1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
312 lines
9.1 KiB
C
312 lines
9.1 KiB
C
/*
|
|
* File: mca_asm.h
|
|
*
|
|
* Copyright (C) 1999 Silicon Graphics, Inc.
|
|
* Copyright (C) Vijay Chander (vijay@engr.sgi.com)
|
|
* Copyright (C) Srinivasa Thirumalachar <sprasad@engr.sgi.com>
|
|
* Copyright (C) 2000 Hewlett-Packard Co.
|
|
* Copyright (C) 2000 David Mosberger-Tang <davidm@hpl.hp.com>
|
|
* Copyright (C) 2002 Intel Corp.
|
|
* Copyright (C) 2002 Jenna Hall <jenna.s.hall@intel.com>
|
|
*/
|
|
#ifndef _ASM_IA64_MCA_ASM_H
|
|
#define _ASM_IA64_MCA_ASM_H
|
|
|
|
#define PSR_IC 13
|
|
#define PSR_I 14
|
|
#define PSR_DT 17
|
|
#define PSR_RT 27
|
|
#define PSR_MC 35
|
|
#define PSR_IT 36
|
|
#define PSR_BN 44
|
|
|
|
/*
|
|
* This macro converts a instruction virtual address to a physical address
|
|
* Right now for simulation purposes the virtual addresses are
|
|
* direct mapped to physical addresses.
|
|
* 1. Lop off bits 61 thru 63 in the virtual address
|
|
*/
|
|
#define INST_VA_TO_PA(addr) \
|
|
dep addr = 0, addr, 61, 3
|
|
/*
|
|
* This macro converts a data virtual address to a physical address
|
|
* Right now for simulation purposes the virtual addresses are
|
|
* direct mapped to physical addresses.
|
|
* 1. Lop off bits 61 thru 63 in the virtual address
|
|
*/
|
|
#define DATA_VA_TO_PA(addr) \
|
|
tpa addr = addr
|
|
/*
|
|
* This macro converts a data physical address to a virtual address
|
|
* Right now for simulation purposes the virtual addresses are
|
|
* direct mapped to physical addresses.
|
|
* 1. Put 0x7 in bits 61 thru 63.
|
|
*/
|
|
#define DATA_PA_TO_VA(addr,temp) \
|
|
mov temp = 0x7 ;; \
|
|
dep addr = temp, addr, 61, 3
|
|
|
|
#define GET_THIS_PADDR(reg, var) \
|
|
mov reg = IA64_KR(PER_CPU_DATA);; \
|
|
addl reg = THIS_CPU(var), reg
|
|
|
|
/*
|
|
* This macro jumps to the instruction at the given virtual address
|
|
* and starts execution in physical mode with all the address
|
|
* translations turned off.
|
|
* 1. Save the current psr
|
|
* 2. Make sure that all the upper 32 bits are off
|
|
*
|
|
* 3. Clear the interrupt enable and interrupt state collection bits
|
|
* in the psr before updating the ipsr and iip.
|
|
*
|
|
* 4. Turn off the instruction, data and rse translation bits of the psr
|
|
* and store the new value into ipsr
|
|
* Also make sure that the interrupts are disabled.
|
|
* Ensure that we are in little endian mode.
|
|
* [psr.{rt, it, dt, i, be} = 0]
|
|
*
|
|
* 5. Get the physical address corresponding to the virtual address
|
|
* of the next instruction bundle and put it in iip.
|
|
* (Using magic numbers 24 and 40 in the deposint instruction since
|
|
* the IA64_SDK code directly maps to lower 24bits as physical address
|
|
* from a virtual address).
|
|
*
|
|
* 6. Do an rfi to move the values from ipsr to psr and iip to ip.
