linux/drivers/video/pxafb.c
Eric Miao 4f3e266462 [ARM] pxafb: fix the warning of incorrect lccr when lcd_conn is specified
The newly introduced "lcd_conn" field for connected LCD panel type will
cause the original code to generate the warnings of incorrect lccr*.
This is unnecessary since well encoded LCD_* flags will not generate
incorrect combinition of lccr* bits. Skip the check if "lcd_conn" is
specified.

Signed-off-by: Eric Miao <eric.miao@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-08-16 16:39:16 +01:00

1933 lines
51 KiB
C

/*
* linux/drivers/video/pxafb.c
*
* Copyright (C) 1999 Eric A. Thomas.
* Copyright (C) 2004 Jean-Frederic Clere.
* Copyright (C) 2004 Ian Campbell.
* Copyright (C) 2004 Jeff Lackey.
* Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
* which in turn is
* Based on acornfb.c Copyright (C) Russell King.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*
* Intel PXA250/210 LCD Controller Frame Buffer Driver
*
* Please direct your questions and comments on this driver to the following
* email address:
*
* linux-arm-kernel@lists.arm.linux.org.uk
*
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/fb.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/cpufreq.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/completion.h>
#include <linux/mutex.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <mach/hardware.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/div64.h>
#include <mach/pxa-regs.h>
#include <mach/pxa2xx-gpio.h>
#include <mach/bitfield.h>
#include <mach/pxafb.h>
/*
* Complain if VAR is out of range.
*/
#define DEBUG_VAR 1
#include "pxafb.h"
/* Bits which should not be set in machine configuration structures */
#define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
#define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
LCCR3_PCD | LCCR3_BPP)
static void (*pxafb_backlight_power)(int);
static void (*pxafb_lcd_power)(int, struct fb_var_screeninfo *);
static int pxafb_activate_var(struct fb_var_screeninfo *var,
struct pxafb_info *);
static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
static inline unsigned long
lcd_readl(struct pxafb_info *fbi, unsigned int off)
{
return __raw_readl(fbi->mmio_base + off);
}
static inline void
lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
{
__raw_writel(val, fbi->mmio_base + off);
}
static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
{
unsigned long flags;
local_irq_save(flags);
/*
* We need to handle two requests being made at the same time.
* There are two important cases:
* 1. When we are changing VT (C_REENABLE) while unblanking
* (C_ENABLE) We must perform the unblanking, which will
* do our REENABLE for us.
* 2. When we are blanking, but immediately unblank before
* we have blanked. We do the "REENABLE" thing here as
* well, just to be sure.
*/
if (fbi->task_state == C_ENABLE && state == C_REENABLE)
state = (u_int) -1;
if (fbi->task_state == C_DISABLE && state == C_ENABLE)
state = C_REENABLE;
if (state != (u_int)-1) {
fbi->task_state = state;
schedule_work(&fbi->task);
}
local_irq_restore(flags);
}
static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
{
chan &= 0xffff;
chan >>= 16 - bf->length;
return chan << bf->offset;
}
static int
pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
u_int trans, struct fb_info *info)
{
struct pxafb_info *fbi = (struct pxafb_info *)info;
u_int val;
if (regno >= fbi->palette_size)
return 1;
if (fbi->fb.var.grayscale) {
fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
return 0;
}
switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
case LCCR4_PAL_FOR_0:
val = ((red >> 0) & 0xf800);
val |= ((green >> 5) & 0x07e0);
val |= ((blue >> 11) & 0x001f);
fbi->palette_cpu[regno] = val;
break;
case LCCR4_PAL_FOR_1:
val = ((red << 8) & 0x00f80000);
val |= ((green >> 0) & 0x0000fc00);
val |= ((blue >> 8) & 0x000000f8);
((u32 *)(fbi->palette_cpu))[regno] = val;
break;
case LCCR4_PAL_FOR_2:
val = ((red << 8) & 0x00fc0000);
val |= ((green >> 0) & 0x0000fc00);
val |= ((blue >> 8) & 0x000000fc);
((u32 *)(fbi->palette_cpu))[regno] = val;
break;
}
return 0;
}
static int
pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int trans, struct fb_info *info)
{
struct pxafb_info *fbi = (struct pxafb_info *)info;
unsigned int val;
int ret = 1;
/*
* If inverse mode was selected, invert all the colours
* rather than the register number. The register number
* is what you poke into the framebuffer to produce the
* colour you requested.
*/
if (fbi->cmap_inverse) {
red = 0xffff - red;
green = 0xffff - green;
blue = 0xffff - blue;
}
/*
* If greyscale is true, then we convert the RGB value
* to greyscale no matter what visual we are using.
*/
if (fbi->fb.var.grayscale)
red = green = blue = (19595 * red + 38470 * green +
7471 * blue) >> 16;
switch (fbi->fb.fix.visual) {
case FB_VISUAL_TRUECOLOR:
/*
* 16-bit True Colour. We encode the RGB value
* according to the RGB bitfield information.
*/
if (regno < 16) {
u32 *pal = fbi->fb.pseudo_palette;
val = chan_to_field(red, &fbi->fb.var.red);
val |= chan_to_field(green, &fbi->fb.var.green);
val |= chan_to_field(blue, &fbi->fb.var.blue);
pal[regno] = val;
ret = 0;
}
break;
case FB_VISUAL_STATIC_PSEUDOCOLOR:
case FB_VISUAL_PSEUDOCOLOR:
ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
break;
}
return ret;
}
/*
* pxafb_bpp_to_lccr3():
* Convert a bits per pixel value to the correct bit pattern for LCCR3
*/
static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo *var)
{
int ret = 0;
switch (var->bits_per_pixel) {
case 1: ret = LCCR3_1BPP; break;
case 2: ret = LCCR3_2BPP; break;
case 4: ret = LCCR3_4BPP; break;
case 8: ret = LCCR3_8BPP; break;
case 16: ret = LCCR3_16BPP; break;
case 24:
switch (var->red.length + var->green.length +
var->blue.length + var->transp.length) {
case 18: ret = LCCR3_18BPP_P | LCCR3_PDFOR_3; break;
case 19: ret = LCCR3_19BPP_P; break;
}
break;
case 32:
switch (var->red.length + var->green.length +
var->blue.length + var->transp.length) {
case 18: ret = LCCR3_18BPP | LCCR3_PDFOR_3; break;
case 19: ret = LCCR3_19BPP; break;
case 24: ret = LCCR3_24BPP | LCCR3_PDFOR_3; break;
case 25: ret = LCCR3_25BPP; break;
}
break;
}
return ret;
}
#ifdef CONFIG_CPU_FREQ
/*
* pxafb_display_dma_period()
* Calculate the minimum period (in picoseconds) between two DMA
* requests for the LCD controller. If we hit this, it means we're
* doing nothing but LCD DMA.
