976b1908d9
Before this patch we called find_all_leafs for a data extent, then called find_all_roots and then looked into the extent to grab the information we were seeking. This was done without holding the leaves locked to avoid deadlocks. However, this can obviouly race with concurrent tree modifications. Instead, we now look into the extent while we're holding the lock during find_all_leafs and store this information together with the leaf list. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
1600 lines
41 KiB
C
1600 lines
41 KiB
C
/*
|
|
* Copyright (C) 2011 STRATO. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "backref.h"
|
|
#include "ulist.h"
|
|
#include "transaction.h"
|
|
#include "delayed-ref.h"
|
|
#include "locking.h"
|
|
|
|
struct extent_inode_elem {
|
|
u64 inum;
|
|
u64 offset;
|
|
struct extent_inode_elem *next;
|
|
};
|
|
|
|
static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
|
|
struct btrfs_file_extent_item *fi,
|
|
u64 extent_item_pos,
|
|
struct extent_inode_elem **eie)
|
|
{
|
|
u64 data_offset;
|
|
u64 data_len;
|
|
struct extent_inode_elem *e;
|
|
|
|
data_offset = btrfs_file_extent_offset(eb, fi);
|
|
data_len = btrfs_file_extent_num_bytes(eb, fi);
|
|
|
|
if (extent_item_pos < data_offset ||
|
|
extent_item_pos >= data_offset + data_len)
|
|
return 1;
|
|
|
|
e = kmalloc(sizeof(*e), GFP_NOFS);
|
|
if (!e)
|
|
return -ENOMEM;
|
|
|
|
e->next = *eie;
|
|
e->inum = key->objectid;
|
|
e->offset = key->offset + (extent_item_pos - data_offset);
|
|
*eie = e;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
|
|
u64 extent_item_pos,
|
|
struct extent_inode_elem **eie)
|
|
{
|
|
u64 disk_byte;
|
|
struct btrfs_key key;
|
|
struct btrfs_file_extent_item *fi;
|
|
int slot;
|
|
int nritems;
|
|
int extent_type;
|
|
int ret;
|
|
|
|
/*
|
|
* from the shared data ref, we only have the leaf but we need
|
|
* the key. thus, we must look into all items and see that we
|
|
* find one (some) with a reference to our extent item.
|
|
*/
|
|
nritems = btrfs_header_nritems(eb);
|
|
for (slot = 0; slot < nritems; ++slot) {
|
|
btrfs_item_key_to_cpu(eb, &key, slot);
|
|
if (key.type != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
|
|
extent_type = btrfs_file_extent_type(eb, fi);
|
|
if (extent_type == BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
|
|
disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
|
|
if (disk_byte != wanted_disk_byte)
|
|
continue;
|
|
|
|
ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this structure records all encountered refs on the way up to the root
|
|
*/
|
|
struct __prelim_ref {
|
|
struct list_head list;
|
|
u64 root_id;
|
|
struct btrfs_key key_for_search;
|
|
int level;
|
|
int count;
|
|
u64 parent;
|
|
u64 wanted_disk_byte;
|
|
};
|
|
|
|
/*
|
|
* the rules for all callers of this function are:
|
|
* - obtaining the parent is the goal
|
|
* - if you add a key, you must know that it is a correct key
|
|
* - if you cannot add the parent or a correct key, then we will look into the
|
|
* block later to set a correct key
|
|
*
|
|
* delayed refs
|
|
* ============
|
|
* backref type | shared | indirect | shared | indirect
|
|
* information | tree | tree | data | data
|
|
* --------------------+--------+----------+--------+----------
|
|
* parent logical | y | - | - | -
|
|
* key to resolve | - | y | y | y
|
|
* tree block logical | - | - | - | -
|
|
* root for resolving | y | y | y | y
|
|
*
|
|
* - column 1: we've the parent -> done
|
|
* - column 2, 3, 4: we use the key to find the parent
|
|
*
|
|
* on disk refs (inline or keyed)
|
|
* ==============================
|
|
* backref type | shared | indirect | shared | indirect
|
|
* information | tree | tree | data | data
|
|
* --------------------+--------+----------+--------+----------
|
|
* parent logical | y | - | y | -
|
|
* key to resolve | - | - | - | y
|
|
* tree block logical | y | y | y | y
|
|
* root for resolving | - | y | y | y
|
|
*
|
|
* - column 1, 3: we've the parent -> done
|
|
* - column 2: we take the first key from the block to find the parent
|
|
* (see __add_missing_keys)
|
|
* - column 4: we use the key to find the parent
|
|
*
|
|
* additional information that's available but not required to find the parent
|
|
* block might help in merging entries to gain some speed.
|
|
*/
|
|
|
|
static int __add_prelim_ref(struct list_head *head, u64 root_id,
|
|
struct btrfs_key *key, int level,
|
|
u64 parent, u64 wanted_disk_byte, int count)
|
|
{
|
|
struct __prelim_ref *ref;
|
|
|
|
/* in case we're adding delayed refs, we're holding the refs spinlock */
|
|
ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
|
|
if (!ref)
|
|
return -ENOMEM;
|
|
|
|
ref->root_id = root_id;
|
|
if (key)
|
|
ref->key_for_search = *key;
|
|
else
|
|
memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
|
|
|
|
ref->level = level;
|
|
ref->count = count;
|
|
ref->parent = parent;
|
|
ref->wanted_disk_byte = wanted_disk_byte;
|
|
list_add_tail(&ref->list, head);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
|
|
struct ulist *parents, int level,
|
|
struct btrfs_key *key, u64 wanted_disk_byte,
|
|
const u64 *extent_item_pos)
|
|
{
|
|
int ret;
|
|
int slot;
|
|
struct extent_buffer *eb = path->nodes[level];
|
|
struct btrfs_file_extent_item *fi;
|
|
u64 disk_byte;
|
|
u64 wanted_objectid = key->objectid;
|
|
|
|
add_parent:
|
|
ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (level != 0)
|
|
return 0;
|
|
|
|
/*
|
|
* if the current leaf is full with EXTENT_DATA items, we must
|
|
* check the next one if that holds a reference as well.