|
|
*/
|
|
#define PHYSICAL_MODE_ENTER(temp1, temp2, start_addr, old_psr) \
|
|
mov old_psr = psr; \
|
|
;; \
|
|
dep old_psr = 0, old_psr, 32, 32; \
|
|
\
|
|
mov ar.rsc = 0 ; \
|
|
;; \
|
|
srlz.d; \
|
|
mov temp2 = ar.bspstore; \
|
|
;; \
|
|
DATA_VA_TO_PA(temp2); \
|
|
;; \
|
|
mov temp1 = ar.rnat; \
|
|
;; \
|
|
mov ar.bspstore = temp2; \
|
|
;; \
|
|
mov ar.rnat = temp1; \
|
|
mov temp1 = psr; \
|
|
mov temp2 = psr; \
|
|
;; \
|
|
\
|
|
dep temp2 = 0, temp2, PSR_IC, 2; \
|
|
;; \
|
|
mov psr.l = temp2; \
|
|
;; \
|
|
srlz.d; \
|
|
dep temp1 = 0, temp1, 32, 32; \
|
|
;; \
|
|
dep temp1 = 0, temp1, PSR_IT, 1; \
|
|
;; \
|
|
dep temp1 = 0, temp1, PSR_DT, 1; \
|
|
;; \
|
|
dep temp1 = 0, temp1, PSR_RT, 1; \
|
|
;; \
|
|
dep temp1 = 0, temp1, PSR_I, 1; \
|
|
;; \
|
|
dep temp1 = 0, temp1, PSR_IC, 1; \
|
|
;; \
|
|
dep temp1 = -1, temp1, PSR_MC, 1; \
|
|
;; \
|
|
mov cr.ipsr = temp1; \
|
|
;; \
|
|
LOAD_PHYSICAL(p0, temp2, start_addr); \
|
|
;; \
|
|
mov cr.iip = temp2; \
|
|
mov cr.ifs = r0; \
|
|
DATA_VA_TO_PA(sp); \
|
|
DATA_VA_TO_PA(gp); \
|
|
;; \
|
|
srlz.i; \
|
|
;; \
|
|
nop 1; \
|
|
nop 2; \
|
|
nop 1; \
|
|
nop 2; \
|
|
rfi; \
|
|
;;
|
|
|
|
/*
|
|
* This macro jumps to the instruction at the given virtual address
|
|
* and starts execution in virtual mode with all the address
|
|
* translations turned on.
|
|
* 1. Get the old saved psr
|
|
*
|
|
* 2. Clear the interrupt state collection bit in the current psr.
|
|
*
|
|
* 3. Set the instruction translation bit back in the old psr
|
|
* Note we have to do this since we are right now saving only the
|
|
* lower 32-bits of old psr.(Also the old psr has the data and
|
|
* rse translation bits on)
|
|
*
|
|
* 4. Set ipsr to this old_psr with "it" bit set and "bn" = 1.
|
|
*
|
|
* 5. Reset the current thread pointer (r13).
|
|
*
|
|
* 6. Set iip to the virtual address of the next instruction bundle.
|
|
*
|
|
* 7. Do an rfi to move ipsr to psr and iip to ip.
|
|
*/
|
|
|
|
#define VIRTUAL_MODE_ENTER(temp1, temp2, start_addr, old_psr) \
|
|
mov temp2 = psr; \
|
|
;; \
|
|
mov old_psr = temp2; \
|
|
;; \
|
|
dep temp2 = 0, temp2, PSR_IC, 2; \
|
|
;; \
|
|
mov psr.l = temp2; \
|
|
mov ar.rsc = 0; \
|
|
;; \
|
|
srlz.d; \
|
|
mov r13 = ar.k6; \
|
|
mov temp2 = ar.bspstore; \
|
|
;; \
|
|
DATA_PA_TO_VA(temp2,temp1); \
|
|
;; \
|
|
mov temp1 = ar.rnat; \
|
|
;; \
|
|
mov ar.bspstore = temp2; \
|
|
;; \
|
|
mov ar.rnat = temp1; \
|
|
;; \
|
|
mov temp1 = old_psr; \
|
|
;; \
|
|
mov temp2 = 1; \
|
|
;; \
|
|
dep temp1 = temp2, temp1, PSR_IC, 1; \
|
|
;; \
|
|
dep temp1 = temp2, temp1, PSR_IT, 1; \
|
|
;; \
|
|
dep temp1 = temp2, temp1, PSR_DT, 1; \
|
|
;; \
|
|
dep temp1 = temp2, temp1, PSR_RT, 1; \
|
|
;; \
|
|
dep temp1 = temp2, temp1, PSR_BN, 1; \
|
|
;; \
|
|
\
|
|
mov cr.ipsr = temp1; \
|
|
movl temp2 = start_addr; \
|
|
;; \
|
|
mov cr.iip = temp2; \
|
|
;; \
|
|
DATA_PA_TO_VA(sp, temp1); \
|
|
DATA_PA_TO_VA(gp, temp2); \
|
|
srlz.i; \
|
|
;; \
|
|
nop 1; \
|
|
nop 2; \
|
|
nop 1; \
|
|
rfi \
|
|
;;
|
|
|
|
/*
|
|
* The following offsets capture the order in which the
|
|
* RSE related registers from the old context are
|
|
* saved onto the new stack frame.
