scan_band == IEEE80211_NUM_BANDS)
return false;
band = local->hw_scan_band;
n_chans = 0;
for (i = 0; i < req->n_channels; i++) {
if (req->channels[i]->band == band) {
local->hw_scan_req->channels[n_chans] =
req->channels[i];
n_chans++;
}
}
local->hw_scan_band++;
} while (!n_chans);
local->hw_scan_req->n_channels = n_chans;
ielen = ieee80211_build_preq_ies(local, (u8 *)local->hw_scan_req->ie,
req->ie, req->ie_len, band,
req->rates[band], 0);
local->hw_scan_req->ie_len = ielen;
local->hw_scan_req->no_cck = req->no_cck;
return true;
}
static void __ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted,
bool was_hw_scan)
{
struct ieee80211_local *local = hw_to_local(hw);
lockdep_assert_held(&local->mtx);
/*
* It's ok to abort a not-yet-running scan (that
* we have one at all will be verified by checking
* local->scan_req next), but not to complete it
* successfully.
*/
if (WARN_ON(!local->scanning && !aborted))
aborted = true;
if (WARN_ON(!local->scan_req))
return;
if (was_hw_scan && !aborted && ieee80211_prep_hw_scan(local)) {
int rc = drv_hw_scan(local, local->scan_sdata, local->hw_scan_req);
if (rc == 0)
return;
}
kfree(local->hw_scan_req);
local->hw_scan_req = NULL;
if (local->scan_req != local->int_scan_req)
cfg80211_scan_done(local->scan_req, aborted);
local->scan_req = NULL;
local->scan_sdata = NULL;
local->scanning = 0;
local->scan_channel = NULL;
/* Set power back to normal operating levels. */
ieee80211_hw_config(local, 0);
if (!was_hw_scan) {
ieee80211_configure_filter(local);
drv_sw_scan_complete(local);
ieee80211_offchannel_return(local, true);
}
ieee80211_recalc_idle(local);
ieee80211_mlme_notify_scan_completed(local);
ieee80211_ibss_notify_scan_completed(local);
ieee80211_mesh_notify_scan_completed(local);
ieee80211_queue_work(&local->hw, &local->work_work);
}
void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted)
{
struct ieee80211_local *local = hw_to_local(hw);
trace_api_scan_completed(local, aborted);
set_bit(SCAN_COMPLETED, &local->scanning);
if (aborted)
set_bit(SCAN_ABORTED, &local->scanning);
ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0);
}
EXPORT_SYMBOL(ieee80211_scan_completed);
static int ieee80211_start_sw_scan(struct ieee80211_local *local)
{
/*
* Hardware/driver doesn't support hw_scan, so use software
* scanning instead. First send a nullfunc frame with power save
* bit on so that AP will buffer the frames for us while we are not
* listening, then send probe requests to each channel and wait for
* the responses. After all channels are scanned, tune back to the
* original channel and send a nullfunc frame with power save bit
* off to trigger the AP to send us all the buffered frames.
*
* Note that while local->sw_scanning is true everything else but
* nullfunc frames and probe requests will be dropped in
* ieee80211_tx_h_check_assoc().
*/
drv_sw_scan_start(local);
local->leave_oper_channel_time = jiffies;
local->next_scan_state = SCAN_DECISION;
local->scan_channel_idx = 0;
ieee80211_offchannel_stop_vifs(local, true);
ieee80211_configure_filter(local);
/* We need to set power level at maximum rate for scanning. */
ieee80211_hw_config(local, 0);
ieee80211_queue_delayed_work(&local->hw,
&local->scan_work, 0);
return 0;
}
static bool ieee80211_can_scan(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata)
{
if (!list_empty(&local->work_list))
return false;
if (sdata->vif.type == NL80211_IFTYPE_STATION &&
sdata->u.mgd.flags & (IEEE80211_STA_BEACON_POLL |
IEEE80211_STA_CONNECTION_POLL))
return false;
return true;
}
void ieee80211_run_deferred_scan(struct ieee80211_local *local)
{
lockdep_assert_held(&local->mtx);
if (!local->scan_req || local->scanning)
return;
if (!ieee80211_can_scan(local, local->scan_sdata))
return;
ieee80211_queue_delayed_work(&local->hw, &local->scan_work,
round_jiffies_relative(0));
}
static void ieee80211_scan_state_send_probe(struct ieee80211_local *local,
unsigned long *next_delay)
{
int i;
struct ieee80211_sub_if_data *sdata = local->scan_sdata;
enum ieee80211_band band = local->hw.conf.channel->band;
for (i = 0; i < local->scan_req->n_ssids; i++)
ieee80211_send_probe_req(
sdata, NULL,
local->scan_req->ssids[i].ssid,
local->scan_req->ssids[i].ssid_len,
local->scan_req->ie, local->scan_req->ie_len,
local->scan_req->rates[band], false,
local->scan_req->no_cck);
/*
* After sending probe requests, wait for probe responses
* on the channel.