|
|
* ref->count cannot be used to skip this check.
|
|
* repeat this until we don't find any additional EXTENT_DATA items.
|
|
*/
|
|
while (1) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret)
|
|
return 0;
|
|
|
|
eb = path->nodes[0];
|
|
for (slot = 0; slot < btrfs_header_nritems(eb); ++slot) {
|
|
btrfs_item_key_to_cpu(eb, key, slot);
|
|
if (key->objectid != wanted_objectid ||
|
|
key->type != BTRFS_EXTENT_DATA_KEY)
|
|
return 0;
|
|
fi = btrfs_item_ptr(eb, slot,
|
|
struct btrfs_file_extent_item);
|
|
disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
|
|
if (disk_byte == wanted_disk_byte)
|
|
goto add_parent;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* resolve an indirect backref in the form (root_id, key, level)
|
|
* to a logical address
|
|
*/
|
|
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
|
|
int search_commit_root,
|
|
struct __prelim_ref *ref,
|
|
struct ulist *parents,
|
|
const u64 *extent_item_pos)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root;
|
|
struct btrfs_key root_key;
|
|
struct btrfs_key key = {0};
|
|
struct extent_buffer *eb;
|
|
int ret = 0;
|
|
int root_level;
|
|
int level = ref->level;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
path->search_commit_root = !!search_commit_root;
|
|
|
|
root_key.objectid = ref->root_id;
|
|
root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
root_key.offset = (u64)-1;
|
|
root = btrfs_read_fs_root_no_name(fs_info, &root_key);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
goto out;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
root_level = btrfs_header_level(root->node);
|
|
rcu_read_unlock();
|
|
|
|
if (root_level + 1 == level)
|
|
goto out;
|
|
|
|
path->lowest_level = level;
|
|
ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 0, 0);
|
|
pr_debug("search slot in root %llu (level %d, ref count %d) returned "
|
|
"%d for key (%llu %u %llu)\n",
|
|
(unsigned long long)ref->root_id, level, ref->count, ret,
|
|
(unsigned long long)ref->key_for_search.objectid,
|
|
ref->key_for_search.type,
|
|
(unsigned long long)ref->key_for_search.offset);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
eb = path->nodes[level];
|
|
if (!eb) {
|
|
WARN_ON(1);
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
if (level == 0) {
|
|
if (ret == 1 && path->slots[0] >= btrfs_header_nritems(eb)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret)
|
|
goto out;
|
|
eb = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
|
|
}
|
|
|
|
ret = add_all_parents(root, path, parents, level, &key,
|
|
ref->wanted_disk_byte, extent_item_pos);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* resolve all indirect backrefs from the list
|
|
*/
|
|
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
|
|
int search_commit_root,
|
|
struct list_head *head,
|
|
const u64 *extent_item_pos)
|
|
{
|
|
int err;
|
|
int ret = 0;
|
|
struct __prelim_ref *ref;
|
|
struct __prelim_ref *ref_safe;
|
|
struct __prelim_ref *new_ref;
|
|
struct ulist *parents;
|
|
struct ulist_node *node;
|
|
struct ulist_iterator uiter;
|
|
|
|
parents = ulist_alloc(GFP_NOFS);
|
|
if (!parents)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* _safe allows us to insert directly after the current item without
|
|
* iterating over the newly inserted items.
|
|
* we're also allowed to re-assign ref during iteration.
|
|
*/
|
|
list_for_each_entry_safe(ref, ref_safe, head, list) {
|
|
if (ref->parent) /* already direct */
|
|
continue;
|
|
if (ref->count == 0)
|
|
continue;
|
|
err = __resolve_indirect_ref(fs_info, search_commit_root,
|
|
ref, parents, extent_item_pos);
|
|
if (err) {
|
|
if (ret == 0)
|
|
ret = err;
|
|
continue;
|
|
}
|
|
|
|
/* we put the first parent into the ref at hand */
|
|
ULIST_ITER_INIT(&uiter);
|
|
node = ulist_next(parents, &uiter);
|
|
ref->parent = node ? node->val : 0;
|
|
|
|
/* additional parents require new refs being added here */
|
|
while ((node = ulist_next(parents, &uiter))) {
|
|
new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
|
|
if (!new_ref) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
memcpy(new_ref, ref, sizeof(*ref));
|
|
new_ref->parent = node->val;
|
|
list_add(&new_ref->list, &ref->list);
|
|
}
|
|
ulist_reinit(parents);
|
|
}
|
|
|
|
ulist_free(parents);
|
|
return ret;
|
|
}
|
|
|
|
static inline int ref_for_same_block(struct __prelim_ref *ref1,
|
|
struct __prelim_ref *ref2)
|
|
{
|
|
if (ref1->level != ref2->level)
|
|
return 0;
|
|
if (ref1->root_id != ref2->root_id)
|
|
return 0;
|
|
if (ref1->key_for_search.type != ref2->key_for_search.type)
|
|
return 0;
|
|
if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
|
|
return 0;
|
|
if (ref1->key_for_search.offset != ref2->key_for_search.offset)
|
|
return 0;
|
|
if (ref1->parent != ref2->parent)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* read tree blocks and add keys where required.
|
|
*/
|
|
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
|
|
struct list_head *head)
|
|
{
|
|
struct list_head *pos;
|
|
struct extent_buffer *eb;
|
|
|
|
list_for_each(pos, head) {
|
|
struct __prelim_ref *ref;
|
|
ref = list_entry(pos, struct __prelim_ref, list);
|
|
|
|
if (ref->parent)
|
|
continue;
|
|
if (ref->key_for_search.type)
|
|
continue;
|
|
BUG_ON(!ref->wanted_disk_byte);
|
|
eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
|
|
fs_info->tree_root->leafsize, 0);
|
|
BUG_ON(!eb);
|
|
btrfs_tree_read_lock(eb);
|
|
if (btrfs_header_level(eb) == 0)
|
|
btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
|
|
else
|
|
btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
|
|
btrfs_tree_read_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* merge two lists of backrefs and adjust counts accordingly
|
|
*
|
|
* mode = 1: merge identical keys, if key is set
|
|
* FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
|
|
* additionally, we could even add a key range for the blocks we
|
|
* looked into to merge even more (-> replace unresolved refs by those
|
|
* having a parent).