*/
static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
{
/*
* Period = pixclock * bits_per_byte * bytes_per_transfer
* / memory_bits_per_pixel;
*/
return var->pixclock * 8 * 16 / var->bits_per_pixel;
}
#endif
/*
* Select the smallest mode that allows the desired resolution to be
* displayed. If desired parameters can be rounded up.
*/
static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
struct fb_var_screeninfo *var)
{
struct pxafb_mode_info *mode = NULL;
struct pxafb_mode_info *modelist = mach->modes;
unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
unsigned int i;
for (i = 0; i < mach->num_modes; i++) {
if (modelist[i].xres >= var->xres &&
modelist[i].yres >= var->yres &&
modelist[i].xres < best_x &&
modelist[i].yres < best_y &&
modelist[i].bpp >= var->bits_per_pixel) {
best_x = modelist[i].xres;
best_y = modelist[i].yres;
mode = &modelist[i];
}
}
return mode;
}
static void pxafb_setmode(struct fb_var_screeninfo *var,
struct pxafb_mode_info *mode)
{
var->xres = mode->xres;
var->yres = mode->yres;
var->bits_per_pixel = mode->bpp;
var->pixclock = mode->pixclock;
var->hsync_len = mode->hsync_len;
var->left_margin = mode->left_margin;
var->right_margin = mode->right_margin;
var->vsync_len = mode->vsync_len;
var->upper_margin = mode->upper_margin;
var->lower_margin = mode->lower_margin;
var->sync = mode->sync;
var->grayscale = mode->cmap_greyscale;
var->xres_virtual = var->xres;
var->yres_virtual = var->yres;
}
/*
* pxafb_check_var():
* Get the video params out of 'var'. If a value doesn't fit, round it up,
* if it's too big, return -EINVAL.
*
* Round up in the following order: bits_per_pixel, xres,
* yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
* bitfields, horizontal timing, vertical timing.
*/
static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
struct pxafb_info *fbi = (struct pxafb_info *)info;
struct pxafb_mach_info *inf = fbi->dev->platform_data;
if (var->xres < MIN_XRES)
var->xres = MIN_XRES;
if (var->yres < MIN_YRES)
var->yres = MIN_YRES;
if (inf->fixed_modes) {
struct pxafb_mode_info *mode;
mode = pxafb_getmode(inf, var);
if (!mode)
return -EINVAL;
pxafb_setmode(var, mode);
} else {
if (var->xres > inf->modes->xres)
return -EINVAL;
if (var->yres > inf->modes->yres)
return -EINVAL;
if (var->bits_per_pixel > inf->modes->bpp)
return -EINVAL;
}
var->xres_virtual =
max(var->xres_virtual, var->xres);
var->yres_virtual =
max(var->yres_virtual, var->yres);
/*
* Setup the RGB parameters for this display.
*
* The pixel packing format is described on page 7-11 of the
* PXA2XX Developer's Manual.
*/
if (var->bits_per_pixel == 16) {
var->red.offset = 11; var->red.length = 5;
var->green.offset = 5; var->green.length = 6;
var->blue.offset = 0; var->blue.length = 5;
var->transp.offset = var->transp.length = 0;
} else if (var->bits_per_pixel > 16) {
struct pxafb_mode_info *mode;
mode = pxafb_getmode(inf, var);
if (!mode)
return -EINVAL;
switch (mode->depth) {
case 18: /* RGB666 */
var->transp.offset = var->transp.length = 0;
var->red.offset = 12; var->red.length = 6;
var->green.offset = 6; var->green.length = 6;
var->blue.offset = 0; var->blue.length = 6;
break;
case 19: /* RGBT666 */
var->transp.offset = 18; var->transp.length = 1;
var->red.offset = 12; var->red.length = 6;
var->green.offset = 6; var->green.length = 6;
var->blue.offset = 0; var->blue.length = 6;
break;
case 24: /* RGB888 */
var->transp.offset = var->transp.length = 0;
var->red.offset = 16; var->red.length = 8;
var->green.offset = 8; var->green.length = 8;
var->blue.offset = 0; var->blue.length = 8;
break;
case 25: /* RGBT888 */
var->transp.offset = 24; var->transp.length = 1;
var->red.offset = 16; var->red.length = 8;
var->green.offset = 8; var->green.length = 8;
var->blue.offset = 0; var->blue.length = 8;
break;
default:
return -EINVAL;
}
} else {
var->red.offset = var->green.offset = 0;
var->blue.offset = var->transp.offset = 0;
var->red.length = 8;
var->green.length = 8;
var->blue.length = 8;
var->transp.length = 0;
}
#ifdef CONFIG_CPU_FREQ
pr_debug("pxafb: dma period = %d ps\n",
pxafb_display_dma_period(var));
#endif
return 0;
}
static inline void pxafb_set_truecolor(u_int is_true_color)
{
/* do your machine-specific setup if needed */
}
/*
* pxafb_set_par():
* Set the user defined part of the display for the specified console
*/
static int pxafb_set_par(struct fb_info *info)
{
struct pxafb_info *fbi = (struct pxafb_info *)info;
struct fb_var_screeninfo *var = &info->var;
if (var->bits_per_pixel >= 16)
fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
else if (!fbi->cmap_static)
fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
else {
/*
* Some people have weird ideas about wanting static
* pseudocolor maps. I suspect their user space
* applications are broken.
*/
fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
}
fbi->fb.fix.line_length = var->xres_virtual *
var->bits_per_pixel / 8;
if (var->bits_per_pixel >= 16)
fbi->palette_size = 0;
else
fbi->palette_size = var->bits_per_pixel == 1 ?
4 : 1 << var->bits_per_pixel;
fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
/*
* Set (any) board control register to handle new color depth
*/
pxafb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR);
if (fbi->fb.var.bits_per_pixel >= 16)
fb_dealloc_cmap(&fbi->fb.cmap);
else
fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
pxafb_activate_var(var, fbi);
return 0;
}
/*
* pxafb_blank():
* Blank the display by setting all palette values to zero. Note, the
* 16 bpp mode does not really use the palette, so this will not
* blank the display in all modes.
