432e58edc9
Besides the minimal improvement in reducing the execbuffer overhead, the real benefit is clarifying a few routines. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
3984 lines
101 KiB
C
3984 lines
101 KiB
C
/*
|
|
* Copyright © 2008 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
*
|
|
*/
|
|
|
|
#include "drmP.h"
|
|
#include "drm.h"
|
|
#include "i915_drm.h"
|
|
#include "i915_drv.h"
|
|
#include "i915_trace.h"
|
|
#include "intel_drv.h"
|
|
#include <linux/slab.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/pci.h>
|
|
|
|
static int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj,
|
|
struct intel_ring_buffer *pipelined);
|
|
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
|
|
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
|
|
static int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
|
|
bool write);
|
|
static int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
|
|
uint64_t offset,
|
|
uint64_t size);
|
|
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
|
|
static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
|
|
unsigned alignment,
|
|
bool map_and_fenceable);
|
|
static void i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj);
|
|
static int i915_gem_phys_pwrite(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file);
|
|
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
|
|
|
|
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
|
|
int nr_to_scan,
|
|
gfp_t gfp_mask);
|
|
|
|
|
|
/* some bookkeeping */
|
|
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
|
|
size_t size)
|
|
{
|
|
dev_priv->mm.object_count++;
|
|
dev_priv->mm.object_memory += size;
|
|
}
|
|
|
|
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
|
|
size_t size)
|
|
{
|
|
dev_priv->mm.object_count--;
|
|
dev_priv->mm.object_memory -= size;
|
|
}
|
|
|
|
int
|
|
i915_gem_check_is_wedged(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct completion *x = &dev_priv->error_completion;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
if (!atomic_read(&dev_priv->mm.wedged))
|
|
return 0;
|
|
|
|
ret = wait_for_completion_interruptible(x);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Success, we reset the GPU! */
|
|
if (!atomic_read(&dev_priv->mm.wedged))
|
|
return 0;
|
|
|
|
/* GPU is hung, bump the completion count to account for
|
|
* the token we just consumed so that we never hit zero and
|
|
* end up waiting upon a subsequent completion event that
|
|
* will never happen.
|
|
*/
|
|
spin_lock_irqsave(&x->wait.lock, flags);
|
|
x->done++;
|
|
spin_unlock_irqrestore(&x->wait.lock, flags);
|
|
return -EIO;
|
|
}
|
|
|
|
int i915_mutex_lock_interruptible(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
ret = i915_gem_check_is_wedged(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mutex_lock_interruptible(&dev->struct_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (atomic_read(&dev_priv->mm.wedged)) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
WARN_ON(i915_verify_lists(dev));
|
|
return 0;
|
|
}
|
|
|
|
static inline bool
|
|
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
|
|
{
|
|
return obj->gtt_space && !obj->active && obj->pin_count == 0;
|
|
}
|
|
|
|
void i915_gem_do_init(struct drm_device *dev,
|
|
unsigned long start,
|
|
unsigned long mappable_end,
|
|
unsigned long end)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
drm_mm_init(&dev_priv->mm.gtt_space, start,
|
|
end - start);
|
|
|
|
dev_priv->mm.gtt_total = end - start;
|
|
dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
|
|
dev_priv->mm.gtt_mappable_end = mappable_end;
|
|
}
|
|
|
|
int
|
|
i915_gem_init_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_init *args = data;
|
|
|
|
if (args->gtt_start >= args->gtt_end ||
|
|
(args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_get_aperture *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
size_t pinned;
|
|
|
|
if (!(dev->driver->driver_features & DRIVER_GEM))
|
|
return -ENODEV;
|
|
|
|
pinned = 0;
|
|
mutex_lock(&dev->struct_mutex);
|
|
list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
|
|
pinned += obj->gtt_space->size;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
args->aper_size = dev_priv->mm.gtt_total;
|
|
args->aper_available_size = args->aper_size -pinned;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Creates a new mm object and returns a handle to it.
|
|
*/
|
|
int
|
|
i915_gem_create_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_create *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
u32 handle;
|
|
|
|
args->size = roundup(args->size, PAGE_SIZE);
|
|
|
|
/* Allocate the new object */
|
|
obj = i915_gem_alloc_object(dev, args->size);
|
|
if (obj == NULL)
|
|
return -ENOMEM;
|
|
|
|
ret = drm_gem_handle_create(file, &obj->base, &handle);
|
|
if (ret) {
|
|
drm_gem_object_release(&obj->base);
|
|
i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
|
|
kfree(obj);
|
|
return ret;
|
|
}
|
|
|
|
/* drop reference from allocate - handle holds it now */
|
|
drm_gem_object_unreference(&obj->base);
|
|
trace_i915_gem_object_create(obj);
|
|
|
|
args->handle = handle;
|
|
return 0;
|
|
}
|
|
|
|
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
|
|
{
|
|
drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
|
|
|
|
return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
|
|
obj->tiling_mode != I915_TILING_NONE;
|
|
}
|
|
|
|
static inline void
|
|
slow_shmem_copy(struct page *dst_page,
|
|
int dst_offset,
|
|
struct page *src_page,
|
|
int src_offset,
|
|
int length)
|
|
{
|
|
char *dst_vaddr, *src_vaddr;
|
|
|
|
dst_vaddr = kmap(dst_page);
|
|
src_vaddr = kmap(src_page);
|
|
|
|
memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
|
|
|
|
kunmap(src_page);
|
|
kunmap(dst_page);
|
|
}
|
|
|
|
static inline void
|
|
slow_shmem_bit17_copy(struct page *gpu_page,
|
|
int gpu_offset,
|
|
struct page *cpu_page,
|
|
int cpu_offset,
|
|
int length,
|
|
int is_read)
|
|
{
|
|
char *gpu_vaddr, *cpu_vaddr;
|
|
|
|
/* Use the unswizzled path if this page isn't affected. */
|
|
if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
|
|
if (is_read)
|
|
return slow_shmem_copy(cpu_page, cpu_offset,
|
|
gpu_page, gpu_offset, length);
|
|
else
|
|
return slow_shmem_copy(gpu_page, gpu_offset,
|
|
cpu_page, cpu_offset, length);
|
|
}
|
|
|
|
gpu_vaddr = kmap(gpu_page);
|
|
cpu_vaddr = kmap(cpu_page);
|
|
|
|
/* Copy the data, XORing A6 with A17 (1). The user already knows he's
|
|
* XORing with the other bits (A9 for Y, A9 and A10 for X)
|
|
*/
|
|
while (length > 0) {
|
|
int cacheline_end = ALIGN(gpu_offset + 1, 64);
|
|
int this_length = min(cacheline_end - gpu_offset, length);
|
|
int swizzled_gpu_offset = gpu_offset ^ 64;
|
|
|
|
if (is_read) {
|
|
memcpy(cpu_vaddr + cpu_offset,
|
|
gpu_vaddr + swizzled_gpu_offset,
|
|
this_length);
|
|
} else {
|
|
memcpy(gpu_vaddr + swizzled_gpu_offset,
|
|
cpu_vaddr + cpu_offset,
|
|
this_length);
|
|
}
|
|
cpu_offset += this_length;
|
|
gpu_offset += this_length;
|
|
length -= this_length;
|
|
}
|
|
|
|
kunmap(cpu_page);
|
|
kunmap(gpu_page);
|
|
}
|
|
|
|
/**
|
|
* This is the fast shmem pread path, which attempts to copy_from_user directly
|
|
* from the backing pages of the object to the user's address space. On a
|
|
* fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
|
|
*/
|
|
static int
|
|
i915_gem_shmem_pread_fast(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pread *args,
|
|
struct drm_file *file)
|
|
{
|
|
struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
|
|
ssize_t remain;
|
|
loff_t offset;
|
|
char __user *user_data;
|
|
int page_offset, page_length;
|
|
|
|
user_data = (char __user *) (uintptr_t) args->data_ptr;
|
|
remain = args->size;
|
|
|
|
offset = args->offset;
|
|
|
|
while (remain > 0) {
|
|
struct page *page;
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
/* Operation in this page
|
|
*
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
page_offset = offset & (PAGE_SIZE-1);
|
|
page_length = remain;
|
|
if ((page_offset + remain) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - page_offset;
|
|
|
|
page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
|
|
GFP_HIGHUSER | __GFP_RECLAIMABLE);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
vaddr = kmap_atomic(page);
|
|
ret = __copy_to_user_inatomic(user_data,
|
|
vaddr + page_offset,
|
|
page_length);
|
|
kunmap_atomic(vaddr);
|
|
|
|
mark_page_accessed(page);
|
|
page_cache_release(page);
|
|
if (ret)
|
|
return -EFAULT;
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* This is the fallback shmem pread path, which allocates temporary storage
|
|
* in kernel space to copy_to_user into outside of the struct_mutex, so we
|
|
* can copy out of the object's backing pages while holding the struct mutex
|
|
* and not take page faults.