*/
*next_delay = IEEE80211_CHANNEL_TIME;
local->next_scan_state = SCAN_DECISION;
}
static int __ieee80211_start_scan(struct ieee80211_sub_if_data *sdata,
struct cfg80211_scan_request *req)
{
struct ieee80211_local *local = sdata->local;
int rc;
lockdep_assert_held(&local->mtx);
if (local->scan_req)
return -EBUSY;
if (!ieee80211_can_scan(local, sdata)) {
/* wait for the work to finish/time out */
local->scan_req = req;
local->scan_sdata = sdata;
return 0;
}
if (local->ops->hw_scan) {
u8 *ies;
local->hw_scan_req = kmalloc(
sizeof(*local->hw_scan_req) +
req->n_channels * sizeof(req->channels[0]) +
2 + IEEE80211_MAX_SSID_LEN + local->scan_ies_len +
req->ie_len, GFP_KERNEL);
if (!local->hw_scan_req)
return -ENOMEM;
local->hw_scan_req->ssids = req->ssids;
local->hw_scan_req->n_ssids = req->n_ssids;
ies = (u8 *)local->hw_scan_req +
sizeof(*local->hw_scan_req) +
req->n_channels * sizeof(req->channels[0]);
local->hw_scan_req->ie = ies;
local->hw_scan_band = 0;
/*
* After allocating local->hw_scan_req, we must
* go through until ieee80211_prep_hw_scan(), so
* anything that might be changed here and leave
* this function early must not go after this
* allocation.
*/
}
local->scan_req = req;
local->scan_sdata = sdata;
if (local->ops->hw_scan) {
__set_bit(SCAN_HW_SCANNING, &local->scanning);
} else if ((req->n_channels == 1) &&
(req->channels[0]->center_freq ==
local->hw.conf.channel->center_freq)) {
/* If we are scanning only on the current channel, then
* we do not need to stop normal activities
*/
unsigned long next_delay;
__set_bit(SCAN_ONCHANNEL_SCANNING, &local->scanning);
ieee80211_recalc_idle(local);
/* Notify driver scan is starting, keep order of operations
* same as normal software scan, in case that matters. */
drv_sw_scan_start(local);
ieee80211_configure_filter(local); /* accept probe-responses */
/* We need to ensure power level is at max for scanning. */
ieee80211_hw_config(local, 0);
if ((req->channels[0]->flags &
IEEE80211_CHAN_PASSIVE_SCAN) ||
!local->scan_req->n_ssids) {
next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
} else {
ieee80211_scan_state_send_probe(local, &next_delay);
next_delay = IEEE80211_CHANNEL_TIME;
}
/* Now, just wait a bit and we are all done! */
ieee80211_queue_delayed_work(&local->hw, &local->scan_work,
next_delay);
return 0;
} else {
/* Do normal software scan */
__set_bit(SCAN_SW_SCANNING, &local->scanning);
}
ieee80211_recalc_idle(local);
if (local->ops->hw_scan) {
WARN_ON(!ieee80211_prep_hw_scan(local));
rc = drv_hw_scan(local, sdata, local->hw_scan_req);
} else
rc = ieee80211_start_sw_scan(local);
if (rc) {
kfree(local->hw_scan_req);
local->hw_scan_req = NULL;
local->scanning = 0;
ieee80211_recalc_idle(local);
local->scan_req = NULL;
local->scan_sdata = NULL;
}
return rc;
}
static unsigned long
ieee80211_scan_get_channel_time(struct ieee80211_channel *chan)
{
/*
* TODO: channel switching also consumes quite some time,
* add that delay as well to get a better estimation
*/
if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN)
return IEEE80211_PASSIVE_CHANNEL_TIME;
return IEEE80211_PROBE_DELAY + IEEE80211_CHANNEL_TIME;
}
static void ieee80211_scan_state_decision(struct ieee80211_local *local,
unsigned long *next_delay)
{
bool associated = false;
bool tx_empty = true;
bool bad_latency;
bool listen_int_exceeded;
unsigned long min_beacon_int = 0;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_channel *next_chan;
/*
* check if at least one STA interface is associated,
* check if at least one STA interface has pending tx frames
* and grab the lowest used beacon interval
*/
mutex_lock(&local->iflist_mtx);
list_for_each_entry(sdata, &local->interfaces, list) {
if (!ieee80211_sdata_running(sdata))
continue;
if (sdata->vif.type == NL80211_IFTYPE_STATION) {
if (sdata->u.mgd.associated) {
associated = true;
if (sdata->vif.bss_conf.beacon_int <
min_beacon_int || min_beacon_int == 0)
min_beacon_int =
sdata->vif.bss_conf.beacon_int;
if (!qdisc_all_tx_empty(sdata->dev)) {
tx_empty = false;
break;
}
}
}
}
mutex_unlock(&local->iflist_mtx);
next_chan = local->scan_req->channels[local->scan_channel_idx];
/*
* we're currently scanning a different channel, let's
* see if we can scan another channel without interfering
* with the current traffic situation.