|
|
* mode = 2: merge identical parents
|
|
*/
|
|
static int __merge_refs(struct list_head *head, int mode)
|
|
{
|
|
struct list_head *pos1;
|
|
|
|
list_for_each(pos1, head) {
|
|
struct list_head *n2;
|
|
struct list_head *pos2;
|
|
struct __prelim_ref *ref1;
|
|
|
|
ref1 = list_entry(pos1, struct __prelim_ref, list);
|
|
|
|
for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
|
|
pos2 = n2, n2 = pos2->next) {
|
|
struct __prelim_ref *ref2;
|
|
struct __prelim_ref *xchg;
|
|
|
|
ref2 = list_entry(pos2, struct __prelim_ref, list);
|
|
|
|
if (mode == 1) {
|
|
if (!ref_for_same_block(ref1, ref2))
|
|
continue;
|
|
if (!ref1->parent && ref2->parent) {
|
|
xchg = ref1;
|
|
ref1 = ref2;
|
|
ref2 = xchg;
|
|
}
|
|
ref1->count += ref2->count;
|
|
} else {
|
|
if (ref1->parent != ref2->parent)
|
|
continue;
|
|
ref1->count += ref2->count;
|
|
}
|
|
list_del(&ref2->list);
|
|
kfree(ref2);
|
|
}
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* add all currently queued delayed refs from this head whose seq nr is
|
|
* smaller or equal that seq to the list
|
|
*/
|
|
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
|
|
struct list_head *prefs)
|
|
{
|
|
struct btrfs_delayed_extent_op *extent_op = head->extent_op;
|
|
struct rb_node *n = &head->node.rb_node;
|
|
struct btrfs_key key;
|
|
struct btrfs_key op_key = {0};
|
|
int sgn;
|
|
int ret = 0;
|
|
|
|
if (extent_op && extent_op->update_key)
|
|
btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
|
|
|
|
while ((n = rb_prev(n))) {
|
|
struct btrfs_delayed_ref_node *node;
|
|
node = rb_entry(n, struct btrfs_delayed_ref_node,
|
|
rb_node);
|
|
if (node->bytenr != head->node.bytenr)
|
|
break;
|
|
WARN_ON(node->is_head);
|
|
|
|
if (node->seq > seq)
|
|
continue;
|
|
|
|
switch (node->action) {
|
|
case BTRFS_ADD_DELAYED_EXTENT:
|
|
case BTRFS_UPDATE_DELAYED_HEAD:
|
|
WARN_ON(1);
|
|
continue;
|
|
case BTRFS_ADD_DELAYED_REF:
|
|
sgn = 1;
|
|
break;
|
|
case BTRFS_DROP_DELAYED_REF:
|
|
sgn = -1;
|
|
break;
|
|
default:
|
|
BUG_ON(1);
|
|
}
|
|
switch (node->type) {
|
|
case BTRFS_TREE_BLOCK_REF_KEY: {
|
|
struct btrfs_delayed_tree_ref *ref;
|
|
|
|
ref = btrfs_delayed_node_to_tree_ref(node);
|
|
ret = __add_prelim_ref(prefs, ref->root, &op_key,
|
|
ref->level + 1, 0, node->bytenr,
|
|
node->ref_mod * sgn);
|
|
break;
|
|
}
|
|
case BTRFS_SHARED_BLOCK_REF_KEY: {
|
|
struct btrfs_delayed_tree_ref *ref;
|
|
|
|
ref = btrfs_delayed_node_to_tree_ref(node);
|
|
ret = __add_prelim_ref(prefs, ref->root, NULL,
|
|
ref->level + 1, ref->parent,
|
|
node->bytenr,
|
|
node->ref_mod * sgn);
|
|
break;
|
|
}
|
|
case BTRFS_EXTENT_DATA_REF_KEY: {
|
|
struct btrfs_delayed_data_ref *ref;
|
|
ref = btrfs_delayed_node_to_data_ref(node);
|
|
|
|
key.objectid = ref->objectid;
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = ref->offset;
|
|
ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
|
|
node->bytenr,
|
|
node->ref_mod * sgn);
|
|
break;
|
|
}
|
|
case BTRFS_SHARED_DATA_REF_KEY: {
|
|
struct btrfs_delayed_data_ref *ref;
|
|
|
|
ref = btrfs_delayed_node_to_data_ref(node);
|
|
|
|
key.objectid = ref->objectid;
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = ref->offset;
|
|
ret = __add_prelim_ref(prefs, ref->root, &key, 0,
|
|
ref->parent, node->bytenr,
|
|
node->ref_mod * sgn);
|
|
break;
|
|
}
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* add all inline backrefs for bytenr to the list
|
|
*/
|
|
static int __add_inline_refs(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path, u64 bytenr,
|
|
int *info_level, struct list_head *prefs)
|
|
{
|
|
int ret = 0;
|
|
int slot;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
unsigned long ptr;
|
|
unsigned long end;
|
|
struct btrfs_extent_item *ei;
|
|
u64 flags;
|
|
u64 item_size;
|
|
|
|
/*
|
|
* enumerate all inline refs
|
|
*/
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
item_size = btrfs_item_size_nr(leaf, slot);
|
|
BUG_ON(item_size < sizeof(*ei));
|
|
|
|
ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
|
|
flags = btrfs_extent_flags(leaf, ei);
|
|
|
|
ptr = (unsigned long)(ei + 1);
|
|
end = (unsigned long)ei + item_size;
|
|
|
|
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
|
|
struct btrfs_tree_block_info *info;
|
|
|
|
info = (struct btrfs_tree_block_info *)ptr;
|
|
*info_level = btrfs_tree_block_level(leaf, info);
|
|
ptr += sizeof(struct btrfs_tree_block_info);
|
|
BUG_ON(ptr > end);
|
|
} else {
|
|
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
|
|
}
|
|
|
|
while (ptr < end) {
|
|
struct btrfs_extent_inline_ref *iref;