|
|
*/
|
|
static int
|
|
i915_gem_shmem_pread_slow(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pread *args,
|
|
struct drm_file *file)
|
|
{
|
|
struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
|
|
struct mm_struct *mm = current->mm;
|
|
struct page **user_pages;
|
|
ssize_t remain;
|
|
loff_t offset, pinned_pages, i;
|
|
loff_t first_data_page, last_data_page, num_pages;
|
|
int shmem_page_offset;
|
|
int data_page_index, data_page_offset;
|
|
int page_length;
|
|
int ret;
|
|
uint64_t data_ptr = args->data_ptr;
|
|
int do_bit17_swizzling;
|
|
|
|
remain = args->size;
|
|
|
|
/* Pin the user pages containing the data. We can't fault while
|
|
* holding the struct mutex, yet we want to hold it while
|
|
* dereferencing the user data.
|
|
*/
|
|
first_data_page = data_ptr / PAGE_SIZE;
|
|
last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
|
|
num_pages = last_data_page - first_data_page + 1;
|
|
|
|
user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
|
|
if (user_pages == NULL)
|
|
return -ENOMEM;
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
down_read(&mm->mmap_sem);
|
|
pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
|
|
num_pages, 1, 0, user_pages, NULL);
|
|
up_read(&mm->mmap_sem);
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (pinned_pages < num_pages) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
ret = i915_gem_object_set_cpu_read_domain_range(obj,
|
|
args->offset,
|
|
args->size);
|
|
if (ret)
|
|
goto out;
|
|
|
|
do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
|
|
|
|
offset = args->offset;
|
|
|
|
while (remain > 0) {
|
|
struct page *page;
|
|
|
|
/* Operation in this page
|
|
*
|
|
* shmem_page_offset = offset within page in shmem file
|
|
* data_page_index = page number in get_user_pages return
|
|
* data_page_offset = offset with data_page_index page.
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
shmem_page_offset = offset & ~PAGE_MASK;
|
|
data_page_index = data_ptr / PAGE_SIZE - first_data_page;
|
|
data_page_offset = data_ptr & ~PAGE_MASK;
|
|
|
|
page_length = remain;
|
|
if ((shmem_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - shmem_page_offset;
|
|
if ((data_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - data_page_offset;
|
|
|
|
page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
|
|
GFP_HIGHUSER | __GFP_RECLAIMABLE);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
if (do_bit17_swizzling) {
|
|
slow_shmem_bit17_copy(page,
|
|
shmem_page_offset,
|
|
user_pages[data_page_index],
|
|
data_page_offset,
|
|
page_length,
|
|
1);
|
|
} else {
|
|
slow_shmem_copy(user_pages[data_page_index],
|
|
data_page_offset,
|
|
page,
|
|
shmem_page_offset,
|
|
page_length);
|
|
}
|
|
|
|
mark_page_accessed(page);
|
|
page_cache_release(page);
|
|
|
|
remain -= page_length;
|
|
data_ptr += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
out:
|
|
for (i = 0; i < pinned_pages; i++) {
|
|
SetPageDirty(user_pages[i]);
|
|
mark_page_accessed(user_pages[i]);
|
|
page_cache_release(user_pages[i]);
|
|
}
|
|
drm_free_large(user_pages);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Reads data from the object referenced by handle.
|
|
*
|
|
* On error, the contents of *data are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pread *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret = 0;
|
|
|
|
if (args->size == 0)
|
|
return 0;
|
|
|
|
if (!access_ok(VERIFY_WRITE,
|
|
(char __user *)(uintptr_t)args->data_ptr,
|
|
args->size))
|
|
return -EFAULT;
|
|
|
|
ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
|
|
args->size);
|
|
if (ret)
|
|
return -EFAULT;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (obj == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Bounds check source. */
|
|
if (args->offset > obj->base.size ||
|
|
args->size > obj->base.size - args->offset) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = i915_gem_object_set_cpu_read_domain_range(obj,
|
|
args->offset,
|
|
args->size);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = -EFAULT;
|
|
if (!i915_gem_object_needs_bit17_swizzle(obj))
|
|
ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
|
|
if (ret == -EFAULT)
|
|
ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/* This is the fast write path which cannot handle
|
|
* page faults in the source data
|
|
*/
|
|
|
|
static inline int
|
|
fast_user_write(struct io_mapping *mapping,
|
|
loff_t page_base, int page_offset,
|
|
char __user *user_data,
|
|
int length)
|
|
{
|
|
char *vaddr_atomic;
|
|
unsigned long unwritten;
|
|
|
|
vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
|
|
unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
|
|
user_data, length);
|
|
io_mapping_unmap_atomic(vaddr_atomic);
|
|
return unwritten;
|
|
}
|
|
|
|
/* Here's the write path which can sleep for
|
|
* page faults
|
|
*/
|
|
|
|
static inline void
|
|
slow_kernel_write(struct io_mapping *mapping,
|
|
loff_t gtt_base, int gtt_offset,
|
|
struct page *user_page, int user_offset,
|
|
int length)
|
|
{
|
|
char __iomem *dst_vaddr;
|
|
char *src_vaddr;
|
|
|
|
dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
|
|
src_vaddr = kmap(user_page);
|
|
|
|
memcpy_toio(dst_vaddr + gtt_offset,
|
|
src_vaddr + user_offset,
|
|
length);
|
|
|
|
kunmap(user_page);
|
|
io_mapping_unmap(dst_vaddr);
|
|
}
|
|
|
|
/**
|
|
* This is the fast pwrite path, where we copy the data directly from the
|
|
* user into the GTT, uncached.