*
* Since we don't know if the AP has pending frames for us
* we can only check for our tx queues and use the current
* pm_qos requirements for rx. Hence, if no tx traffic occurs
* at all we will scan as many channels in a row as the pm_qos
* latency allows us to. Additionally we also check for the
* currently negotiated listen interval to prevent losing
* frames unnecessarily.
*
* Otherwise switch back to the operating channel.
*/
bad_latency = time_after(jiffies +
ieee80211_scan_get_channel_time(next_chan),
local->leave_oper_channel_time +
usecs_to_jiffies(pm_qos_request(PM_QOS_NETWORK_LATENCY)));
listen_int_exceeded = time_after(jiffies +
ieee80211_scan_get_channel_time(next_chan),
local->leave_oper_channel_time +
usecs_to_jiffies(min_beacon_int * 1024) *
local->hw.conf.listen_interval);
if (associated && (!tx_empty || bad_latency || listen_int_exceeded))
local->next_scan_state = SCAN_SUSPEND;
else
local->next_scan_state = SCAN_SET_CHANNEL;
*next_delay = 0;
}
static void ieee80211_scan_state_set_channel(struct ieee80211_local *local,
unsigned long *next_delay)
{
int skip;
struct ieee80211_channel *chan;
skip = 0;
chan = local->scan_req->channels[local->scan_channel_idx];
local->scan_channel = chan;
if (ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_CHANNEL))
skip = 1;
/* advance state machine to next channel/band */
local->scan_channel_idx++;
if (skip) {
/* if we skip this channel return to the decision state */
local->next_scan_state = SCAN_DECISION;
return;
}
/*
* Probe delay is used to update the NAV, cf. 11.1.3.2.2
* (which unfortunately doesn't say _why_ step a) is done,
* but it waits for the probe delay or until a frame is
* received - and the received frame would update the NAV).
* For now, we do not support waiting until a frame is
* received.
*
* In any case, it is not necessary for a passive scan.
*/
if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN ||
!local->scan_req->n_ssids) {
*next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
local->next_scan_state = SCAN_DECISION;
return;
}
/* active scan, send probes */
*next_delay = IEEE80211_PROBE_DELAY;
local->next_scan_state = SCAN_SEND_PROBE;
}
static void ieee80211_scan_state_suspend(struct ieee80211_local *local,
unsigned long *next_delay)
{
/* switch back to the operating channel */
local->scan_channel = NULL;
ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_CHANNEL);
/*
* Re-enable vifs and beaconing. Leave PS
* in off-channel state..will put that back
* on-channel at the end of scanning.