*/
static int pxafb_blank(int blank, struct fb_info *info)
{
struct pxafb_info *fbi = (struct pxafb_info *)info;
int i;
switch (blank) {
case FB_BLANK_POWERDOWN:
case FB_BLANK_VSYNC_SUSPEND:
case FB_BLANK_HSYNC_SUSPEND:
case FB_BLANK_NORMAL:
if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
for (i = 0; i < fbi->palette_size; i++)
pxafb_setpalettereg(i, 0, 0, 0, 0, info);
pxafb_schedule_work(fbi, C_DISABLE);
/* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
break;
case FB_BLANK_UNBLANK:
/* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
fb_set_cmap(&fbi->fb.cmap, info);
pxafb_schedule_work(fbi, C_ENABLE);
}
return 0;
}
static int pxafb_mmap(struct fb_info *info,
struct vm_area_struct *vma)
{
struct pxafb_info *fbi = (struct pxafb_info *)info;
unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
if (off < info->fix.smem_len) {
vma->vm_pgoff += fbi->video_offset / PAGE_SIZE;
return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
fbi->map_dma, fbi->map_size);
}
return -EINVAL;
}
static struct fb_ops pxafb_ops = {
.owner = THIS_MODULE,
.fb_check_var = pxafb_check_var,
.fb_set_par = pxafb_set_par,
.fb_setcolreg = pxafb_setcolreg,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_blank = pxafb_blank,
.fb_mmap = pxafb_mmap,
};
/*
* Calculate the PCD value from the clock rate (in picoseconds).
* We take account of the PPCR clock setting.
* From PXA Developer's Manual:
*
* PixelClock = LCLK
* -------------
* 2 ( PCD + 1 )
*
* PCD = LCLK
* ------------- - 1
* 2(PixelClock)
*
* Where:
* LCLK = LCD/Memory Clock
* PCD = LCCR3[7:0]
*
* PixelClock here is in Hz while the pixclock argument given is the
* period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
*
* The function get_lclk_frequency_10khz returns LCLK in units of
* 10khz. Calling the result of this function lclk gives us the
* following
*
* PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
* -------------------------------------- - 1
* 2
*
* Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
*/
static inline unsigned int get_pcd(struct pxafb_info *fbi,
unsigned int pixclock)
{
unsigned long long pcd;
/* FIXME: Need to take into account Double Pixel Clock mode
* (DPC) bit? or perhaps set it based on the various clock
* speeds */
pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
pcd *= pixclock;
do_div(pcd, 100000000 * 2);
/* no need for this, since we should subtract 1 anyway. they cancel */
/* pcd += 1; */ /* make up for integer math truncations */
return (unsigned int)pcd;
}
/*
* Some touchscreens need hsync information from the video driver to
* function correctly. We export it here. Note that 'hsync_time' and
* the value returned from pxafb_get_hsync_time() is the *reciprocal*
* of the hsync period in seconds.
*/
static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
{
unsigned long htime;
if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
fbi->hsync_time = 0;
return;
}
htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
fbi->hsync_time = htime;
}
unsigned long pxafb_get_hsync_time(struct device *dev)
{
struct pxafb_info *fbi = dev_get_drvdata(dev);
/* If display is blanked/suspended, hsync isn't active */
if (!fbi || (fbi->state != C_ENABLE))
return 0;
return fbi->hsync_time;
}
EXPORT_SYMBOL(pxafb_get_hsync_time);
static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
unsigned int offset, size_t size)
{
struct pxafb_dma_descriptor *dma_desc, *pal_desc;
unsigned int dma_desc_off, pal_desc_off;
if (dma < 0 || dma >= DMA_MAX)
return -EINVAL;
dma_desc = &fbi->dma_buff->dma_desc[dma];
dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
dma_desc->fsadr = fbi->screen_dma + offset;
dma_desc->fidr = 0;
dma_desc->ldcmd = size;
if (pal < 0 || pal >= PAL_MAX) {
dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
} else {
pal_desc = &fbi->dma_buff->pal_desc[pal];
pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
pal_desc->fidr = 0;
if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
else
pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
pal_desc->ldcmd |= LDCMD_PAL;
/* flip back and forth between palette and frame buffer */
pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
}
return 0;
}
#ifdef CONFIG_FB_PXA_SMARTPANEL
static int setup_smart_dma(struct pxafb_info *fbi)
{
struct pxafb_dma_descriptor *dma_desc;
unsigned long dma_desc_off, cmd_buff_off;
dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
dma_desc->fidr = 0;
dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
return 0;
}
int pxafb_smart_flush(struct fb_info *info)
{
struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
uint32_t prsr;
int ret = 0;
/* disable controller until all registers are set up */
lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
/* 1. make it an even number of commands to align on 32-bit boundary
* 2. add the interrupt command to the end of the chain so we can
* keep track of the end of the transfer
*/
while (fbi->n_smart_cmds & 1)
fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
setup_smart_dma(fbi);
/* continue to execute next command */
prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
lcd_writel(fbi, PRSR, prsr);
/* stop the processor in case it executed "wait for sync" cmd */
lcd_writel(fbi, CMDCR, 0x0001);
/* don't send interrupts for fifo underruns on channel 6 */
lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
/* begin sending */
lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
pr_warning("%s: timeout waiting for command done\n",
__func__);
ret = -ETIMEDOUT;
}
/* quick disable */
prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
lcd_writel(fbi, PRSR, prsr);
lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
lcd_writel(fbi, FDADR6, 0);
fbi->n_smart_cmds = 0;
return ret;
}
int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
{
int i;
struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
/* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
for (i = 0; i < n_cmds; i++) {
if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
pxafb_smart_flush(info);
fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds++;
}
return 0;
}
static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
{
unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
return (t == 0) ? 1 : t;
}
static void setup_smart_timing(struct pxafb_info *fbi,
struct fb_var_screeninfo *var)
{
struct pxafb_mach_info *inf = fbi->dev->platform_data;
struct pxafb_mode_info *mode = &inf->modes[0];
unsigned long lclk = clk_get_rate(fbi->clk);
unsigned t1, t2, t3, t4;
t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
t3 = mode->op_hold_time;
t4 = mode->cmd_inh_time;
fbi->reg_lccr1 =
LCCR1_DisWdth(var->xres) |
LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
fbi->reg_lccr3 = LCCR3_PixClkDiv(__smart_timing(t4, lclk));
/* FIXME: make this configurable */
fbi->reg_cmdcr = 1;
}
static int pxafb_smart_thread(void *arg)
{
struct pxafb_info *fbi = arg;
struct pxafb_mach_info *inf = fbi->dev->platform_data;
if (!fbi || !inf->smart_update) {
pr_err("%s: not properly initialized, thread terminated\n",
__func__);
return -EINVAL;
}
pr_debug("%s(): task starting\n", __func__);
set_freezable();
while (!kthread_should_stop()) {
if (try_to_freeze())
continue;
if (fbi->state == C_ENABLE) {
inf->smart_update(&fbi->fb);
complete(&fbi->refresh_done);
}
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(30 * HZ / 1000);
}
pr_debug("%s(): task ending\n", __func__);
return 0;
}
static int pxafb_smart_init(struct pxafb_info *fbi)
{
fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
"lcd_refresh");
if (IS_ERR(fbi->smart_thread)) {
printk(KERN_ERR "%s: unable to create kernel thread\n",
__func__);
return PTR_ERR(fbi->smart_thread);
}
return 0;
}
#else
int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
{
return 0;
}
int pxafb_smart_flush(struct fb_info *info)
{
return 0;
}
#endif /* CONFIG_FB_SMART_PANEL */
static void setup_parallel_timing(struct pxafb_info *fbi,
struct fb_var_screeninfo *var)
{
unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
fbi->reg_lccr1 =
LCCR1_DisWdth(var->xres) +
LCCR1_HorSnchWdth(var->hsync_len) +
LCCR1_BegLnDel(var->left_margin) +
LCCR1_EndLnDel(var->right_margin);
/*
* If we have a dual scan LCD, we need to halve
* the YRES parameter.
