linux/arch/arm/mach-ux500/prcmu.c
Martin Persson e0befb23df ux500: Add prcmu support for operating points
Adds support in PRCMU driver to handle CPU and APE operating points.

Signed-off-by: Martin Persson <martin.persson@stericsson.com>
Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
2010-12-09 10:06:01 +01:00

394 lines
8.9 KiB
C

/*
* Copyright (C) STMicroelectronics 2009
* Copyright (C) ST-Ericsson SA 2010
*
* License Terms: GNU General Public License v2
* Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
* Author: Sundar Iyer <sundar.iyer@stericsson.com>
* Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
*
* U8500 PRCM Unit interface driver
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/mutex.h>
#include <linux/completion.h>
#include <linux/jiffies.h>
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <mach/hardware.h>
#include <mach/prcmu-regs.h>
#include <mach/prcmu-defs.h>
/* Global var to runtime determine TCDM base for v2 or v1 */
static __iomem void *tcdm_base;
#define _MBOX_HEADER (tcdm_base + 0xFE8)
#define MBOX_HEADER_REQ_MB0 (_MBOX_HEADER + 0x0)
#define REQ_MB1 (tcdm_base + 0xFD0)
#define REQ_MB5 (tcdm_base + 0xE44)
#define REQ_MB1_ARMOPP (REQ_MB1 + 0x0)
#define REQ_MB1_APEOPP (REQ_MB1 + 0x1)
#define REQ_MB1_BOOSTOPP (REQ_MB1 + 0x2)
#define ACK_MB1 (tcdm_base + 0xE04)
#define ACK_MB5 (tcdm_base + 0xDF4)
#define ACK_MB1_CURR_ARMOPP (ACK_MB1 + 0x0)
#define ACK_MB1_CURR_APEOPP (ACK_MB1 + 0x1)
#define REQ_MB5_I2C_SLAVE_OP (REQ_MB5)
#define REQ_MB5_I2C_HW_BITS (REQ_MB5 + 1)
#define REQ_MB5_I2C_REG (REQ_MB5 + 2)
#define REQ_MB5_I2C_VAL (REQ_MB5 + 3)
#define ACK_MB5_I2C_STATUS (ACK_MB5 + 1)
#define ACK_MB5_I2C_VAL (ACK_MB5 + 3)
#define PRCM_AVS_VARM_MAX_OPP (tcdm_base + 0x2E4)
#define PRCM_AVS_ISMODEENABLE 7
#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
#define I2C_WRITE(slave) \
(((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
#define I2C_READ(slave) \
(((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0) | BIT(0))
#define I2C_STOP_EN BIT(3)
enum mb1_h {
MB1H_ARM_OPP = 1,
MB1H_APE_OPP,
MB1H_ARM_APE_OPP,
};
static struct {
struct mutex lock;
struct completion work;
struct {
u8 arm_opp;
u8 ape_opp;
u8 arm_status;
u8 ape_status;
} ack;
} mb1_transfer;
enum ack_mb5_status {
I2C_WR_OK = 0x01,
I2C_RD_OK = 0x02,
};
#define MBOX_BIT BIT
#define NUM_MBOX 8
static struct {
struct mutex lock;
struct completion work;
bool failed;
struct {
u8 status;
u8 value;
} ack;
} mb5_transfer;
/**
* prcmu_abb_read() - Read register value(s) from the ABB.
* @slave: The I2C slave address.
* @reg: The (start) register address.
* @value: The read out value(s).
* @size: The number of registers to read.
*
* Reads register value(s) from the ABB.
* @size has to be 1 for the current firmware version.
*/
int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
{
int r;
if (size != 1)
return -EINVAL;
r = mutex_lock_interruptible(&mb5_transfer.lock);
if (r)
return r;
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
cpu_relax();
writeb(I2C_READ(slave), REQ_MB5_I2C_SLAVE_OP);
writeb(I2C_STOP_EN, REQ_MB5_I2C_HW_BITS);
writeb(reg, REQ_MB5_I2C_REG);
writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
if (!wait_for_completion_timeout(&mb5_transfer.work,
msecs_to_jiffies(500))) {
pr_err("prcmu: prcmu_abb_read timed out.\n");
r = -EIO;
goto unlock_and_return;
}
r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
if (!r)
*value = mb5_transfer.ack.value;
unlock_and_return:
mutex_unlock(&mb5_transfer.lock);
return r;
}
EXPORT_SYMBOL(prcmu_abb_read);
/**
* prcmu_abb_write() - Write register value(s) to the ABB.