|
|
*/
|
|
static int
|
|
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
ssize_t remain;
|
|
loff_t offset, page_base;
|
|
char __user *user_data;
|
|
int page_offset, page_length;
|
|
|
|
user_data = (char __user *) (uintptr_t) args->data_ptr;
|
|
remain = args->size;
|
|
|
|
offset = obj->gtt_offset + args->offset;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* page_base = page offset within aperture
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
page_base = (offset & ~(PAGE_SIZE-1));
|
|
page_offset = offset & (PAGE_SIZE-1);
|
|
page_length = remain;
|
|
if ((page_offset + remain) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - page_offset;
|
|
|
|
/* If we get a fault while copying data, then (presumably) our
|
|
* source page isn't available. Return the error and we'll
|
|
* retry in the slow path.
|
|
*/
|
|
if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
|
|
page_offset, user_data, page_length))
|
|
|
|
return -EFAULT;
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* This is the fallback GTT pwrite path, which uses get_user_pages to pin
|
|
* the memory and maps it using kmap_atomic for copying.
|
|
*
|
|
* This code resulted in x11perf -rgb10text consuming about 10% more CPU
|
|
* than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
|
|
*/
|
|
static int
|
|
i915_gem_gtt_pwrite_slow(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
ssize_t remain;
|
|
loff_t gtt_page_base, offset;
|
|
loff_t first_data_page, last_data_page, num_pages;
|
|
loff_t pinned_pages, i;
|
|
struct page **user_pages;
|
|
struct mm_struct *mm = current->mm;
|
|
int gtt_page_offset, data_page_offset, data_page_index, page_length;
|
|
int ret;
|
|
uint64_t data_ptr = args->data_ptr;
|
|
|
|
remain = args->size;
|
|
|
|
/* Pin the user pages containing the data. We can't fault while
|
|
* holding the struct mutex, and all of the pwrite implementations
|
|
* want to hold it while dereferencing the user data.
|
|
*/
|
|
first_data_page = data_ptr / PAGE_SIZE;
|
|
last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
|
|
num_pages = last_data_page - first_data_page + 1;
|
|
|
|
user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
|
|
if (user_pages == NULL)
|
|
return -ENOMEM;
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
down_read(&mm->mmap_sem);
|
|
pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
|
|
num_pages, 0, 0, user_pages, NULL);
|
|
up_read(&mm->mmap_sem);
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (pinned_pages < num_pages) {
|
|
ret = -EFAULT;
|
|
goto out_unpin_pages;
|
|
}
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, 1);
|
|
if (ret)
|
|
goto out_unpin_pages;
|
|
|
|
offset = obj->gtt_offset + args->offset;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* gtt_page_base = page offset within aperture
|
|
* gtt_page_offset = offset within page in aperture
|
|
* data_page_index = page number in get_user_pages return
|
|
* data_page_offset = offset with data_page_index page.
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
gtt_page_base = offset & PAGE_MASK;
|
|
gtt_page_offset = offset & ~PAGE_MASK;
|
|
data_page_index = data_ptr / PAGE_SIZE - first_data_page;
|
|
data_page_offset = data_ptr & ~PAGE_MASK;
|
|
|
|
page_length = remain;
|
|
if ((gtt_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - gtt_page_offset;
|
|
if ((data_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - data_page_offset;
|
|
|
|
slow_kernel_write(dev_priv->mm.gtt_mapping,
|
|
gtt_page_base, gtt_page_offset,
|
|
user_pages[data_page_index],
|
|
data_page_offset,
|
|
page_length);
|
|
|
|
remain -= page_length;
|
|
offset += page_length;
|
|
data_ptr += page_length;
|
|
}
|
|
|
|
out_unpin_pages:
|
|
for (i = 0; i < pinned_pages; i++)
|
|
page_cache_release(user_pages[i]);
|
|
drm_free_large(user_pages);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* This is the fast shmem pwrite path, which attempts to directly
|
|
* copy_from_user into the kmapped pages backing the object.
|
|
*/
|
|
static int
|
|
i915_gem_shmem_pwrite_fast(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file)
|
|
{
|
|
struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
|
|
ssize_t remain;
|
|
loff_t offset;
|
|
char __user *user_data;
|
|
int page_offset, page_length;
|
|
|
|
user_data = (char __user *) (uintptr_t) args->data_ptr;
|
|
remain = args->size;
|
|
|
|
offset = args->offset;
|
|
obj->dirty = 1;
|
|
|
|
while (remain > 0) {
|
|
struct page *page;
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
/* Operation in this page
|
|
*
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
page_offset = offset & (PAGE_SIZE-1);
|
|
page_length = remain;
|
|
if ((page_offset + remain) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - page_offset;
|
|
|
|
page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
|
|
GFP_HIGHUSER | __GFP_RECLAIMABLE);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
vaddr = kmap_atomic(page, KM_USER0);
|
|
ret = __copy_from_user_inatomic(vaddr + page_offset,
|
|
user_data,
|
|
page_length);
|
|
kunmap_atomic(vaddr, KM_USER0);
|
|
|
|
set_page_dirty(page);
|
|
mark_page_accessed(page);
|
|
page_cache_release(page);
|
|
|
|
/* If we get a fault while copying data, then (presumably) our
|
|
* source page isn't available. Return the error and we'll
|
|
* retry in the slow path.
|
|
*/
|
|
if (ret)
|
|
return -EFAULT;
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* This is the fallback shmem pwrite path, which uses get_user_pages to pin
|
|
* the memory and maps it using kmap_atomic for copying.
|
|
*
|
|
* This avoids taking mmap_sem for faulting on the user's address while the
|
|
* struct_mutex is held.
|
|
*/
|
|
static int
|
|
i915_gem_shmem_pwrite_slow(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file)
|
|
{
|
|
struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
|
|
struct mm_struct *mm = current->mm;
|
|
struct page **user_pages;
|
|
ssize_t remain;
|
|
loff_t offset, pinned_pages, i;
|
|
loff_t first_data_page, last_data_page, num_pages;
|
|
int shmem_page_offset;
|
|
int data_page_index, data_page_offset;
|
|
int page_length;
|
|
int ret;
|
|
uint64_t data_ptr = args->data_ptr;
|
|
int do_bit17_swizzling;
|
|
|
|
remain = args->size;
|
|
|
|
/* Pin the user pages containing the data. We can't fault while
|
|
* holding the struct mutex, and all of the pwrite implementations
|
|
* want to hold it while dereferencing the user data.
|
|
*/
|
|
first_data_page = data_ptr / PAGE_SIZE;
|
|
last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
|
|
num_pages = last_data_page - first_data_page + 1;
|
|
|
|
user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
|
|
if (user_pages == NULL)
|
|
return -ENOMEM;
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
down_read(&mm->mmap_sem);
|
|
pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
|
|
num_pages, 0, 0, user_pages, NULL);
|
|
up_read(&mm->mmap_sem);
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (pinned_pages < num_pages) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
|
|
if (ret)
|
|
goto out;
|
|
|
|
do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
|
|
|
|
offset = args->offset;
|
|
obj->dirty = 1;
|
|
|
|
while (remain > 0) {
|
|
struct page *page;
|
|
|
|
/* Operation in this page
|
|
*
|
|
* shmem_page_offset = offset within page in shmem file
|
|
* data_page_index = page number in get_user_pages return
|
|
* data_page_offset = offset with data_page_index page.