*/
lines_per_panel = var->yres;
if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
lines_per_panel /= 2;
fbi->reg_lccr2 =
LCCR2_DisHght(lines_per_panel) +
LCCR2_VrtSnchWdth(var->vsync_len) +
LCCR2_BegFrmDel(var->upper_margin) +
LCCR2_EndFrmDel(var->lower_margin);
fbi->reg_lccr3 = fbi->lccr3 |
(var->sync & FB_SYNC_HOR_HIGH_ACT ?
LCCR3_HorSnchH : LCCR3_HorSnchL) |
(var->sync & FB_SYNC_VERT_HIGH_ACT ?
LCCR3_VrtSnchH : LCCR3_VrtSnchL);
if (pcd) {
fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
set_hsync_time(fbi, pcd);
}
}
/*
* pxafb_activate_var():
* Configures LCD Controller based on entries in var parameter.
* Settings are only written to the controller if changes were made.
*/
static int pxafb_activate_var(struct fb_var_screeninfo *var,
struct pxafb_info *fbi)
{
u_long flags;
size_t nbytes;
#if DEBUG_VAR
if (!(fbi->lccr0 & LCCR0_LCDT)) {
if (var->xres < 16 || var->xres > 1024)
printk(KERN_ERR "%s: invalid xres %d\n",
fbi->fb.fix.id, var->xres);
switch (var->bits_per_pixel) {
case 1:
case 2:
case 4:
case 8:
case 16:
case 24:
case 32:
break;
default:
printk(KERN_ERR "%s: invalid bit depth %d\n",
fbi->fb.fix.id, var->bits_per_pixel);
break;
}
if (var->hsync_len < 1 || var->hsync_len > 64)
printk(KERN_ERR "%s: invalid hsync_len %d\n",
fbi->fb.fix.id, var->hsync_len);
if (var->left_margin < 1 || var->left_margin > 255)
printk(KERN_ERR "%s: invalid left_margin %d\n",
fbi->fb.fix.id, var->left_margin);
if (var->right_margin < 1 || var->right_margin > 255)
printk(KERN_ERR "%s: invalid right_margin %d\n",
fbi->fb.fix.id, var->right_margin);
if (var->yres < 1 || var->yres > 1024)
printk(KERN_ERR "%s: invalid yres %d\n",
fbi->fb.fix.id, var->yres);
if (var->vsync_len < 1 || var->vsync_len > 64)
printk(KERN_ERR "%s: invalid vsync_len %d\n",
fbi->fb.fix.id, var->vsync_len);
if (var->upper_margin < 0 || var->upper_margin > 255)
printk(KERN_ERR "%s: invalid upper_margin %d\n",
fbi->fb.fix.id, var->upper_margin);
if (var->lower_margin < 0 || var->lower_margin > 255)
printk(KERN_ERR "%s: invalid lower_margin %d\n",
fbi->fb.fix.id, var->lower_margin);
}
#endif
/* Update shadow copy atomically */
local_irq_save(flags);
#ifdef CONFIG_FB_PXA_SMARTPANEL
if (fbi->lccr0 & LCCR0_LCDT)
setup_smart_timing(fbi, var);
else
#endif
setup_parallel_timing(fbi, var);
fbi->reg_lccr0 = fbi->lccr0 |
(LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
fbi->reg_lccr3 |= pxafb_bpp_to_lccr3(var);
nbytes = var->yres * fbi->fb.fix.line_length;
if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual) {
nbytes = nbytes / 2;
setup_frame_dma(fbi, DMA_LOWER, PAL_NONE, nbytes, nbytes);
}
if ((var->bits_per_pixel >= 16) || (fbi->lccr0 & LCCR0_LCDT))
setup_frame_dma(fbi, DMA_BASE, PAL_NONE, 0, nbytes);
else
setup_frame_dma(fbi, DMA_BASE, PAL_BASE, 0, nbytes);
fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
local_irq_restore(flags);
/*
* Only update the registers if the controller is enabled
* and something has changed.
*/
if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
(lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
(lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
(lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
(lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
(lcd_readl(fbi, FDADR1) != fbi->fdadr[1]))
pxafb_schedule_work(fbi, C_REENABLE);
return 0;
}
/*
* NOTE! The following functions are purely helpers for set_ctrlr_state.
* Do not call them directly; set_ctrlr_state does the correct serialisation
* to ensure that things happen in the right way 100% of time time.