|
|
u64 offset;
|
|
int type;
|
|
|
|
iref = (struct btrfs_extent_inline_ref *)ptr;
|
|
type = btrfs_extent_inline_ref_type(leaf, iref);
|
|
offset = btrfs_extent_inline_ref_offset(leaf, iref);
|
|
|
|
switch (type) {
|
|
case BTRFS_SHARED_BLOCK_REF_KEY:
|
|
ret = __add_prelim_ref(prefs, 0, NULL,
|
|
*info_level + 1, offset,
|
|
bytenr, 1);
|
|
break;
|
|
case BTRFS_SHARED_DATA_REF_KEY: {
|
|
struct btrfs_shared_data_ref *sdref;
|
|
int count;
|
|
|
|
sdref = (struct btrfs_shared_data_ref *)(iref + 1);
|
|
count = btrfs_shared_data_ref_count(leaf, sdref);
|
|
ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
|
|
bytenr, count);
|
|
break;
|
|
}
|
|
case BTRFS_TREE_BLOCK_REF_KEY:
|
|
ret = __add_prelim_ref(prefs, offset, NULL,
|
|
*info_level + 1, 0,
|
|
bytenr, 1);
|
|
break;
|
|
case BTRFS_EXTENT_DATA_REF_KEY: {
|
|
struct btrfs_extent_data_ref *dref;
|
|
int count;
|
|
u64 root;
|
|
|
|
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
count = btrfs_extent_data_ref_count(leaf, dref);
|
|
key.objectid = btrfs_extent_data_ref_objectid(leaf,
|
|
dref);
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = btrfs_extent_data_ref_offset(leaf, dref);
|
|
root = btrfs_extent_data_ref_root(leaf, dref);
|
|
ret = __add_prelim_ref(prefs, root, &key, 0, 0,
|
|
bytenr, count);
|
|
break;
|
|
}
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
BUG_ON(ret);
|
|
ptr += btrfs_extent_inline_ref_size(type);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* add all non-inline backrefs for bytenr to the list
|
|
*/
|
|
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path, u64 bytenr,
|
|
int info_level, struct list_head *prefs)
|
|
{
|
|
struct btrfs_root *extent_root = fs_info->extent_root;
|
|
int ret;
|
|
int slot;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
|
|
while (1) {
|
|
ret = btrfs_next_item(extent_root, path);
|
|
if (ret < 0)
|
|
break;
|
|
if (ret) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
slot = path->slots[0];
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
|
|
if (key.objectid != bytenr)
|
|
break;
|
|
if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
|
|
continue;
|
|
if (key.type > BTRFS_SHARED_DATA_REF_KEY)
|
|
break;
|
|
|
|
switch (key.type) {
|
|
case BTRFS_SHARED_BLOCK_REF_KEY:
|
|
ret = __add_prelim_ref(prefs, 0, NULL,
|
|
info_level + 1, key.offset,
|
|
bytenr, 1);
|
|
break;
|
|
case BTRFS_SHARED_DATA_REF_KEY: {
|
|
struct btrfs_shared_data_ref *sdref;
|
|
int count;
|
|
|
|
sdref = btrfs_item_ptr(leaf, slot,
|
|
struct btrfs_shared_data_ref);
|
|
count = btrfs_shared_data_ref_count(leaf, sdref);
|
|
ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
|
|
bytenr, count);
|
|
break;
|
|
}
|
|
case BTRFS_TREE_BLOCK_REF_KEY:
|
|
ret = __add_prelim_ref(prefs, key.offset, NULL,
|
|
info_level + 1, 0,
|
|
bytenr, 1);
|
|
break;
|
|
case BTRFS_EXTENT_DATA_REF_KEY: {
|
|
struct btrfs_extent_data_ref *dref;
|
|
int count;
|
|
u64 root;
|
|
|
|
dref = btrfs_item_ptr(leaf, slot,
|
|
struct btrfs_extent_data_ref);
|
|
count = btrfs_extent_data_ref_count(leaf, dref);
|
|
key.objectid = btrfs_extent_data_ref_objectid(leaf,
|
|
dref);
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = btrfs_extent_data_ref_offset(leaf, dref);
|
|
root = btrfs_extent_data_ref_root(leaf, dref);
|
|
ret = __add_prelim_ref(prefs, root, &key, 0, 0,
|
|
bytenr, count);
|
|
break;
|
|
}
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* this adds all existing backrefs (inline backrefs, backrefs and delayed
|
|
* refs) for the given bytenr to the refs list, merges duplicates and resolves
|
|
* indirect refs to their parent bytenr.
|
|
* When roots are found, they're added to the roots list
|
|
*
|
|
* FIXME some caching might speed things up
|
|
*/
|
|
static int find_parent_nodes(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
u64 seq, struct ulist *refs, struct ulist *roots,
|
|
const u64 *extent_item_pos)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
struct btrfs_delayed_ref_root *delayed_refs = NULL;
|
|
struct btrfs_delayed_ref_head *head;
|
|
int info_level = 0;
|
|
int ret;
|
|
int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
|
|
struct list_head prefs_delayed;
|
|
struct list_head prefs;
|
|
struct __prelim_ref *ref;
|
|
|
|
INIT_LIST_HEAD(&prefs);
|
|
INIT_LIST_HEAD(&prefs_delayed);
|
|
|
|
key.objectid = bytenr;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
path->search_commit_root = !!search_commit_root;
|
|
|
|
/*
|
|
* grab both a lock on the path and a lock on the delayed ref head.