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
shmem_page_offset = offset & ~PAGE_MASK;
|
|
data_page_index = data_ptr / PAGE_SIZE - first_data_page;
|
|
data_page_offset = data_ptr & ~PAGE_MASK;
|
|
|
|
page_length = remain;
|
|
if ((shmem_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - shmem_page_offset;
|
|
if ((data_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - data_page_offset;
|
|
|
|
page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
|
|
GFP_HIGHUSER | __GFP_RECLAIMABLE);
|
|
if (IS_ERR(page)) {
|
|
ret = PTR_ERR(page);
|
|
goto out;
|
|
}
|
|
|
|
if (do_bit17_swizzling) {
|
|
slow_shmem_bit17_copy(page,
|
|
shmem_page_offset,
|
|
user_pages[data_page_index],
|
|
data_page_offset,
|
|
page_length,
|
|
0);
|
|
} else {
|
|
slow_shmem_copy(page,
|
|
shmem_page_offset,
|
|
user_pages[data_page_index],
|
|
data_page_offset,
|
|
page_length);
|
|
}
|
|
|
|
set_page_dirty(page);
|
|
mark_page_accessed(page);
|
|
page_cache_release(page);
|
|
|
|
remain -= page_length;
|
|
data_ptr += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
out:
|
|
for (i = 0; i < pinned_pages; i++)
|
|
page_cache_release(user_pages[i]);
|
|
drm_free_large(user_pages);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Writes data to the object referenced by handle.
|
|
*
|
|
* On error, the contents of the buffer that were to be modified are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pwrite *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
if (args->size == 0)
|
|
return 0;
|
|
|
|
if (!access_ok(VERIFY_READ,
|
|
(char __user *)(uintptr_t)args->data_ptr,
|
|
args->size))
|
|
return -EFAULT;
|
|
|
|
ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
|
|
args->size);
|
|
if (ret)
|
|
return -EFAULT;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (obj == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Bounds check destination. */
|
|
if (args->offset > obj->base.size ||
|
|
args->size > obj->base.size - args->offset) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* We can only do the GTT pwrite on untiled buffers, as otherwise
|
|
* it would end up going through the fenced access, and we'll get
|
|
* different detiling behavior between reading and writing.
|
|
* pread/pwrite currently are reading and writing from the CPU
|
|
* perspective, requiring manual detiling by the client.
|
|
*/
|
|
if (obj->phys_obj)
|
|
ret = i915_gem_phys_pwrite(dev, obj, args, file);
|
|
else if (obj->tiling_mode == I915_TILING_NONE &&
|
|
obj->gtt_space &&
|
|
obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
|
|
ret = i915_gem_object_pin(obj, 0, true);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, 1);
|
|
if (ret)
|
|
goto out_unpin;
|
|
|
|
ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
|
|
if (ret == -EFAULT)
|
|
ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
|
|
|
|
out_unpin:
|
|
i915_gem_object_unpin(obj);
|
|
} else {
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = -EFAULT;
|
|
if (!i915_gem_object_needs_bit17_swizzle(obj))
|
|
ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
|
|
if (ret == -EFAULT)
|
|
ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
|
|
}
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Called when user space prepares to use an object with the CPU, either
|
|
* through the mmap ioctl's mapping or a GTT mapping.
|
|
*/
|
|
int
|
|
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_set_domain *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
uint32_t read_domains = args->read_domains;
|
|
uint32_t write_domain = args->write_domain;
|
|
int ret;
|
|
|
|
if (!(dev->driver->driver_features & DRIVER_GEM))
|
|
return -ENODEV;
|
|
|
|
/* Only handle setting domains to types used by the CPU. */
|
|
if (write_domain & I915_GEM_GPU_DOMAINS)
|
|
return -EINVAL;
|
|
|
|
if (read_domains & I915_GEM_GPU_DOMAINS)
|
|
return -EINVAL;
|
|
|
|
/* Having something in the write domain implies it's in the read
|
|
* domain, and only that read domain. Enforce that in the request.
|
|
*/
|
|
if (write_domain != 0 && read_domains != write_domain)
|
|
return -EINVAL;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (obj == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
intel_mark_busy(dev, obj);
|
|
|
|
if (read_domains & I915_GEM_DOMAIN_GTT) {
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
|
|
|
|
/* Update the LRU on the fence for the CPU access that's
|
|
* about to occur.
|
|
*/
|
|
if (obj->fence_reg != I915_FENCE_REG_NONE) {
|
|
struct drm_i915_fence_reg *reg =
|
|
&dev_priv->fence_regs[obj->fence_reg];
|
|
list_move_tail(®->lru_list,
|
|
&dev_priv->mm.fence_list);
|
|
}
|
|
|
|
/* Silently promote "you're not bound, there was nothing to do"
|
|
* to success, since the client was just asking us to
|
|
* make sure everything was done.
|
|
*/
|
|
if (ret == -EINVAL)
|
|
ret = 0;
|
|
} else {
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
|
|
}
|
|
|
|
/* Maintain LRU order of "inactive" objects */
|
|
if (ret == 0 && i915_gem_object_is_inactive(obj))
|
|
list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Called when user space has done writes to this buffer
|
|
*/
|
|
int
|
|
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_sw_finish *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret = 0;
|
|
|
|
if (!(dev->driver->driver_features & DRIVER_GEM))
|
|
return -ENODEV;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (obj == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Pinned buffers may be scanout, so flush the cache */
|
|
if (obj->pin_count)
|
|
i915_gem_object_flush_cpu_write_domain(obj);
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Maps the contents of an object, returning the address it is mapped
|
|
* into.
|
|
*
|
|
* While the mapping holds a reference on the contents of the object, it doesn't
|
|
* imply a ref on the object itself.
|
|
*/
|
|
int
|
|
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_mmap *args = data;
|
|
struct drm_gem_object *obj;
|
|
loff_t offset;
|
|
unsigned long addr;
|
|
|
|
if (!(dev->driver->driver_features & DRIVER_GEM))
|
|
return -ENODEV;
|
|
|
|
obj = drm_gem_object_lookup(dev, file, args->handle);
|
|
if (obj == NULL)
|
|
return -ENOENT;
|
|
|
|
if (obj->size > dev_priv->mm.gtt_mappable_end) {
|
|
drm_gem_object_unreference_unlocked(obj);
|
|
return -E2BIG;
|
|
}
|
|
|
|
offset = args->offset;
|
|
|
|
down_write(¤t->mm->mmap_sem);
|
|
addr = do_mmap(obj->filp, 0, args->size,
|
|
PROT_READ | PROT_WRITE, MAP_SHARED,
|
|
args->offset);
|
|
up_write(¤t->mm->mmap_sem);
|
|
drm_gem_object_unreference_unlocked(obj);
|
|
if (IS_ERR((void *)addr))
|
|
return addr;
|
|
|
|
args->addr_ptr = (uint64_t) addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_fault - fault a page into the GTT
|
|
* vma: VMA in question
|
|
* vmf: fault info
|
|
*
|
|
* The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
|
|
* from userspace. The fault handler takes care of binding the object to
|
|
* the GTT (if needed), allocating and programming a fence register (again,
|
|
* only if needed based on whether the old reg is still valid or the object
|
|
* is tiled) and inserting a new PTE into the faulting process.