* @slave: The I2C slave address.
* @reg: The (start) register address.
* @value: The value(s) to write.
* @size: The number of registers to write.
*
* Reads register value(s) from the ABB.
* @size has to be 1 for the current firmware version.
*/
int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
{
int r;
if (size != 1)
return -EINVAL;
r = mutex_lock_interruptible(&mb5_transfer.lock);
if (r)
return r;
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
cpu_relax();
writeb(I2C_WRITE(slave), REQ_MB5_I2C_SLAVE_OP);
writeb(I2C_STOP_EN, REQ_MB5_I2C_HW_BITS);
writeb(reg, REQ_MB5_I2C_REG);
writeb(*value, REQ_MB5_I2C_VAL);
writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
if (!wait_for_completion_timeout(&mb5_transfer.work,
msecs_to_jiffies(500))) {
pr_err("prcmu: prcmu_abb_write timed out.\n");
r = -EIO;
goto unlock_and_return;
}
r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
unlock_and_return:
mutex_unlock(&mb5_transfer.lock);
return r;
}
EXPORT_SYMBOL(prcmu_abb_write);
static int set_ape_cpu_opps(u8 header, enum prcmu_ape_opp ape_opp,
enum prcmu_cpu_opp cpu_opp)
{
bool do_ape;
bool do_arm;
int err = 0;
do_ape = ((header == MB1H_APE_OPP) || (header == MB1H_ARM_APE_OPP));
do_arm = ((header == MB1H_ARM_OPP) || (header == MB1H_ARM_APE_OPP));
mutex_lock(&mb1_transfer.lock);
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
cpu_relax();
writeb(0, MBOX_HEADER_REQ_MB0);
writeb(cpu_opp, REQ_MB1_ARMOPP);
writeb(ape_opp, REQ_MB1_APEOPP);
writeb(0, REQ_MB1_BOOSTOPP);
writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
wait_for_completion(&mb1_transfer.work);
if ((do_ape) && (mb1_transfer.ack.ape_status != 0))
err = -EIO;
if ((do_arm) && (mb1_transfer.ack.arm_status != 0))
err = -EIO;
mutex_unlock(&mb1_transfer.lock);
return err;
}
/**
* prcmu_set_ape_opp() - Set the OPP of the APE.
* @opp: The OPP to set.
*
* This function sets the OPP of the APE.
*/
int prcmu_set_ape_opp(enum prcmu_ape_opp opp)
{
return set_ape_cpu_opps(MB1H_APE_OPP, opp, APE_OPP_NO_CHANGE);
}
EXPORT_SYMBOL(prcmu_set_ape_opp);
/**
* prcmu_set_cpu_opp() - Set the OPP of the CPU.
* @opp: The OPP to set.
*
* This function sets the OPP of the CPU.
*/
int prcmu_set_cpu_opp(enum prcmu_cpu_opp opp)
{
return set_ape_cpu_opps(MB1H_ARM_OPP, CPU_OPP_NO_CHANGE, opp);
}
EXPORT_SYMBOL(prcmu_set_cpu_opp);
/**
* prcmu_set_ape_cpu_opps() - Set the OPPs of the APE and the CPU.
* @ape_opp: The APE OPP to set.
* @cpu_opp: The CPU OPP to set.
*
* This function sets the OPPs of the APE and the CPU.
*/
int prcmu_set_ape_cpu_opps(enum prcmu_ape_opp ape_opp,
enum prcmu_cpu_opp cpu_opp)
{
return set_ape_cpu_opps(MB1H_ARM_APE_OPP, ape_opp, cpu_opp);
}
EXPORT_SYMBOL(prcmu_set_ape_cpu_opps);
/**
* prcmu_get_ape_opp() - Get the OPP of the APE.