*/
ieee80211_offchannel_return(local, false);
*next_delay = HZ / 5;
/* afterwards, resume scan & go to next channel */
local->next_scan_state = SCAN_RESUME;
}
static void ieee80211_scan_state_resume(struct ieee80211_local *local,
unsigned long *next_delay)
{
/* PS already is in off-channel mode */
ieee80211_offchannel_stop_vifs(local, false);
if (local->ops->flush) {
drv_flush(local, false);
*next_delay = 0;
} else
*next_delay = HZ / 10;
/* remember when we left the operating channel */
local->leave_oper_channel_time = jiffies;
/* advance to the next channel to be scanned */
local->next_scan_state = SCAN_SET_CHANNEL;
}
void ieee80211_scan_work(struct work_struct *work)
{
struct ieee80211_local *local =
container_of(work, struct ieee80211_local, scan_work.work);
struct ieee80211_sub_if_data *sdata;
unsigned long next_delay = 0;
bool aborted, hw_scan;
mutex_lock(&local->mtx);
sdata = local->scan_sdata;
/* When scanning on-channel, the first-callback means completed. */
if (test_bit(SCAN_ONCHANNEL_SCANNING, &local->scanning)) {
aborted = test_and_clear_bit(SCAN_ABORTED, &local->scanning);
goto out_complete;
}
if (test_and_clear_bit(SCAN_COMPLETED, &local->scanning)) {
aborted = test_and_clear_bit(SCAN_ABORTED, &local->scanning);
goto out_complete;
}
if (!sdata || !local->scan_req)
goto out;
if (local->scan_req && !local->scanning) {
struct cfg80211_scan_request *req = local->scan_req;
int rc;
local->scan_req = NULL;
local->scan_sdata = NULL;
rc = __ieee80211_start_scan(sdata, req);
if (rc) {
/* need to complete scan in cfg80211 */
local->scan_req = req;
aborted = true;
goto out_complete;
} else
goto out;
}
/*
* Avoid re-scheduling when the sdata is going away.
*/
if (!ieee80211_sdata_running(sdata)) {
aborted = true;
goto out_complete;
}
/*
* as long as no delay is required advance immediately
* without scheduling a new work
*/
do {
if (!ieee80211_sdata_running(sdata)) {
aborted = true;
goto out_complete;
}
switch (local->next_scan_state) {
case SCAN_DECISION:
/* if no more bands/channels left, complete scan */
if (local->scan_channel_idx >= local->scan_req->n_channels) {
aborted = false;
goto out_complete;
}
ieee80211_scan_state_decision(local, &next_delay);
break;
case SCAN_SET_CHANNEL:
ieee80211_scan_state_set_channel(local, &next_delay);
break;
case SCAN_SEND_PROBE:
ieee80211_scan_state_send_probe(local, &next_delay);
break;
case SCAN_SUSPEND:
ieee80211_scan_state_suspend(local, &next_delay);
break;
case SCAN_RESUME:
ieee80211_scan_state_resume(local, &next_delay);
break;
}
} while (next_delay == 0);
ieee80211_queue_delayed_work(&local->hw, &local->scan_work, next_delay);
goto out;
out_complete:
hw_scan = test_bit(SCAN_HW_SCANNING, &local->scanning);
__ieee80211_scan_completed(&local->hw, aborted, hw_scan);
out:
mutex_unlock(&local->mtx);
}
int ieee80211_request_scan(struct ieee80211_sub_if_data *sdata,
struct cfg80211_scan_request *req)
{
int res;
mutex_lock(&sdata->local->mtx);
res = __ieee80211_start_scan(sdata, req);
mutex_unlock(&sdata->local->mtx);
return res;
}
int ieee80211_request_internal_scan(struct ieee80211_sub_if_data *sdata,
const u8 *ssid, u8 ssid_len,
struct ieee80211_channel *chan)
{
struct ieee80211_local *local = sdata->local;
int ret = -EBUSY;
enum ieee80211_band band;
mutex_lock(&local->mtx);
/* busy scanning */
if (local->scan_req)
goto unlock;
/* fill internal scan request */
if (!chan) {
int i, nchan = 0;
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
if (!local->hw.wiphy->bands[band])
continue;
for (i = 0;
i < local->hw.wiphy->bands[band]->n_channels;
i++) {
local->int_scan_req->channels[nchan] =
&local->hw.wiphy->bands[band]->channels[i];
nchan++;
}
}
local->int_scan_req->n_channels = nchan;
} else {
local->int_scan_req->channels[0] = chan;
local->int_scan_req->n_channels = 1;
}
local->int_scan_req->ssids = &local->scan_ssid;
local->int_scan_req->n_ssids = 1;
memcpy(local->int_scan_req->ssids[0].ssid, ssid, IEEE80211_MAX_SSID_LEN);
local->int_scan_req->ssids[0].ssid_len = ssid_len;
ret = __ieee80211_start_scan(sdata, sdata->local->int_scan_req);
unlock:
mutex_unlock(&local->mtx);
return ret;
}
/*
* Only call this function when a scan can't be queued -- under RTNL.