|
|
*
|
|
* Note that the faulting process may involve evicting existing objects
|
|
* from the GTT and/or fence registers to make room. So performance may
|
|
* suffer if the GTT working set is large or there are few fence registers
|
|
* left.
|
|
*/
|
|
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
|
|
struct drm_device *dev = obj->base.dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
pgoff_t page_offset;
|
|
unsigned long pfn;
|
|
int ret = 0;
|
|
bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
|
|
|
|
/* We don't use vmf->pgoff since that has the fake offset */
|
|
page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
|
|
PAGE_SHIFT;
|
|
|
|
/* Now bind it into the GTT if needed */
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
if (!obj->map_and_fenceable) {
|
|
ret = i915_gem_object_unbind(obj);
|
|
if (ret)
|
|
goto unlock;
|
|
}
|
|
if (!obj->gtt_space) {
|
|
ret = i915_gem_object_bind_to_gtt(obj, 0, true);
|
|
if (ret)
|
|
goto unlock;
|
|
}
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, write);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
/* Need a new fence register? */
|
|
if (obj->tiling_mode != I915_TILING_NONE) {
|
|
ret = i915_gem_object_get_fence_reg(obj, true);
|
|
if (ret)
|
|
goto unlock;
|
|
}
|
|
|
|
if (i915_gem_object_is_inactive(obj))
|
|
list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
|
|
|
|
obj->fault_mappable = true;
|
|
|
|
pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
|
|
page_offset;
|
|
|
|
/* Finally, remap it using the new GTT offset */
|
|
ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
switch (ret) {
|
|
case -EAGAIN:
|
|
set_need_resched();
|
|
case 0:
|
|
case -ERESTARTSYS:
|
|
return VM_FAULT_NOPAGE;
|
|
case -ENOMEM:
|
|
return VM_FAULT_OOM;
|
|
default:
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* i915_gem_create_mmap_offset - create a fake mmap offset for an object
|
|
* @obj: obj in question
|
|
*
|
|
* GEM memory mapping works by handing back to userspace a fake mmap offset
|
|
* it can use in a subsequent mmap(2) call. The DRM core code then looks
|
|
* up the object based on the offset and sets up the various memory mapping
|
|
* structures.
|
|
*
|
|
* This routine allocates and attaches a fake offset for @obj.
|
|
*/
|
|
static int
|
|
i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_gem_mm *mm = dev->mm_private;
|
|
struct drm_map_list *list;
|
|
struct drm_local_map *map;
|
|
int ret = 0;
|
|
|
|
/* Set the object up for mmap'ing */
|
|
list = &obj->base.map_list;
|
|
list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
|
|
if (!list->map)
|
|
return -ENOMEM;
|
|
|
|
map = list->map;
|
|
map->type = _DRM_GEM;
|
|
map->size = obj->base.size;
|
|
map->handle = obj;
|
|
|
|
/* Get a DRM GEM mmap offset allocated... */
|
|
list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
|
|
obj->base.size / PAGE_SIZE,
|
|
0, 0);
|
|
if (!list->file_offset_node) {
|
|
DRM_ERROR("failed to allocate offset for bo %d\n",
|
|
obj->base.name);
|
|
ret = -ENOSPC;
|
|
goto out_free_list;
|
|
}
|
|
|
|
list->file_offset_node = drm_mm_get_block(list->file_offset_node,
|
|
obj->base.size / PAGE_SIZE,
|
|
0);
|
|
if (!list->file_offset_node) {
|
|
ret = -ENOMEM;
|
|
goto out_free_list;
|
|
}
|
|
|
|
list->hash.key = list->file_offset_node->start;
|
|
ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
|
|
if (ret) {
|
|
DRM_ERROR("failed to add to map hash\n");
|
|
goto out_free_mm;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_free_mm:
|
|
drm_mm_put_block(list->file_offset_node);
|
|
out_free_list:
|
|
kfree(list->map);
|
|
list->map = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_release_mmap - remove physical page mappings
|
|
* @obj: obj in question
|
|
*
|
|
* Preserve the reservation of the mmapping with the DRM core code, but
|
|
* relinquish ownership of the pages back to the system.
|
|
*
|
|
* It is vital that we remove the page mapping if we have mapped a tiled
|
|
* object through the GTT and then lose the fence register due to
|
|
* resource pressure. Similarly if the object has been moved out of the
|
|
* aperture, than pages mapped into userspace must be revoked. Removing the
|
|
* mapping will then trigger a page fault on the next user access, allowing
|
|
* fixup by i915_gem_fault().
|
|
*/
|
|
void
|
|
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (!obj->fault_mappable)
|
|
return;
|
|
|
|
unmap_mapping_range(obj->base.dev->dev_mapping,
|
|
(loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
|
|
obj->base.size, 1);
|
|
|
|
obj->fault_mappable = false;
|
|
}
|
|
|
|
static void
|
|
i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_gem_mm *mm = dev->mm_private;
|
|
struct drm_map_list *list = &obj->base.map_list;
|
|
|
|
drm_ht_remove_item(&mm->offset_hash, &list->hash);
|
|
drm_mm_put_block(list->file_offset_node);
|
|
kfree(list->map);
|
|
list->map = NULL;
|
|
}
|
|
|
|
static uint32_t
|
|
i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
uint32_t size;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4 ||
|
|
obj->tiling_mode == I915_TILING_NONE)
|
|
return obj->base.size;
|
|
|
|
/* Previous chips need a power-of-two fence region when tiling */
|
|
if (INTEL_INFO(dev)->gen == 3)
|
|
size = 1024*1024;
|
|
else
|
|
size = 512*1024;
|
|
|
|
while (size < obj->base.size)
|
|
size <<= 1;
|
|
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_get_gtt_alignment - return required GTT alignment for an object
|
|
* @obj: object to check
|
|
*
|
|
* Return the required GTT alignment for an object, taking into account
|
|
* potential fence register mapping.
|
|
*/
|
|
static uint32_t
|
|
i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
|
|
/*
|
|
* Minimum alignment is 4k (GTT page size), but might be greater
|
|
* if a fence register is needed for the object.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen >= 4 ||
|
|
obj->tiling_mode == I915_TILING_NONE)
|
|
return 4096;
|
|
|
|
/*
|
|
* Previous chips need to be aligned to the size of the smallest
|
|
* fence register that can contain the object.
|
|
*/
|
|
return i915_gem_get_gtt_size(obj);
|
|
}
|
|
|
|
/**
|
|
* i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
|
|
* unfenced object
|
|
* @obj: object to check
|
|
*
|
|
* Return the required GTT alignment for an object, only taking into account
|
|
* unfenced tiled surface requirements.