* -- rmk
*/
static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
{
pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
if (pxafb_backlight_power)
pxafb_backlight_power(on);
}
static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
{
pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
if (pxafb_lcd_power)
pxafb_lcd_power(on, &fbi->fb.var);
}
static void pxafb_setup_gpio(struct pxafb_info *fbi)
{
int gpio, ldd_bits;
unsigned int lccr0 = fbi->lccr0;
/*
* setup is based on type of panel supported
*/
/* 4 bit interface */
if ((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
(lccr0 & LCCR0_SDS) == LCCR0_Sngl &&
(lccr0 & LCCR0_DPD) == LCCR0_4PixMono)
ldd_bits = 4;
/* 8 bit interface */
else if (((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
((lccr0 & LCCR0_SDS) == LCCR0_Dual ||
(lccr0 & LCCR0_DPD) == LCCR0_8PixMono)) ||
((lccr0 & LCCR0_CMS) == LCCR0_Color &&
(lccr0 & LCCR0_PAS) == LCCR0_Pas &&
(lccr0 & LCCR0_SDS) == LCCR0_Sngl))
ldd_bits = 8;
/* 16 bit interface */
else if ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
((lccr0 & LCCR0_SDS) == LCCR0_Dual ||
(lccr0 & LCCR0_PAS) == LCCR0_Act))
ldd_bits = 16;
else {
printk(KERN_ERR "pxafb_setup_gpio: unable to determine "
"bits per pixel\n");
return;
}
for (gpio = 58; ldd_bits; gpio++, ldd_bits--)
pxa_gpio_mode(gpio | GPIO_ALT_FN_2_OUT);
/* 18 bit interface */
if (fbi->fb.var.bits_per_pixel > 16) {
pxa_gpio_mode(86 | GPIO_ALT_FN_2_OUT);
pxa_gpio_mode(87 | GPIO_ALT_FN_2_OUT);
}
pxa_gpio_mode(GPIO74_LCD_FCLK_MD);
pxa_gpio_mode(GPIO75_LCD_LCLK_MD);
pxa_gpio_mode(GPIO76_LCD_PCLK_MD);
if ((lccr0 & LCCR0_PAS) == 0)
pxa_gpio_mode(GPIO77_LCD_ACBIAS_MD);
}
static void pxafb_enable_controller(struct pxafb_info *fbi)
{
pr_debug("pxafb: Enabling LCD controller\n");
pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
/* enable LCD controller clock */
clk_enable(fbi->clk);
if (fbi->lccr0 & LCCR0_LCDT)
return;
/* Sequence from 11.7.10 */
lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
}
static void pxafb_disable_controller(struct pxafb_info *fbi)
{
uint32_t lccr0;
#ifdef CONFIG_FB_PXA_SMARTPANEL
if (fbi->lccr0 & LCCR0_LCDT) {
wait_for_completion_timeout(&fbi->refresh_done,
200 * HZ / 1000);
return;
}
#endif
/* Clear LCD Status Register */
lcd_writel(fbi, LCSR, 0xffffffff);
lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
lcd_writel(fbi, LCCR0, lccr0);
lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
wait_for_completion_timeout(&fbi->disable_done, 200 * HZ / 1000);
/* disable LCD controller clock */
clk_disable(fbi->clk);
}
/*
* pxafb_handle_irq: Handle 'LCD DONE' interrupts.
*/
static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
{
struct pxafb_info *fbi = dev_id;
unsigned int lccr0, lcsr = lcd_readl(fbi, LCSR);
if (lcsr & LCSR_LDD) {
lccr0 = lcd_readl(fbi, LCCR0);
lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
complete(&fbi->disable_done);
}
#ifdef CONFIG_FB_PXA_SMARTPANEL
if (lcsr & LCSR_CMD_INT)
complete(&fbi->command_done);
#endif
lcd_writel(fbi, LCSR, lcsr);
return IRQ_HANDLED;
}
/*
* This function must be called from task context only, since it will
* sleep when disabling the LCD controller, or if we get two contending
* processes trying to alter state.
*/
static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
{
u_int old_state;
mutex_lock(&fbi->ctrlr_lock);
old_state = fbi->state;
/*
* Hack around fbcon initialisation.
*/
if (old_state == C_STARTUP && state == C_REENABLE)
state = C_ENABLE;
switch (state) {
case C_DISABLE_CLKCHANGE:
/*
* Disable controller for clock change. If the
* controller is already disabled, then do nothing.
*/
if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
fbi->state = state;
/* TODO __pxafb_lcd_power(fbi, 0); */
pxafb_disable_controller(fbi);
}
break;
case C_DISABLE_PM:
case C_DISABLE:
/*
* Disable controller
*/
if (old_state != C_DISABLE) {
fbi->state = state;
__pxafb_backlight_power(fbi, 0);
__pxafb_lcd_power(fbi, 0);
if (old_state != C_DISABLE_CLKCHANGE)
pxafb_disable_controller(fbi);
}
break;
case C_ENABLE_CLKCHANGE:
/*
* Enable the controller after clock change. Only
* do this if we were disabled for the clock change.
*/
if (old_state == C_DISABLE_CLKCHANGE) {
fbi->state = C_ENABLE;
pxafb_enable_controller(fbi);
/* TODO __pxafb_lcd_power(fbi, 1); */
}
break;
case C_REENABLE:
/*
* Re-enable the controller only if it was already
* enabled. This is so we reprogram the control
* registers.
*/
if (old_state == C_ENABLE) {
__pxafb_lcd_power(fbi, 0);
pxafb_disable_controller(fbi);
pxafb_setup_gpio(fbi);
pxafb_enable_controller(fbi);
__pxafb_lcd_power(fbi, 1);
}
break;
case C_ENABLE_PM:
/*
* Re-enable the controller after PM. This is not
* perfect - think about the case where we were doing
* a clock change, and we suspended half-way through.
*/
if (old_state != C_DISABLE_PM)
break;
/* fall through */
case C_ENABLE:
/*
* Power up the LCD screen, enable controller, and
* turn on the backlight.
*/
if (old_state != C_ENABLE) {
fbi->state = C_ENABLE;
pxafb_setup_gpio(fbi);
pxafb_enable_controller(fbi);
__pxafb_lcd_power(fbi, 1);
__pxafb_backlight_power(fbi, 1);
}
break;
}
mutex_unlock(&fbi->ctrlr_lock);
}
/*
* Our LCD controller task (which is called when we blank or unblank)
* via keventd.
*/
static void pxafb_task(struct work_struct *work)
{
struct pxafb_info *fbi =
container_of(work, struct pxafb_info, task);
u_int state = xchg(&fbi->task_state, -1);
set_ctrlr_state(fbi, state);
}
#ifdef CONFIG_CPU_FREQ
/*
* CPU clock speed change handler. We need to adjust the LCD timing
* parameters when the CPU clock is adjusted by the power management
* subsystem.