*
* This function gets the OPP of the APE.
*/
enum prcmu_ape_opp prcmu_get_ape_opp(void)
{
return readb(ACK_MB1_CURR_APEOPP);
}
EXPORT_SYMBOL(prcmu_get_ape_opp);
/**
* prcmu_get_cpu_opp() - Get the OPP of the CPU.
*
* This function gets the OPP of the CPU. The OPP is specified in %%.
* PRCMU_OPP_EXT is a special OPP value, not specified in %%.
*/
int prcmu_get_cpu_opp(void)
{
return readb(ACK_MB1_CURR_ARMOPP);
}
EXPORT_SYMBOL(prcmu_get_cpu_opp);
bool prcmu_has_arm_maxopp(void)
{
return (readb(PRCM_AVS_VARM_MAX_OPP) & PRCM_AVS_ISMODEENABLE_MASK)
== PRCM_AVS_ISMODEENABLE_MASK;
}
static void read_mailbox_0(void)
{
writel(MBOX_BIT(0), PRCM_ARM_IT1_CLEAR);
}
static void read_mailbox_1(void)
{
mb1_transfer.ack.arm_opp = readb(ACK_MB1_CURR_ARMOPP);
mb1_transfer.ack.ape_opp = readb(ACK_MB1_CURR_APEOPP);
complete(&mb1_transfer.work);
writel(MBOX_BIT(1), PRCM_ARM_IT1_CLEAR);
}
static void read_mailbox_2(void)
{
writel(MBOX_BIT(2), PRCM_ARM_IT1_CLEAR);
}
static void read_mailbox_3(void)
{
writel(MBOX_BIT(3), PRCM_ARM_IT1_CLEAR);
}
static void read_mailbox_4(void)
{
writel(MBOX_BIT(4), PRCM_ARM_IT1_CLEAR);
}
static void read_mailbox_5(void)
{
mb5_transfer.ack.status = readb(ACK_MB5_I2C_STATUS);
mb5_transfer.ack.value = readb(ACK_MB5_I2C_VAL);
complete(&mb5_transfer.work);
writel(MBOX_BIT(5), PRCM_ARM_IT1_CLEAR);
}
static void read_mailbox_6(void)
{
writel(MBOX_BIT(6), PRCM_ARM_IT1_CLEAR);
}
static void read_mailbox_7(void)
{
writel(MBOX_BIT(7), PRCM_ARM_IT1_CLEAR);
}
static void (* const read_mailbox[NUM_MBOX])(void) = {
read_mailbox_0,
read_mailbox_1,
read_mailbox_2,
read_mailbox_3,
read_mailbox_4,
read_mailbox_5,
read_mailbox_6,
read_mailbox_7
};
static irqreturn_t prcmu_irq_handler(int irq, void *data)
{
u32 bits;
u8 n;
bits = (readl(PRCM_ARM_IT1_VAL) & (MBOX_BIT(NUM_MBOX) - 1));
if (unlikely(!bits))
return IRQ_NONE;
for (n = 0; bits; n++) {
if (bits & MBOX_BIT(n)) {
bits -= MBOX_BIT(n);
read_mailbox[n]();
}
}
return IRQ_HANDLED;
}
void __init prcmu_early_init(void)
{
if (cpu_is_u8500v11() || cpu_is_u8500ed()) {
tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE_V1);
} else if (cpu_is_u8500v2()) {
tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
} else {
pr_err("prcmu: Unsupported chip version\n");
BUG();
}
}
static int __init prcmu_init(void)
{
if (cpu_is_u8500ed()) {
pr_err("prcmu: Unsupported chip version\n");
return 0;
}
mutex_init(&mb1_transfer.lock);
init_completion(&mb1_transfer.work);
mutex_init(&mb5_transfer.lock);
init_completion(&mb5_transfer.work);
/* Clean up the mailbox interrupts after pre-kernel code. */
writel((MBOX_BIT(NUM_MBOX) - 1), PRCM_ARM_IT1_CLEAR);
return request_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler, 0,
"prcmu", NULL);
}
arch_initcall(prcmu_init);