|
|
* We need both to get a consistent picture of how the refs look
|
|
* at a specified point in time
|
|
*/
|
|
again:
|
|
head = NULL;
|
|
|
|
ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
BUG_ON(ret == 0);
|
|
|
|
if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
|
|
/*
|
|
* look if there are updates for this ref queued and lock the
|
|
* head
|
|
*/
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
spin_lock(&delayed_refs->lock);
|
|
head = btrfs_find_delayed_ref_head(trans, bytenr);
|
|
if (head) {
|
|
if (!mutex_trylock(&head->mutex)) {
|
|
atomic_inc(&head->node.refs);
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* Mutex was contended, block until it's
|
|
* released and try again
|
|
*/
|
|
mutex_lock(&head->mutex);
|
|
mutex_unlock(&head->mutex);
|
|
btrfs_put_delayed_ref(&head->node);
|
|
goto again;
|
|
}
|
|
ret = __add_delayed_refs(head, seq, &prefs_delayed);
|
|
if (ret) {
|
|
spin_unlock(&delayed_refs->lock);
|
|
goto out;
|
|
}
|
|
}
|
|
spin_unlock(&delayed_refs->lock);
|
|
}
|
|
|
|
if (path->slots[0]) {
|
|
struct extent_buffer *leaf;
|
|
int slot;
|
|
|
|
path->slots[0]--;
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.objectid == bytenr &&
|
|
key.type == BTRFS_EXTENT_ITEM_KEY) {
|
|
ret = __add_inline_refs(fs_info, path, bytenr,
|
|
&info_level, &prefs);
|
|
if (ret)
|
|
goto out;
|
|
ret = __add_keyed_refs(fs_info, path, bytenr,
|
|
info_level, &prefs);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
list_splice_init(&prefs_delayed, &prefs);
|
|
|
|
ret = __add_missing_keys(fs_info, &prefs);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = __merge_refs(&prefs, 1);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = __resolve_indirect_refs(fs_info, search_commit_root, &prefs,
|
|
extent_item_pos);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = __merge_refs(&prefs, 2);
|
|
if (ret)
|
|
goto out;
|
|
|
|
while (!list_empty(&prefs)) {
|
|
ref = list_first_entry(&prefs, struct __prelim_ref, list);
|
|
list_del(&ref->list);
|
|
if (ref->count < 0)
|
|
WARN_ON(1);
|
|
if (ref->count && ref->root_id && ref->parent == 0) {
|
|
/* no parent == root of tree */
|
|
ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
|
|
BUG_ON(ret < 0);
|
|
}
|
|
if (ref->count && ref->parent) {
|
|
struct extent_inode_elem *eie = NULL;
|
|
if (extent_item_pos) {
|
|
u32 bsz;
|
|
struct extent_buffer *eb;
|
|
bsz = btrfs_level_size(fs_info->extent_root,
|
|
info_level);
|
|
eb = read_tree_block(fs_info->extent_root,
|
|
ref->parent, bsz, 0);
|
|
BUG_ON(!eb);
|
|
ret = find_extent_in_eb(eb, bytenr,
|
|
*extent_item_pos, &eie);
|
|
free_extent_buffer(eb);
|
|
}
|
|
ret = ulist_add(refs, ref->parent,
|
|
(unsigned long)eie, GFP_NOFS);
|
|
BUG_ON(ret < 0);
|
|
}
|
|
kfree(ref);
|
|
}
|
|
|
|
out:
|
|
if (head)
|
|
mutex_unlock(&head->mutex);
|
|
btrfs_free_path(path);
|
|
while (!list_empty(&prefs)) {
|
|
ref = list_first_entry(&prefs, struct __prelim_ref, list);
|
|
list_del(&ref->list);
|
|
kfree(ref);
|
|
}
|
|
while (!list_empty(&prefs_delayed)) {
|
|
ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
|
|
list);
|
|
list_del(&ref->list);
|
|
kfree(ref);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_leaf_list(struct ulist *blocks)
|
|
{
|
|
struct ulist_node *node = NULL;
|
|
struct extent_inode_elem *eie;
|
|
struct extent_inode_elem *eie_next;
|
|
struct ulist_iterator uiter;
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while ((node = ulist_next(blocks, &uiter))) {
|
|
if (!node->aux)
|
|
continue;
|
|
eie = (struct extent_inode_elem *)node->aux;
|
|
for (; eie; eie = eie_next) {
|
|
eie_next = eie->next;
|
|
kfree(eie);
|
|
}
|
|
node->aux = 0;
|
|
}
|
|
|
|
ulist_free(blocks);
|
|
}
|
|
|
|
/*
|
|
* Finds all leafs with a reference to the specified combination of bytenr and
|
|
* offset. key_list_head will point to a list of corresponding keys (caller must
|
|
* free each list element). The leafs will be stored in the leafs ulist, which
|
|
* must be freed with ulist_free.
|
|
*
|
|
* returns 0 on success, <0 on error
|
|
*/
|
|
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
u64 seq, struct ulist **leafs,
|
|
const u64 *extent_item_pos)
|
|
{
|
|
struct ulist *tmp;
|
|
int ret;
|
|
|
|
tmp = ulist_alloc(GFP_NOFS);
|
|
if (!tmp)
|
|
return -ENOMEM;
|
|
*leafs = ulist_alloc(GFP_NOFS);
|
|
if (!*leafs) {
|
|
ulist_free(tmp);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = find_parent_nodes(trans, fs_info, bytenr, seq, *leafs, tmp,
|
|
extent_item_pos);
|
|
ulist_free(tmp);
|
|
|
|
if (ret < 0 && ret != -ENOENT) {
|
|
free_leaf_list(*leafs);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* walk all backrefs for a given extent to find all roots that reference this
|
|
* extent. Walking a backref means finding all extents that reference this
|
|
* extent and in turn walk the backrefs of those, too. Naturally this is a
|
|
* recursive process, but here it is implemented in an iterative fashion: We
|
|
* find all referencing extents for the extent in question and put them on a
|
|
* list. In turn, we find all referencing extents for those, further appending
|
|
* to the list. The way we iterate the list allows adding more elements after
|
|
* the current while iterating. The process stops when we reach the end of the
|
|
* list. Found roots are added to the roots list.
|
|
*
|
|
* returns 0 on success, < 0 on error.