*
* TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
*/
static int
pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
{
struct pxafb_info *fbi = TO_INF(nb, freq_transition);
/* TODO struct cpufreq_freqs *f = data; */
u_int pcd;
switch (val) {
case CPUFREQ_PRECHANGE:
set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
break;
case CPUFREQ_POSTCHANGE:
pcd = get_pcd(fbi, fbi->fb.var.pixclock);
set_hsync_time(fbi, pcd);
fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
LCCR3_PixClkDiv(pcd);
set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
break;
}
return 0;
}
static int
pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
{
struct pxafb_info *fbi = TO_INF(nb, freq_policy);
struct fb_var_screeninfo *var = &fbi->fb.var;
struct cpufreq_policy *policy = data;
switch (val) {
case CPUFREQ_ADJUST:
case CPUFREQ_INCOMPATIBLE:
pr_debug("min dma period: %d ps, "
"new clock %d kHz\n", pxafb_display_dma_period(var),
policy->max);
/* TODO: fill in min/max values */
break;
}
return 0;
}
#endif
#ifdef CONFIG_PM
/*
* Power management hooks. Note that we won't be called from IRQ context,
* unlike the blank functions above, so we may sleep.
*/
static int pxafb_suspend(struct platform_device *dev, pm_message_t state)
{
struct pxafb_info *fbi = platform_get_drvdata(dev);
set_ctrlr_state(fbi, C_DISABLE_PM);
return 0;
}
static int pxafb_resume(struct platform_device *dev)
{
struct pxafb_info *fbi = platform_get_drvdata(dev);
set_ctrlr_state(fbi, C_ENABLE_PM);
return 0;
}
#else
#define pxafb_suspend NULL
#define pxafb_resume NULL
#endif
/*
* pxafb_map_video_memory():
* Allocates the DRAM memory for the frame buffer. This buffer is
* remapped into a non-cached, non-buffered, memory region to
* allow palette and pixel writes to occur without flushing the
* cache. Once this area is remapped, all virtual memory
* access to the video memory should occur at the new region.
*/
static int __devinit pxafb_map_video_memory(struct pxafb_info *fbi)
{
/*
* We reserve one page for the palette, plus the size
* of the framebuffer.
*/
fbi->video_offset = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + fbi->video_offset);
fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
&fbi->map_dma, GFP_KERNEL);
if (fbi->map_cpu) {
/* prevent initial garbage on screen */
memset(fbi->map_cpu, 0, fbi->map_size);
fbi->fb.screen_base = fbi->map_cpu + fbi->video_offset;
fbi->screen_dma = fbi->map_dma + fbi->video_offset;
/*
* FIXME: this is actually the wrong thing to place in
* smem_start. But fbdev suffers from the problem that
* it needs an API which doesn't exist (in this case,
* dma_writecombine_mmap)
*/
fbi->fb.fix.smem_start = fbi->screen_dma;
fbi->palette_size = fbi->fb.var.bits_per_pixel == 8 ? 256 : 16;
fbi->dma_buff = (void *) fbi->map_cpu;
fbi->dma_buff_phys = fbi->map_dma;
fbi->palette_cpu = (u16 *) fbi->dma_buff->palette;
pr_debug("pxafb: palette_mem_size = 0x%08x\n", fbi->palette_size*sizeof(u16));
#ifdef CONFIG_FB_PXA_SMARTPANEL
fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
fbi->n_smart_cmds = 0;
#endif
}
return fbi->map_cpu ? 0 : -ENOMEM;
}
static void pxafb_decode_mode_info(struct pxafb_info *fbi,
struct pxafb_mode_info *modes,
unsigned int num_modes)
{
unsigned int i, smemlen;
pxafb_setmode(&fbi->fb.var, &modes[0]);
for (i = 0; i < num_modes; i++) {
smemlen = modes[i].xres * modes[i].yres * modes[i].bpp / 8;
if (smemlen > fbi->fb.fix.smem_len)
fbi->fb.fix.smem_len = smemlen;
}
}
static void pxafb_decode_mach_info(struct pxafb_info *fbi,
struct pxafb_mach_info *inf)
{
unsigned int lcd_conn = inf->lcd_conn;
fbi->cmap_inverse = inf->cmap_inverse;
fbi->cmap_static = inf->cmap_static;
switch (lcd_conn & 0xf) {
case LCD_TYPE_MONO_STN:
fbi->lccr0 = LCCR0_CMS;
break;
case LCD_TYPE_MONO_DSTN:
fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
break;
case LCD_TYPE_COLOR_STN:
fbi->lccr0 = 0;
break;
case LCD_TYPE_COLOR_DSTN:
fbi->lccr0 = LCCR0_SDS;
break;
case LCD_TYPE_COLOR_TFT:
fbi->lccr0 = LCCR0_PAS;
break;
case LCD_TYPE_SMART_PANEL:
fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
break;
default:
/* fall back to backward compatibility way */
fbi->lccr0 = inf->lccr0;
fbi->lccr3 = inf->lccr3;
fbi->lccr4 = inf->lccr4;
goto decode_mode;
}
if (lcd_conn == LCD_MONO_STN_8BPP)
fbi->lccr0 |= LCCR0_DPD;
fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL) ? LCCR3_PCP : 0;
decode_mode:
pxafb_decode_mode_info(fbi, inf->modes, inf->num_modes);
}
static struct pxafb_info * __devinit pxafb_init_fbinfo(struct device *dev)
{
struct pxafb_info *fbi;
void *addr;
struct pxafb_mach_info *inf = dev->platform_data;
/* Alloc the pxafb_info and pseudo_palette in one step */
fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
if (!fbi)
return NULL;
memset(fbi, 0, sizeof(struct pxafb_info));
fbi->dev = dev;
fbi->clk = clk_get(dev, "LCDCLK");
if (IS_ERR(fbi->clk)) {
kfree(fbi);
return NULL;
}
strcpy(fbi->fb.fix.id, PXA_NAME);
fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
fbi->fb.fix.type_aux = 0;
fbi->fb.fix.xpanstep = 0;
fbi->fb.fix.ypanstep = 0;
fbi->fb.fix.ywrapstep = 0;
fbi->fb.fix.accel = FB_ACCEL_NONE;
fbi->fb.var.nonstd = 0;
fbi->fb.var.activate = FB_ACTIVATE_NOW;
fbi->fb.var.height = -1;
fbi->fb.var.width = -1;
fbi->fb.var.accel_flags = 0;
fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
fbi->fb.fbops = &pxafb_ops;
fbi->fb.flags = FBINFO_DEFAULT;
fbi->fb.node = -1;
addr = fbi;
addr = addr + sizeof(struct pxafb_info);
fbi->fb.pseudo_palette = addr;
fbi->state = C_STARTUP;
fbi->task_state = (u_char)-1;
pxafb_decode_mach_info(fbi, inf);
init_waitqueue_head(&fbi->ctrlr_wait);
INIT_WORK(&fbi->task, pxafb_task);
mutex_init(&fbi->ctrlr_lock);
init_completion(&fbi->disable_done);
#ifdef CONFIG_FB_PXA_SMARTPANEL
init_completion(&fbi->command_done);
init_completion(&fbi->refresh_done);