|
|
*/
|
|
static uint32_t
|
|
i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
int tile_height;
|
|
|
|
/*
|
|
* Minimum alignment is 4k (GTT page size) for sane hw.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
|
|
obj->tiling_mode == I915_TILING_NONE)
|
|
return 4096;
|
|
|
|
/*
|
|
* Older chips need unfenced tiled buffers to be aligned to the left
|
|
* edge of an even tile row (where tile rows are counted as if the bo is
|
|
* placed in a fenced gtt region).
|
|
*/
|
|
if (IS_GEN2(dev) ||
|
|
(obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
|
|
tile_height = 32;
|
|
else
|
|
tile_height = 8;
|
|
|
|
return tile_height * obj->stride * 2;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
|
|
* @dev: DRM device
|
|
* @data: GTT mapping ioctl data
|
|
* @file: GEM object info
|
|
*
|
|
* Simply returns the fake offset to userspace so it can mmap it.
|
|
* The mmap call will end up in drm_gem_mmap(), which will set things
|
|
* up so we can get faults in the handler above.
|
|
*
|
|
* The fault handler will take care of binding the object into the GTT
|
|
* (since it may have been evicted to make room for something), allocating
|
|
* a fence register, and mapping the appropriate aperture address into
|
|
* userspace.
|
|
*/
|
|
int
|
|
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_mmap_gtt *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
if (!(dev->driver->driver_features & DRIVER_GEM))
|
|
return -ENODEV;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (obj == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
|
|
ret = -E2BIG;
|
|
goto unlock;
|
|
}
|
|
|
|
if (obj->madv != I915_MADV_WILLNEED) {
|
|
DRM_ERROR("Attempting to mmap a purgeable buffer\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (!obj->base.map_list.map) {
|
|
ret = i915_gem_create_mmap_offset(obj);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
|
|
gfp_t gfpmask)
|
|
{
|
|
int page_count, i;
|
|
struct address_space *mapping;
|
|
struct inode *inode;
|
|
struct page *page;
|
|
|
|
/* Get the list of pages out of our struct file. They'll be pinned
|
|
* at this point until we release them.
|
|
*/
|
|
page_count = obj->base.size / PAGE_SIZE;
|
|
BUG_ON(obj->pages != NULL);
|
|
obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
|
|
if (obj->pages == NULL)
|
|
return -ENOMEM;
|
|
|
|
inode = obj->base.filp->f_path.dentry->d_inode;
|
|
mapping = inode->i_mapping;
|
|
for (i = 0; i < page_count; i++) {
|
|
page = read_cache_page_gfp(mapping, i,
|
|
GFP_HIGHUSER |
|
|
__GFP_COLD |
|
|
__GFP_RECLAIMABLE |
|
|
gfpmask);
|
|
if (IS_ERR(page))
|
|
goto err_pages;
|
|
|
|
obj->pages[i] = page;
|
|
}
|
|
|
|
if (obj->tiling_mode != I915_TILING_NONE)
|
|
i915_gem_object_do_bit_17_swizzle(obj);
|
|
|
|
return 0;
|
|
|
|
err_pages:
|
|
while (i--)
|
|
page_cache_release(obj->pages[i]);
|
|
|
|
drm_free_large(obj->pages);
|
|
obj->pages = NULL;
|
|
return PTR_ERR(page);
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
|
|
{
|
|
int page_count = obj->base.size / PAGE_SIZE;
|
|
int i;
|
|
|
|
BUG_ON(obj->madv == __I915_MADV_PURGED);
|
|
|
|
if (obj->tiling_mode != I915_TILING_NONE)
|
|
i915_gem_object_save_bit_17_swizzle(obj);
|
|
|
|
if (obj->madv == I915_MADV_DONTNEED)
|
|
obj->dirty = 0;
|
|
|
|
for (i = 0; i < page_count; i++) {
|
|
if (obj->dirty)
|
|
set_page_dirty(obj->pages[i]);
|
|
|
|
if (obj->madv == I915_MADV_WILLNEED)
|
|
mark_page_accessed(obj->pages[i]);
|
|
|
|
page_cache_release(obj->pages[i]);
|
|
}
|
|
obj->dirty = 0;
|
|
|
|
drm_free_large(obj->pages);
|
|
obj->pages = NULL;
|
|
}
|
|
|
|
void
|
|
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
|
|
struct intel_ring_buffer *ring)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
|
|
|
|
BUG_ON(ring == NULL);
|
|
obj->ring = ring;
|
|
|
|
/* Add a reference if we're newly entering the active list. */
|
|
if (!obj->active) {
|
|
drm_gem_object_reference(&obj->base);
|
|
obj->active = 1;
|
|
}
|
|
|
|
/* Move from whatever list we were on to the tail of execution. */
|
|
list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
|
|
list_move_tail(&obj->ring_list, &ring->active_list);
|
|
|
|
obj->last_rendering_seqno = seqno;
|
|
if (obj->fenced_gpu_access) {
|
|
struct drm_i915_fence_reg *reg;
|
|
|
|
BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
|
|
|
|
obj->last_fenced_seqno = seqno;
|
|
obj->last_fenced_ring = ring;
|
|
|
|
reg = &dev_priv->fence_regs[obj->fence_reg];
|
|
list_move_tail(®->lru_list, &dev_priv->mm.fence_list);
|
|
}
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
|
|
{
|
|
list_del_init(&obj->ring_list);
|
|
obj->last_rendering_seqno = 0;
|
|
obj->last_fenced_seqno = 0;
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
BUG_ON(!obj->active);
|
|
list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
|
|
|
|
i915_gem_object_move_off_active(obj);
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (obj->pin_count != 0)
|
|
list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
|
|
else
|
|
list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
|
|
|
|
BUG_ON(!list_empty(&obj->gpu_write_list));
|
|
BUG_ON(!obj->active);
|
|
obj->ring = NULL;
|
|
|
|
i915_gem_object_move_off_active(obj);
|
|
obj->fenced_gpu_access = false;
|
|
obj->last_fenced_ring = NULL;
|
|
|
|
obj->active = 0;
|
|
drm_gem_object_unreference(&obj->base);
|
|
|
|
WARN_ON(i915_verify_lists(dev));
|
|
}
|
|
|
|
/* Immediately discard the backing storage */
|
|
static void
|
|
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct inode *inode;
|
|
|
|
/* Our goal here is to return as much of the memory as
|
|
* is possible back to the system as we are called from OOM.
|
|
* To do this we must instruct the shmfs to drop all of its
|
|
* backing pages, *now*. Here we mirror the actions taken
|
|
* when by shmem_delete_inode() to release the backing store.