|
|
*/
|
|
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
u64 seq, struct ulist **roots)
|
|
{
|
|
struct ulist *tmp;
|
|
struct ulist_node *node = NULL;
|
|
struct ulist_iterator uiter;
|
|
int ret;
|
|
|
|
tmp = ulist_alloc(GFP_NOFS);
|
|
if (!tmp)
|
|
return -ENOMEM;
|
|
*roots = ulist_alloc(GFP_NOFS);
|
|
if (!*roots) {
|
|
ulist_free(tmp);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while (1) {
|
|
ret = find_parent_nodes(trans, fs_info, bytenr, seq,
|
|
tmp, *roots, NULL);
|
|
if (ret < 0 && ret != -ENOENT) {
|
|
ulist_free(tmp);
|
|
ulist_free(*roots);
|
|
return ret;
|
|
}
|
|
node = ulist_next(tmp, &uiter);
|
|
if (!node)
|
|
break;
|
|
bytenr = node->val;
|
|
}
|
|
|
|
ulist_free(tmp);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int __inode_info(u64 inum, u64 ioff, u8 key_type,
|
|
struct btrfs_root *fs_root, struct btrfs_path *path,
|
|
struct btrfs_key *found_key)
|
|
{
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct extent_buffer *eb;
|
|
|
|
key.type = key_type;
|
|
key.objectid = inum;
|
|
key.offset = ioff;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
eb = path->nodes[0];
|
|
if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
|
|
ret = btrfs_next_leaf(fs_root, path);
|
|
if (ret)
|
|
return ret;
|
|
eb = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
|
|
if (found_key->type != key.type || found_key->objectid != key.objectid)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this makes the path point to (inum INODE_ITEM ioff)
|
|
*/
|
|
int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
|
|
struct btrfs_path *path)
|
|
{
|
|
struct btrfs_key key;
|
|
return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
|
|
&key);
|
|
}
|
|
|
|
static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *found_key)
|
|
{
|
|
return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
|
|
found_key);
|
|
}
|
|
|
|
/*
|
|
* this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
|
|
* of the path are separated by '/' and the path is guaranteed to be
|
|
* 0-terminated. the path is only given within the current file system.
|
|
* Therefore, it never starts with a '/'. the caller is responsible to provide
|
|
* "size" bytes in "dest". the dest buffer will be filled backwards. finally,
|
|
* the start point of the resulting string is returned. this pointer is within
|
|
* dest, normally.
|
|
* in case the path buffer would overflow, the pointer is decremented further
|
|
* as if output was written to the buffer, though no more output is actually
|
|
* generated. that way, the caller can determine how much space would be
|
|
* required for the path to fit into the buffer. in that case, the returned
|
|
* value will be smaller than dest. callers must check this!
|
|
*/
|
|
static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
|
|
struct btrfs_inode_ref *iref,
|
|
struct extent_buffer *eb_in, u64 parent,
|
|
char *dest, u32 size)
|
|
{
|
|
u32 len;
|
|
int slot;
|
|
u64 next_inum;
|
|
int ret;
|
|
s64 bytes_left = size - 1;
|
|
struct extent_buffer *eb = eb_in;
|
|
struct btrfs_key found_key;
|
|
int leave_spinning = path->leave_spinning;
|
|
|
|
if (bytes_left >= 0)
|
|
dest[bytes_left] = '\0';
|
|
|
|
path->leave_spinning = 1;
|
|
while (1) {
|
|
len = btrfs_inode_ref_name_len(eb, iref);
|
|
bytes_left -= len;
|
|
if (bytes_left >= 0)
|
|
read_extent_buffer(eb, dest + bytes_left,
|
|
(unsigned long)(iref + 1), len);
|
|
if (eb != eb_in) {
|
|
btrfs_tree_read_unlock_blocking(eb);
|
|
free_extent_buffer(eb);
|
|
}
|
|
ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
if (ret)
|
|
break;
|
|
next_inum = found_key.offset;
|
|
|
|
/* regular exit ahead */
|
|
if (parent == next_inum)
|
|
break;
|
|
|
|
slot = path->slots[0];
|
|
eb = path->nodes[0];
|
|
/* make sure we can use eb after releasing the path */
|
|
if (eb != eb_in) {
|
|
atomic_inc(&eb->refs);
|
|
btrfs_tree_read_lock(eb);
|
|
btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
|
|
parent = next_inum;
|
|
--bytes_left;
|
|
if (bytes_left >= 0)
|
|
dest[bytes_left] = '/';
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
path->leave_spinning = leave_spinning;
|
|
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
return dest + bytes_left;
|
|
}
|
|
|
|
/*
|
|
* this makes the path point to (logical EXTENT_ITEM *)
|
|
* returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
|
|
* tree blocks and <0 on error.
|
|
*/
|
|
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
|
|
struct btrfs_path *path, struct btrfs_key *found_key)
|
|
{
|
|
int ret;
|
|
u64 flags;
|
|
u32 item_size;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_key key;
|
|
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.objectid = logical;
|
|
key.offset = (u64)-1;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = btrfs_previous_item(fs_info->extent_root, path,
|
|
0, BTRFS_EXTENT_ITEM_KEY);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
|
|
if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
|
|
found_key->objectid > logical ||
|
|
found_key->objectid + found_key->offset <= logical) {
|
|
pr_debug("logical %llu is not within any extent\n",
|
|
(unsigned long long)logical);
|
|
return -ENOENT;
|
|
}
|
|
|
|
eb = path->nodes[0];
|
|
item_size = btrfs_item_size_nr(eb, path->slots[0]);
|
|
BUG_ON(item_size < sizeof(*ei));
|
|
|
|
ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
|
|
flags = btrfs_extent_flags(eb, ei);
|
|
|
|
pr_debug("logical %llu is at position %llu within the extent (%llu "
|
|
"EXTENT_ITEM %llu) flags %#llx size %u\n",
|
|
(unsigned long long)logical,
|
|
(unsigned long long)(logical - found_key->objectid),
|
|
(unsigned long long)found_key->objectid,
|
|
(unsigned long long)found_key->offset,
|
|
(unsigned long long)flags, item_size);
|
|
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
|
|
return BTRFS_EXTENT_FLAG_TREE_BLOCK;
|
|
if (flags & BTRFS_EXTENT_FLAG_DATA)
|
|
return BTRFS_EXTENT_FLAG_DATA;
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* helper function to iterate extent inline refs. ptr must point to a 0 value
|
|
* for the first call and may be modified. it is used to track state.
|
|
* if more refs exist, 0 is returned and the next call to
|
|
* __get_extent_inline_ref must pass the modified ptr parameter to get the
|
|
* next ref. after the last ref was processed, 1 is returned.