#endif
return fbi;
}
#ifdef CONFIG_FB_PXA_PARAMETERS
static int __devinit parse_opt_mode(struct device *dev, const char *this_opt)
{
struct pxafb_mach_info *inf = dev->platform_data;
const char *name = this_opt+5;
unsigned int namelen = strlen(name);
int res_specified = 0, bpp_specified = 0;
unsigned int xres = 0, yres = 0, bpp = 0;
int yres_specified = 0;
int i;
for (i = namelen-1; i >= 0; i--) {
switch (name[i]) {
case '-':
namelen = i;
if (!bpp_specified && !yres_specified) {
bpp = simple_strtoul(&name[i+1], NULL, 0);
bpp_specified = 1;
} else
goto done;
break;
case 'x':
if (!yres_specified) {
yres = simple_strtoul(&name[i+1], NULL, 0);
yres_specified = 1;
} else
goto done;
break;
case '0' ... '9':
break;
default:
goto done;
}
}
if (i < 0 && yres_specified) {
xres = simple_strtoul(name, NULL, 0);
res_specified = 1;
}
done:
if (res_specified) {
dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
inf->modes[0].xres = xres; inf->modes[0].yres = yres;
}
if (bpp_specified)
switch (bpp) {
case 1:
case 2:
case 4:
case 8:
case 16:
inf->modes[0].bpp = bpp;
dev_info(dev, "overriding bit depth: %d\n", bpp);
break;
default:
dev_err(dev, "Depth %d is not valid\n", bpp);
return -EINVAL;
}
return 0;
}
static int __devinit parse_opt(struct device *dev, char *this_opt)
{
struct pxafb_mach_info *inf = dev->platform_data;
struct pxafb_mode_info *mode = &inf->modes[0];
char s[64];
s[0] = '\0';
if (!strncmp(this_opt, "mode:", 5)) {
return parse_opt_mode(dev, this_opt);
} else if (!strncmp(this_opt, "pixclock:", 9)) {
mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
sprintf(s, "pixclock: %ld\n", mode->pixclock);
} else if (!strncmp(this_opt, "left:", 5)) {
mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
sprintf(s, "left: %u\n", mode->left_margin);
} else if (!strncmp(this_opt, "right:", 6)) {
mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
sprintf(s, "right: %u\n", mode->right_margin);
} else if (!strncmp(this_opt, "upper:", 6)) {
mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
sprintf(s, "upper: %u\n", mode->upper_margin);
} else if (!strncmp(this_opt, "lower:", 6)) {
mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
sprintf(s, "lower: %u\n", mode->lower_margin);
} else if (!strncmp(this_opt, "hsynclen:", 9)) {
mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
sprintf(s, "hsynclen: %u\n", mode->hsync_len);
} else if (!strncmp(this_opt, "vsynclen:", 9)) {
mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
sprintf(s, "vsynclen: %u\n", mode->vsync_len);
} else if (!strncmp(this_opt, "hsync:", 6)) {
if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
sprintf(s, "hsync: Active Low\n");
mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
} else {
sprintf(s, "hsync: Active High\n");
mode->sync |= FB_SYNC_HOR_HIGH_ACT;
}
} else if (!strncmp(this_opt, "vsync:", 6)) {
if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
sprintf(s, "vsync: Active Low\n");
mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
} else {
sprintf(s, "vsync: Active High\n");
mode->sync |= FB_SYNC_VERT_HIGH_ACT;
}
} else if (!strncmp(this_opt, "dpc:", 4)) {
if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
sprintf(s, "double pixel clock: false\n");
inf->lccr3 &= ~LCCR3_DPC;
} else {
sprintf(s, "double pixel clock: true\n");
inf->lccr3 |= LCCR3_DPC;
}
} else if (!strncmp(this_opt, "outputen:", 9)) {
if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
sprintf(s, "output enable: active low\n");
inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
} else {
sprintf(s, "output enable: active high\n");
inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
}
} else if (!strncmp(this_opt, "pixclockpol:", 12)) {
if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
sprintf(s, "pixel clock polarity: falling edge\n");
inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
} else {
sprintf(s, "pixel clock polarity: rising edge\n");
inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
}
} else if (!strncmp(this_opt, "color", 5)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
} else if (!strncmp(this_opt, "mono", 4)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
} else if (!strncmp(this_opt, "active", 6)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
} else if (!strncmp(this_opt, "passive", 7)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
} else if (!strncmp(this_opt, "single", 6)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
} else if (!strncmp(this_opt, "dual", 4)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
} else if (!strncmp(this_opt, "4pix", 4)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
} else if (!strncmp(this_opt, "8pix", 4)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
} else {
dev_err(dev, "unknown option: %s\n", this_opt);
return -EINVAL;
}
if (s[0] != '\0')
dev_info(dev, "override %s", s);
return 0;
}
static int __devinit pxafb_parse_options(struct device *dev, char *options)
{
char *this_opt;
int ret;
if (!options || !*options)
return 0;
dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
/* could be made table driven or similar?... */
while ((this_opt = strsep(&options, ",")) != NULL) {
ret = parse_opt(dev, this_opt);
if (ret)
return ret;
}
return 0;
}
static char g_options[256] __devinitdata = "";
#ifndef MODULE
static int __init pxafb_setup_options(void)
{
char *options = NULL;
if (fb_get_options("pxafb", &options))
return -ENODEV;
if (options)
strlcpy(g_options, options, sizeof(g_options));
return 0;
}
#else
#define pxafb_setup_options() (0)
module_param_string(options, g_options, sizeof(g_options), 0);
MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
#endif
#else
#define pxafb_parse_options(...) (0)
#define pxafb_setup_options() (0)
#endif
#ifdef DEBUG_VAR