|
|
*
|
|
* +-----------------------+
|
|
* |NDIRTY [BSP - BSPSTORE]|
|
|
* +-----------------------+
|
|
* | RNAT |
|
|
* +-----------------------+
|
|
* | BSPSTORE |
|
|
* +-----------------------+
|
|
* | IFS |
|
|
* +-----------------------+
|
|
* | PFS |
|
|
* +-----------------------+
|
|
* | RSC |
|
|
* +-----------------------+ <-------- Bottom of new stack frame
|
|
*/
|
|
#define rse_rsc_offset 0
|
|
#define rse_pfs_offset (rse_rsc_offset+0x08)
|
|
#define rse_ifs_offset (rse_pfs_offset+0x08)
|
|
#define rse_bspstore_offset (rse_ifs_offset+0x08)
|
|
#define rse_rnat_offset (rse_bspstore_offset+0x08)
|
|
#define rse_ndirty_offset (rse_rnat_offset+0x08)
|
|
|
|
/*
|
|
* rse_switch_context
|
|
*
|
|
* 1. Save old RSC onto the new stack frame
|
|
* 2. Save PFS onto new stack frame
|
|
* 3. Cover the old frame and start a new frame.
|
|
* 4. Save IFS onto new stack frame
|
|
* 5. Save the old BSPSTORE on the new stack frame
|
|
* 6. Save the old RNAT on the new stack frame
|
|
* 7. Write BSPSTORE with the new backing store pointer
|
|
* 8. Read and save the new BSP to calculate the #dirty registers
|
|
* NOTE: Look at pages 11-10, 11-11 in PRM Vol 2
|
|
*/
|
|
#define rse_switch_context(temp,p_stackframe,p_bspstore) \
|
|
;; \
|
|
mov temp=ar.rsc;; \
|
|
st8 [p_stackframe]=temp,8;; \
|
|
mov temp=ar.pfs;; \
|
|
st8 [p_stackframe]=temp,8; \
|
|
cover ;; \
|
|
mov temp=cr.ifs;; \
|
|
st8 [p_stackframe]=temp,8;; \
|
|
mov temp=ar.bspstore;; \
|
|
st8 [p_stackframe]=temp,8;; \
|
|
mov temp=ar.rnat;; \
|
|
st8 [p_stackframe]=temp,8; \
|
|
mov ar.bspstore=p_bspstore;; \
|
|
mov temp=ar.bsp;; \
|
|
sub temp=temp,p_bspstore;; \
|
|
st8 [p_stackframe]=temp,8;;
|
|
|
|
/*
|
|
* rse_return_context
|
|
* 1. Allocate a zero-sized frame
|
|
* 2. Store the number of dirty registers RSC.loadrs field
|
|
* 3. Issue a loadrs to insure that any registers from the interrupted
|
|
* context which were saved on the new stack frame have been loaded
|
|
* back into the stacked registers
|
|
* 4. Restore BSPSTORE
|
|
* 5. Restore RNAT
|
|
* 6. Restore PFS
|
|
* 7. Restore IFS
|
|
* 8. Restore RSC
|
|
* 9. Issue an RFI
|
|
*/
|
|
#define rse_return_context(psr_mask_reg,temp,p_stackframe) \
|
|
;; \
|
|
alloc temp=ar.pfs,0,0,0,0; \
|
|
add p_stackframe=rse_ndirty_offset,p_stackframe;; \
|
|
ld8 temp=[p_stackframe];; \
|
|
shl temp=temp,16;; \
|
|
mov ar.rsc=temp;; \
|
|
loadrs;; \
|
|
add p_stackframe=-rse_ndirty_offset+rse_bspstore_offset,p_stackframe;;\
|
|
ld8 temp=[p_stackframe];; \
|
|
mov ar.bspstore=temp;; \
|
|
add p_stackframe=-rse_bspstore_offset+rse_rnat_offset,p_stackframe;;\
|
|
ld8 temp=[p_stackframe];; \
|
|
mov ar.rnat=temp;; \
|
|
add p_stackframe=-rse_rnat_offset+rse_pfs_offset,p_stackframe;; \
|
|
ld8 temp=[p_stackframe];; \
|
|
mov ar.pfs=temp;; \
|
|
add p_stackframe=-rse_pfs_offset+rse_ifs_offset,p_stackframe;; \
|
|
ld8 temp=[p_stackframe];; \
|
|
mov cr.ifs=temp;; \
|
|
add p_stackframe=-rse_ifs_offset+rse_rsc_offset,p_stackframe;; \
|
|
ld8 temp=[p_stackframe];; \
|
|
mov ar.rsc=temp ; \
|
|
mov temp=psr;; \
|
|
or temp=temp,psr_mask_reg;; \
|
|
mov cr.ipsr=temp;; \
|
|
mov temp=ip;; \
|
|
add temp=0x30,temp;; \
|
|
mov cr.iip=temp;; \
|
|
srlz.i;; \
|
|
rfi;;
|
|
|
|
#endif /* _ASM_IA64_MCA_ASM_H */
|