|
|
*/
|
|
inode = obj->base.filp->f_path.dentry->d_inode;
|
|
truncate_inode_pages(inode->i_mapping, 0);
|
|
if (inode->i_op->truncate_range)
|
|
inode->i_op->truncate_range(inode, 0, (loff_t)-1);
|
|
|
|
obj->madv = __I915_MADV_PURGED;
|
|
}
|
|
|
|
static inline int
|
|
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
|
|
{
|
|
return obj->madv == I915_MADV_DONTNEED;
|
|
}
|
|
|
|
static void
|
|
i915_gem_process_flushing_list(struct drm_device *dev,
|
|
uint32_t flush_domains,
|
|
struct intel_ring_buffer *ring)
|
|
{
|
|
struct drm_i915_gem_object *obj, *next;
|
|
|
|
list_for_each_entry_safe(obj, next,
|
|
&ring->gpu_write_list,
|
|
gpu_write_list) {
|
|
if (obj->base.write_domain & flush_domains) {
|
|
uint32_t old_write_domain = obj->base.write_domain;
|
|
|
|
obj->base.write_domain = 0;
|
|
list_del_init(&obj->gpu_write_list);
|
|
i915_gem_object_move_to_active(obj, ring);
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->base.read_domains,
|
|
old_write_domain);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
i915_add_request(struct drm_device *dev,
|
|
struct drm_file *file,
|
|
struct drm_i915_gem_request *request,
|
|
struct intel_ring_buffer *ring)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_file_private *file_priv = NULL;
|
|
uint32_t seqno;
|
|
int was_empty;
|
|
int ret;
|
|
|
|
BUG_ON(request == NULL);
|
|
|
|
if (file != NULL)
|
|
file_priv = file->driver_priv;
|
|
|
|
ret = ring->add_request(ring, &seqno);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ring->outstanding_lazy_request = false;
|
|
|
|
request->seqno = seqno;
|
|
request->ring = ring;
|
|
request->emitted_jiffies = jiffies;
|
|
was_empty = list_empty(&ring->request_list);
|
|
list_add_tail(&request->list, &ring->request_list);
|
|
|
|
if (file_priv) {
|
|
spin_lock(&file_priv->mm.lock);
|
|
request->file_priv = file_priv;
|
|
list_add_tail(&request->client_list,
|
|
&file_priv->mm.request_list);
|
|
spin_unlock(&file_priv->mm.lock);
|
|
}
|
|
|
|
if (!dev_priv->mm.suspended) {
|
|
mod_timer(&dev_priv->hangcheck_timer,
|
|
jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
|
|
if (was_empty)
|
|
queue_delayed_work(dev_priv->wq,
|
|
&dev_priv->mm.retire_work, HZ);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
|
|
{
|
|
struct drm_i915_file_private *file_priv = request->file_priv;
|
|
|
|
if (!file_priv)
|
|
return;
|
|
|
|
spin_lock(&file_priv->mm.lock);
|
|
list_del(&request->client_list);
|
|
request->file_priv = NULL;
|
|
spin_unlock(&file_priv->mm.lock);
|
|
}
|
|
|
|
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
|
|
struct intel_ring_buffer *ring)
|
|
{
|
|
while (!list_empty(&ring->request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
|
|
request = list_first_entry(&ring->request_list,
|
|
struct drm_i915_gem_request,
|
|
list);
|
|
|
|
list_del(&request->list);
|
|
i915_gem_request_remove_from_client(request);
|
|
kfree(request);
|
|
}
|
|
|
|
while (!list_empty(&ring->active_list)) {
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
obj = list_first_entry(&ring->active_list,
|
|
struct drm_i915_gem_object,
|
|
ring_list);
|
|
|
|
obj->base.write_domain = 0;
|
|
list_del_init(&obj->gpu_write_list);
|
|
i915_gem_object_move_to_inactive(obj);
|
|
}
|
|
}
|
|
|
|
static void i915_gem_reset_fences(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
|
|
if (reg->obj)
|
|
i915_gem_clear_fence_reg(reg->obj);
|
|
}
|
|
}
|
|
|
|
void i915_gem_reset(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
|
|
i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
|
|
i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
|
|
|
|
/* Remove anything from the flushing lists. The GPU cache is likely
|
|
* to be lost on reset along with the data, so simply move the
|
|
* lost bo to the inactive list.
|
|
*/
|
|
while (!list_empty(&dev_priv->mm.flushing_list)) {
|
|
obj= list_first_entry(&dev_priv->mm.flushing_list,
|
|
struct drm_i915_gem_object,
|
|
mm_list);
|
|
|
|
obj->base.write_domain = 0;
|
|
list_del_init(&obj->gpu_write_list);
|
|
i915_gem_object_move_to_inactive(obj);
|
|
}
|
|
|
|
/* Move everything out of the GPU domains to ensure we do any
|
|
* necessary invalidation upon reuse.
|
|
*/
|
|
list_for_each_entry(obj,
|
|
&dev_priv->mm.inactive_list,
|
|
mm_list)
|
|
{
|
|
obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
|
|
}
|
|
|
|
/* The fence registers are invalidated so clear them out */
|
|
i915_gem_reset_fences(dev);
|
|
}
|
|
|
|
/**
|
|
* This function clears the request list as sequence numbers are passed.
|
|
*/
|
|
static void
|
|
i915_gem_retire_requests_ring(struct drm_device *dev,
|
|
struct intel_ring_buffer *ring)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
uint32_t seqno;
|
|
|
|
if (!ring->status_page.page_addr ||
|
|
list_empty(&ring->request_list))
|
|
return;
|
|
|
|
WARN_ON(i915_verify_lists(dev));
|
|
|
|
seqno = ring->get_seqno(ring);
|
|
while (!list_empty(&ring->request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
|
|
request = list_first_entry(&ring->request_list,
|
|
struct drm_i915_gem_request,
|
|
list);
|
|
|
|
if (!i915_seqno_passed(seqno, request->seqno))
|
|
break;
|
|
|
|
trace_i915_gem_request_retire(dev, request->seqno);
|
|
|
|
list_del(&request->list);
|
|
i915_gem_request_remove_from_client(request);
|
|
kfree(request);
|
|
}
|
|
|
|
/* Move any buffers on the active list that are no longer referenced
|
|
* by the ringbuffer to the flushing/inactive lists as appropriate.
|
|
*/
|
|
while (!list_empty(&ring->active_list)) {
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
obj= list_first_entry(&ring->active_list,
|
|
struct drm_i915_gem_object,
|
|
ring_list);
|
|
|
|
if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
|
|
break;
|
|
|
|
if (obj->base.write_domain != 0)
|
|
i915_gem_object_move_to_flushing(obj);
|
|
else
|
|
i915_gem_object_move_to_inactive(obj);
|
|
}
|
|
|
|
if (unlikely (dev_priv->trace_irq_seqno &&
|
|
i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
|
|
ring->user_irq_put(ring);
|
|
dev_priv->trace_irq_seqno = 0;
|
|
}
|
|
|
|
WARN_ON(i915_verify_lists(dev));
|
|
}
|
|
|
|
void
|
|
i915_gem_retire_requests(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
if (!list_empty(&dev_priv->mm.deferred_free_list)) {
|
|
struct drm_i915_gem_object *obj, *next;
|
|
|
|
/* We must be careful that during unbind() we do not
|
|
* accidentally infinitely recurse into retire requests.