*/
void ieee80211_scan_cancel(struct ieee80211_local *local)
{
/*
* We are canceling software scan, or deferred scan that was not
* yet really started (see __ieee80211_start_scan ).
*
* Regarding hardware scan:
* - we can not call __ieee80211_scan_completed() as when
* SCAN_HW_SCANNING bit is set this function change
* local->hw_scan_req to operate on 5G band, what race with
* driver which can use local->hw_scan_req
*
* - we can not cancel scan_work since driver can schedule it
* by ieee80211_scan_completed(..., true) to finish scan
*
* Hence we only call the cancel_hw_scan() callback, but the low-level
* driver is still responsible for calling ieee80211_scan_completed()
* after the scan was completed/aborted.
*/
mutex_lock(&local->mtx);
if (!local->scan_req)
goto out;
if (test_bit(SCAN_HW_SCANNING, &local->scanning)) {
if (local->ops->cancel_hw_scan)
drv_cancel_hw_scan(local, local->scan_sdata);
goto out;
}
/*
* If the work is currently running, it must be blocked on
* the mutex, but we'll set scan_sdata = NULL and it'll
* simply exit once it acquires the mutex.
*/
cancel_delayed_work(&local->scan_work);
/* and clean up */
__ieee80211_scan_completed(&local->hw, true, false);
out:
mutex_unlock(&local->mtx);
}
int ieee80211_request_sched_scan_start(struct ieee80211_sub_if_data *sdata,
struct cfg80211_sched_scan_request *req)
{
struct ieee80211_local *local = sdata->local;
int ret, i;
mutex_lock(&sdata->local->mtx);
if (local->sched_scanning) {
ret = -EBUSY;
goto out;
}
if (!local->ops->sched_scan_start) {
ret = -ENOTSUPP;
goto out;
}
for (i = 0; i < IEEE80211_NUM_BANDS; i++) {
local->sched_scan_ies.ie[i] = kzalloc(2 +
IEEE80211_MAX_SSID_LEN +
local->scan_ies_len +
req->ie_len,
GFP_KERNEL);
if (!local->sched_scan_ies.ie[i]) {
ret = -ENOMEM;
goto out_free;
}
local->sched_scan_ies.len[i] =
ieee80211_build_preq_ies(local,
local->sched_scan_ies.ie[i],
req->ie, req->ie_len, i,
(u32) -1, 0);
}
ret = drv_sched_scan_start(local, sdata, req,
&local->sched_scan_ies);
if (ret == 0) {
local->sched_scanning = true;
goto out;
}
out_free:
while (i > 0)
kfree(local->sched_scan_ies.ie[--i]);
out:
mutex_unlock(&sdata->local->mtx);
return ret;
}
int ieee80211_request_sched_scan_stop(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
int ret = 0, i;
mutex_lock(&sdata->local->mtx);
if (!local->ops->sched_scan_stop) {
ret = -ENOTSUPP;
goto out;
}
if (local->sched_scanning) {
for (i = 0; i < IEEE80211_NUM_BANDS; i++)
kfree(local->sched_scan_ies.ie[i]);
drv_sched_scan_stop(local, sdata);
local->sched_scanning = false;
}
out:
mutex_unlock(&sdata->local->mtx);
return ret;
}
void ieee80211_sched_scan_results(struct ieee80211_hw *hw)
{
struct ieee80211_local *local = hw_to_local(hw);
trace_api_sched_scan_results(local);
cfg80211_sched_scan_results(hw->wiphy);
}
EXPORT_SYMBOL(ieee80211_sched_scan_results);
void ieee80211_sched_scan_stopped_work(struct work_struct *work)
{
struct ieee80211_local *local =
container_of(work, struct ieee80211_local,
sched_scan_stopped_work);
int i;
mutex_lock(&local->mtx);
if (!local->sched_scanning) {
mutex_unlock(&local->mtx);
return;
}
for (i = 0; i < IEEE80211_NUM_BANDS; i++)
kfree(local->sched_scan_ies.ie[i]);
local->sched_scanning = false;
mutex_unlock(&local->mtx);
cfg80211_sched_scan_stopped(local->hw.wiphy);
}
void ieee80211_sched_scan_stopped(struct ieee80211_hw *hw)
{
struct ieee80211_local *local = hw_to_local(hw);
trace_api_sched_scan_stopped(local);
ieee80211_queue_work(&local->hw, &local->sched_scan_stopped_work);
}
EXPORT_SYMBOL(ieee80211_sched_scan_stopped);