|
|
* returns <0 on error
|
|
*/
|
|
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
|
|
struct btrfs_extent_item *ei, u32 item_size,
|
|
struct btrfs_extent_inline_ref **out_eiref,
|
|
int *out_type)
|
|
{
|
|
unsigned long end;
|
|
u64 flags;
|
|
struct btrfs_tree_block_info *info;
|
|
|
|
if (!*ptr) {
|
|
/* first call */
|
|
flags = btrfs_extent_flags(eb, ei);
|
|
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
|
|
info = (struct btrfs_tree_block_info *)(ei + 1);
|
|
*out_eiref =
|
|
(struct btrfs_extent_inline_ref *)(info + 1);
|
|
} else {
|
|
*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
|
|
}
|
|
*ptr = (unsigned long)*out_eiref;
|
|
if ((void *)*ptr >= (void *)ei + item_size)
|
|
return -ENOENT;
|
|
}
|
|
|
|
end = (unsigned long)ei + item_size;
|
|
*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
|
|
*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
|
|
|
|
*ptr += btrfs_extent_inline_ref_size(*out_type);
|
|
WARN_ON(*ptr > end);
|
|
if (*ptr == end)
|
|
return 1; /* last */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* reads the tree block backref for an extent. tree level and root are returned
|
|
* through out_level and out_root. ptr must point to a 0 value for the first
|
|
* call and may be modified (see __get_extent_inline_ref comment).
|
|
* returns 0 if data was provided, 1 if there was no more data to provide or
|
|
* <0 on error.
|
|
*/
|
|
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
|
|
struct btrfs_extent_item *ei, u32 item_size,
|
|
u64 *out_root, u8 *out_level)
|
|
{
|
|
int ret;
|
|
int type;
|
|
struct btrfs_tree_block_info *info;
|
|
struct btrfs_extent_inline_ref *eiref;
|
|
|
|
if (*ptr == (unsigned long)-1)
|
|
return 1;
|
|
|
|
while (1) {
|
|
ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
|
|
&eiref, &type);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (type == BTRFS_TREE_BLOCK_REF_KEY ||
|
|
type == BTRFS_SHARED_BLOCK_REF_KEY)
|
|
break;
|
|
|
|
if (ret == 1)
|
|
return 1;
|
|
}
|
|
|
|
/* we can treat both ref types equally here */
|
|
info = (struct btrfs_tree_block_info *)(ei + 1);
|
|
*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
|
|
*out_level = btrfs_tree_block_level(eb, info);
|
|
|
|
if (ret == 1)
|
|
*ptr = (unsigned long)-1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
|
|
u64 root, u64 extent_item_objectid,
|
|
iterate_extent_inodes_t *iterate, void *ctx)
|
|
{
|
|
struct extent_inode_elem *eie;
|
|
int ret = 0;
|
|
|
|
for (eie = inode_list; eie; eie = eie->next) {
|
|
pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
|
|
"root %llu\n", extent_item_objectid,
|
|
eie->inum, eie->offset, root);
|
|
ret = iterate(eie->inum, eie->offset, root, ctx);
|
|
if (ret) {
|
|
pr_debug("stopping iteration for %llu due to ret=%d\n",
|
|
extent_item_objectid, ret);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* calls iterate() for every inode that references the extent identified by
|
|
* the given parameters.
|
|
* when the iterator function returns a non-zero value, iteration stops.
|
|
*/
|
|
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
|
|
u64 extent_item_objectid, u64 extent_item_pos,
|
|
int search_commit_root,
|
|
iterate_extent_inodes_t *iterate, void *ctx)
|
|
{
|
|
int ret;
|
|
struct list_head data_refs = LIST_HEAD_INIT(data_refs);
|
|
struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
|
|
struct btrfs_trans_handle *trans;
|
|
struct ulist *refs = NULL;
|
|
struct ulist *roots = NULL;
|
|
struct ulist_node *ref_node = NULL;
|
|
struct ulist_node *root_node = NULL;
|
|
struct seq_list seq_elem;
|
|
struct ulist_iterator ref_uiter;
|
|
struct ulist_iterator root_uiter;
|
|
struct btrfs_delayed_ref_root *delayed_refs = NULL;
|
|
|
|
pr_debug("resolving all inodes for extent %llu\n",
|
|
extent_item_objectid);
|
|
|
|
if (search_commit_root) {
|
|
trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
|
|
} else {
|
|
trans = btrfs_join_transaction(fs_info->extent_root);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
spin_lock(&delayed_refs->lock);
|
|
btrfs_get_delayed_seq(delayed_refs, &seq_elem);
|
|
spin_unlock(&delayed_refs->lock);
|
|
}
|
|
|
|
ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
|
|
seq_elem.seq, &refs, &extent_item_pos);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ULIST_ITER_INIT(&ref_uiter);
|
|
while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
|
|
ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
|
|
seq_elem.seq, &roots);
|
|
if (ret)
|
|
break;
|
|
ULIST_ITER_INIT(&root_uiter);
|
|
while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
|
|
pr_debug("root %llu references leaf %llu, data list "
|
|
"%#lx\n", root_node->val, ref_node->val,
|
|
ref_node->aux);
|
|
ret = iterate_leaf_refs(
|
|
(struct extent_inode_elem *)ref_node->aux,
|
|
root_node->val, extent_item_objectid,
|
|
iterate, ctx);
|
|
}
|
|
ulist_free(roots);
|
|
roots = NULL;
|
|
}
|
|
|
|
free_leaf_list(refs);
|
|
ulist_free(roots);
|
|
out:
|
|
if (!search_commit_root) {
|
|
btrfs_put_delayed_seq(delayed_refs, &seq_elem);
|
|
btrfs_end_transaction(trans, fs_info->extent_root);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path,
|
|
iterate_extent_inodes_t *iterate, void *ctx)
|
|
{
|
|
int ret;
|
|
u64 extent_item_pos;
|
|
struct btrfs_key found_key;
|
|
int search_commit_root = path->search_commit_root;
|
|
|
|
ret = extent_from_logical(fs_info, logical, path,
|
|
&found_key);
|
|
btrfs_release_path(path);