/* Check for various illegal bit-combinations. Currently only
* a warning is given. */
static void __devinit pxafb_check_options(struct device *dev,
struct pxafb_mach_info *inf)
{
if (inf->lcd_conn)
return;
if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
dev_warn(dev, "machine LCCR0 setting contains "
"illegal bits: %08x\n",
inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
dev_warn(dev, "machine LCCR3 setting contains "
"illegal bits: %08x\n",
inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
if (inf->lccr0 & LCCR0_DPD &&
((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
(inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
(inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
dev_warn(dev, "Double Pixel Data (DPD) mode is "
"only valid in passive mono"
" single panel mode\n");
if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
(inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
dev_warn(dev, "Dual panel only valid in passive mode\n");
if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
(inf->modes->upper_margin || inf->modes->lower_margin))
dev_warn(dev, "Upper and lower margins must be 0 in "
"passive mode\n");
}
#else
#define pxafb_check_options(...) do {} while (0)
#endif
static int __devinit pxafb_probe(struct platform_device *dev)
{
struct pxafb_info *fbi;
struct pxafb_mach_info *inf;
struct resource *r;
int irq, ret;
dev_dbg(&dev->dev, "pxafb_probe\n");
inf = dev->dev.platform_data;
ret = -ENOMEM;
fbi = NULL;
if (!inf)
goto failed;
ret = pxafb_parse_options(&dev->dev, g_options);
if (ret < 0)
goto failed;
pxafb_check_options(&dev->dev, inf);
dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
inf->modes->xres,
inf->modes->yres,
inf->modes->bpp);
if (inf->modes->xres == 0 ||
inf->modes->yres == 0 ||
inf->modes->bpp == 0) {
dev_err(&dev->dev, "Invalid resolution or bit depth\n");
ret = -EINVAL;
goto failed;
}
pxafb_backlight_power = inf->pxafb_backlight_power;
pxafb_lcd_power = inf->pxafb_lcd_power;
fbi = pxafb_init_fbinfo(&dev->dev);
if (!fbi) {
/* only reason for pxafb_init_fbinfo to fail is kmalloc */
dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
ret = -ENOMEM;
goto failed;
}
r = platform_get_resource(dev, IORESOURCE_MEM, 0);
if (r == NULL) {
dev_err(&dev->dev, "no I/O memory resource defined\n");
ret = -ENODEV;
goto failed_fbi;
}
r = request_mem_region(r->start, r->end - r->start + 1, dev->name);
if (r == NULL) {
dev_err(&dev->dev, "failed to request I/O memory\n");
ret = -EBUSY;
goto failed_fbi;
}
fbi->mmio_base = ioremap(r->start, r->end - r->start + 1);
if (fbi->mmio_base == NULL) {
dev_err(&dev->dev, "failed to map I/O memory\n");
ret = -EBUSY;
goto failed_free_res;
}
/* Initialize video memory */
ret = pxafb_map_video_memory(fbi);
if (ret) {
dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
ret = -ENOMEM;
goto failed_free_io;
}
irq = platform_get_irq(dev, 0);
if (irq < 0) {
dev_err(&dev->dev, "no IRQ defined\n");
ret = -ENODEV;
goto failed_free_mem;
}
ret = request_irq(irq, pxafb_handle_irq, IRQF_DISABLED, "LCD", fbi);
if (ret) {
dev_err(&dev->dev, "request_irq failed: %d\n", ret);
ret = -EBUSY;
goto failed_free_mem;
}
#ifdef CONFIG_FB_PXA_SMARTPANEL
ret = pxafb_smart_init(fbi);
if (ret) {
dev_err(&dev->dev, "failed to initialize smartpanel\n");
goto failed_free_irq;
}
#endif
/*
* This makes sure that our colour bitfield
* descriptors are correctly initialised.
*/
ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
if (ret) {
dev_err(&dev->dev, "failed to get suitable mode\n");
goto failed_free_irq;
}
ret = pxafb_set_par(&fbi->fb);
if (ret) {
dev_err(&dev->dev, "Failed to set parameters\n");
goto failed_free_irq;
}
platform_set_drvdata(dev, fbi);
ret = register_framebuffer(&fbi->fb);
if (ret < 0) {
dev_err(&dev->dev,
"Failed to register framebuffer device: %d\n", ret);
goto failed_free_cmap;
}
#ifdef CONFIG_CPU_FREQ
fbi->freq_transition.notifier_call = pxafb_freq_transition;
fbi->freq_policy.notifier_call = pxafb_freq_policy;
cpufreq_register_notifier(&fbi->freq_transition,
CPUFREQ_TRANSITION_NOTIFIER);
cpufreq_register_notifier(&fbi->freq_policy,
CPUFREQ_POLICY_NOTIFIER);
#endif
/*
* Ok, now enable the LCD controller
*/
set_ctrlr_state(fbi, C_ENABLE);
return 0;
failed_free_cmap:
if (fbi->fb.cmap.len)
fb_dealloc_cmap(&fbi->fb.cmap);
failed_free_irq:
free_irq(irq, fbi);
failed_free_mem:
dma_free_writecombine(&dev->dev, fbi->map_size,
fbi->map_cpu, fbi->map_dma);
failed_free_io:
iounmap(fbi->mmio_base);
failed_free_res:
release_mem_region(r->start, r->end - r->start + 1);
failed_fbi:
clk_put(fbi->clk);
platform_set_drvdata(dev, NULL);
kfree(fbi);
failed:
return ret;
}
static int __devexit pxafb_remove(struct platform_device *dev)
{
struct pxafb_info *fbi = platform_get_drvdata(dev);
struct resource *r;
int irq;
struct fb_info *info;
if (!fbi)
return 0;
info = &fbi->fb;
unregister_framebuffer(info);
pxafb_disable_controller(fbi);
if (fbi->fb.cmap.len)
fb_dealloc_cmap(&fbi->fb.cmap);
irq = platform_get_irq(dev, 0);
free_irq(irq, fbi);
dma_free_writecombine(&dev->dev, fbi->map_size,
fbi->map_cpu, fbi->map_dma);
iounmap(fbi->mmio_base);
r = platform_get_resource(dev, IORESOURCE_MEM, 0);
release_mem_region(r->start, r->end - r->start + 1);
clk_put(fbi->clk);
kfree(fbi);
return 0;
}
static struct platform_driver pxafb_driver = {
.probe = pxafb_probe,
.remove = pxafb_remove,
.suspend = pxafb_suspend,
.resume = pxafb_resume,
.driver = {
.owner = THIS_MODULE,
.name = "pxa2xx-fb",
},
};
static int __init pxafb_init(void)
{
if (pxafb_setup_options())
return -EINVAL;
return platform_driver_register(&pxafb_driver);
}
static void __exit pxafb_exit(void)
{
platform_driver_unregister(&pxafb_driver);
}
module_init(pxafb_init);
module_exit(pxafb_exit);
MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
MODULE_LICENSE("GPL");