|
|
if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
|
|
ret = -EINVAL;
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
extent_item_pos = logical - found_key.objectid;
|
|
ret = iterate_extent_inodes(fs_info, found_key.objectid,
|
|
extent_item_pos, search_commit_root,
|
|
iterate, ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
|
|
struct btrfs_path *path,
|
|
iterate_irefs_t *iterate, void *ctx)
|
|
{
|
|
int ret = 0;
|
|
int slot;
|
|
u32 cur;
|
|
u32 len;
|
|
u32 name_len;
|
|
u64 parent = 0;
|
|
int found = 0;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_item *item;
|
|
struct btrfs_inode_ref *iref;
|
|
struct btrfs_key found_key;
|
|
|
|
while (!ret) {
|
|
path->leave_spinning = 1;
|
|
ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
|
|
&found_key);
|
|
if (ret < 0)
|
|
break;
|
|
if (ret) {
|
|
ret = found ? 0 : -ENOENT;
|
|
break;
|
|
}
|
|
++found;
|
|
|
|
parent = found_key.offset;
|
|
slot = path->slots[0];
|
|
eb = path->nodes[0];
|
|
/* make sure we can use eb after releasing the path */
|
|
atomic_inc(&eb->refs);
|
|
btrfs_tree_read_lock(eb);
|
|
btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
|
|
btrfs_release_path(path);
|
|
|
|
item = btrfs_item_nr(eb, slot);
|
|
iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
|
|
|
|
for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
|
|
name_len = btrfs_inode_ref_name_len(eb, iref);
|
|
/* path must be released before calling iterate()! */
|
|
pr_debug("following ref at offset %u for inode %llu in "
|
|
"tree %llu\n", cur,
|
|
(unsigned long long)found_key.objectid,
|
|
(unsigned long long)fs_root->objectid);
|
|
ret = iterate(parent, iref, eb, ctx);
|
|
if (ret)
|
|
break;
|
|
len = sizeof(*iref) + name_len;
|
|
iref = (struct btrfs_inode_ref *)((char *)iref + len);
|
|
}
|
|
btrfs_tree_read_unlock_blocking(eb);
|
|
free_extent_buffer(eb);
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* returns 0 if the path could be dumped (probably truncated)
|
|
* returns <0 in case of an error
|
|
*/
|
|
static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
|
|
struct extent_buffer *eb, void *ctx)
|
|
{
|
|
struct inode_fs_paths *ipath = ctx;
|
|
char *fspath;
|
|
char *fspath_min;
|
|
int i = ipath->fspath->elem_cnt;
|
|
const int s_ptr = sizeof(char *);
|
|
u32 bytes_left;
|
|
|
|
bytes_left = ipath->fspath->bytes_left > s_ptr ?
|
|
ipath->fspath->bytes_left - s_ptr : 0;
|
|
|
|
fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
|
|
fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
|
|
inum, fspath_min, bytes_left);
|
|
if (IS_ERR(fspath))
|
|
return PTR_ERR(fspath);
|
|
|
|
if (fspath > fspath_min) {
|
|
pr_debug("path resolved: %s\n", fspath);
|
|
ipath->fspath->val[i] = (u64)(unsigned long)fspath;
|
|
++ipath->fspath->elem_cnt;
|
|
ipath->fspath->bytes_left = fspath - fspath_min;
|
|
} else {
|
|
pr_debug("missed path, not enough space. missing bytes: %lu, "
|
|
"constructed so far: %s\n",
|
|
(unsigned long)(fspath_min - fspath), fspath_min);
|
|
++ipath->fspath->elem_missed;
|
|
ipath->fspath->bytes_missing += fspath_min - fspath;
|
|
ipath->fspath->bytes_left = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this dumps all file system paths to the inode into the ipath struct, provided
|
|
* is has been created large enough. each path is zero-terminated and accessed
|
|
* from ipath->fspath->val[i].
|
|
* when it returns, there are ipath->fspath->elem_cnt number of paths available
|
|
* in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
|
|
* number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
|
|
* it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
|
|
* have been needed to return all paths.
|
|
*/
|
|
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
|
|
{
|
|
return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
|
|
inode_to_path, ipath);
|
|
}
|
|
|
|
struct btrfs_data_container *init_data_container(u32 total_bytes)
|
|
{
|
|
struct btrfs_data_container *data;
|
|
size_t alloc_bytes;
|
|
|
|
alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
|
|
data = kmalloc(alloc_bytes, GFP_NOFS);
|
|
if (!data)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (total_bytes >= sizeof(*data)) {
|
|
data->bytes_left = total_bytes - sizeof(*data);
|
|
data->bytes_missing = 0;
|
|
} else {
|
|
data->bytes_missing = sizeof(*data) - total_bytes;
|
|
data->bytes_left = 0;
|
|
}
|
|
|
|
data->elem_cnt = 0;
|
|
data->elem_missed = 0;
|
|
|
|
return data;
|
|
}
|
|
|
|
/*
|
|
* allocates space to return multiple file system paths for an inode.
|
|
* total_bytes to allocate are passed, note that space usable for actual path
|
|
* information will be total_bytes - sizeof(struct inode_fs_paths).
|
|
* the returned pointer must be freed with free_ipath() in the end.
|
|
*/
|
|
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
|
|
struct btrfs_path *path)
|
|
{
|
|
struct inode_fs_paths *ifp;
|
|
struct btrfs_data_container *fspath;
|
|
|
|
fspath = init_data_container(total_bytes);
|
|
if (IS_ERR(fspath))
|
|
return (void *)fspath;
|
|
|
|
ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
|
|
if (!ifp) {
|
|
kfree(fspath);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
ifp->btrfs_path = path;
|
|
ifp->fspath = fspath;
|
|
ifp->fs_root = fs_root;
|
|
|
|
return ifp;
|
|
}
|
|
|
|
void free_ipath(struct inode_fs_paths *ipath)
|
|
{
|
|
if (!ipath)
|
|
return;
|
|
kfree(ipath->fspath);
|
|
kfree(ipath);
|
|
}
|