|
|
* Currently:
|
|
* retire -> free -> unbind -> wait -> retire_ring
|
|
*/
|
|
list_for_each_entry_safe(obj, next,
|
|
&dev_priv->mm.deferred_free_list,
|
|
mm_list)
|
|
i915_gem_free_object_tail(obj);
|
|
}
|
|
|
|
i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
|
|
i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
|
|
i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
|
|
}
|
|
|
|
static void
|
|
i915_gem_retire_work_handler(struct work_struct *work)
|
|
{
|
|
drm_i915_private_t *dev_priv;
|
|
struct drm_device *dev;
|
|
|
|
dev_priv = container_of(work, drm_i915_private_t,
|
|
mm.retire_work.work);
|
|
dev = dev_priv->dev;
|
|
|
|
/* Come back later if the device is busy... */
|
|
if (!mutex_trylock(&dev->struct_mutex)) {
|
|
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
|
|
return;
|
|
}
|
|
|
|
i915_gem_retire_requests(dev);
|
|
|
|
if (!dev_priv->mm.suspended &&
|
|
(!list_empty(&dev_priv->render_ring.request_list) ||
|
|
!list_empty(&dev_priv->bsd_ring.request_list) ||
|
|
!list_empty(&dev_priv->blt_ring.request_list)))
|
|
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
int
|
|
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
|
|
bool interruptible, struct intel_ring_buffer *ring)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
u32 ier;
|
|
int ret = 0;
|
|
|
|
BUG_ON(seqno == 0);
|
|
|
|
if (atomic_read(&dev_priv->mm.wedged))
|
|
return -EAGAIN;
|
|
|
|
if (seqno == ring->outstanding_lazy_request) {
|
|
struct drm_i915_gem_request *request;
|
|
|
|
request = kzalloc(sizeof(*request), GFP_KERNEL);
|
|
if (request == NULL)
|
|
return -ENOMEM;
|
|
|
|
ret = i915_add_request(dev, NULL, request, ring);
|
|
if (ret) {
|
|
kfree(request);
|
|
return ret;
|
|
}
|
|
|
|
seqno = request->seqno;
|
|
}
|
|
|
|
if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
|
|
if (HAS_PCH_SPLIT(dev))
|
|
ier = I915_READ(DEIER) | I915_READ(GTIER);
|
|
else
|
|
ier = I915_READ(IER);
|
|
if (!ier) {
|
|
DRM_ERROR("something (likely vbetool) disabled "
|
|
"interrupts, re-enabling\n");
|
|
i915_driver_irq_preinstall(dev);
|
|
i915_driver_irq_postinstall(dev);
|
|
}
|
|
|
|
trace_i915_gem_request_wait_begin(dev, seqno);
|
|
|
|
ring->waiting_seqno = seqno;
|
|
ring->user_irq_get(ring);
|
|
if (interruptible)
|
|
ret = wait_event_interruptible(ring->irq_queue,
|
|
i915_seqno_passed(ring->get_seqno(ring), seqno)
|
|
|| atomic_read(&dev_priv->mm.wedged));
|
|
else
|
|
wait_event(ring->irq_queue,
|
|
i915_seqno_passed(ring->get_seqno(ring), seqno)
|
|
|| atomic_read(&dev_priv->mm.wedged));
|
|
|
|
ring->user_irq_put(ring);
|
|
ring->waiting_seqno = 0;
|
|
|
|
trace_i915_gem_request_wait_end(dev, seqno);
|
|
}
|
|
if (atomic_read(&dev_priv->mm.wedged))
|
|
ret = -EAGAIN;
|
|
|
|
if (ret && ret != -ERESTARTSYS)
|
|
DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
|
|
__func__, ret, seqno, ring->get_seqno(ring),
|
|
dev_priv->next_seqno);
|
|
|
|
/* Directly dispatch request retiring. While we have the work queue
|
|
* to handle this, the waiter on a request often wants an associated
|
|
* buffer to have made it to the inactive list, and we would need
|
|
* a separate wait queue to handle that.
|
|
*/
|
|
if (ret == 0)
|
|
i915_gem_retire_requests_ring(dev, ring);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Waits for a sequence number to be signaled, and cleans up the
|
|
* request and object lists appropriately for that event.
|
|
*/
|
|
static int
|
|
i915_wait_request(struct drm_device *dev, uint32_t seqno,
|
|
struct intel_ring_buffer *ring)
|
|
{
|
|
return i915_do_wait_request(dev, seqno, 1, ring);
|
|
}
|
|
|
|
/**
|
|
* Ensures that all rendering to the object has completed and the object is
|
|
* safe to unbind from the GTT or access from the CPU.
|
|
*/
|
|
int
|
|
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
|
|
bool interruptible)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
int ret;
|
|
|
|
/* This function only exists to support waiting for existing rendering,
|
|
* not for emitting required flushes.
|
|
*/
|
|
BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
|
|
|
|
/* If there is rendering queued on the buffer being evicted, wait for
|
|
* it.
|
|
*/
|
|
if (obj->active) {
|
|
ret = i915_do_wait_request(dev,
|
|
obj->last_rendering_seqno,
|
|
interruptible,
|
|
obj->ring);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Unbinds an object from the GTT aperture.
|
|
*/
|
|
int
|
|
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (obj->gtt_space == NULL)
|
|
return 0;
|
|
|
|
if (obj->pin_count != 0) {
|
|
DRM_ERROR("Attempting to unbind pinned buffer\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* blow away mappings if mapped through GTT */
|
|
i915_gem_release_mmap(obj);
|
|
|
|
/* Move the object to the CPU domain to ensure that
|
|
* any possible CPU writes while it's not in the GTT
|
|
* are flushed when we go to remap it. This will
|
|
* also ensure that all pending GPU writes are finished
|
|
* before we unbind.
|
|
*/
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
|
|
if (ret == -ERESTARTSYS)
|
|
return ret;
|
|
/* Continue on if we fail due to EIO, the GPU is hung so we
|
|
* should be safe and we need to cleanup or else we might
|
|
* cause memory corruption through use-after-free.
|
|
*/
|
|
if (ret) {
|
|
i915_gem_clflush_object(obj);
|
|
obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
/* release the fence reg _after_ flushing */
|
|
if (obj->fence_reg != I915_FENCE_REG_NONE)
|
|
i915_gem_clear_fence_reg(obj);
|
|
|
|
i915_gem_gtt_unbind_object(obj);
|
|
i915_gem_object_put_pages_gtt(obj);
|
|
|
|
list_del_init(&obj->gtt_list);
|
|
list_del_init(&obj->mm_list);
|
|
/* Avoid an unnecessary call to unbind on rebind. */
|
|
obj->map_and_fenceable = true;
|
|
|
|
drm_mm_put_block(obj->gtt_space);
|
|
obj->gtt_space = NULL;
|
|
obj->gtt_offset = 0;
|
|
|
|
if (i915_gem_object_is_purgeable(obj))
|
|
i915_gem_object_truncate(obj);
|
|
|
|
trace_i915_gem_object_unbind(obj);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
i915_gem_flush_ring(struct drm_device *dev,
|
|
struct intel_ring_buffer *ring,
|
|
uint32_t invalidate_domains,
|
|
uint32_t flush_domains)
|
|
{
|
|
ring->flush(ring, invalidate_domains, flush_domains);
|
|
i915_gem_process_flushing_list(dev, flush_domains, ring);
|
|
}
|
|
|
|
static int i915_ring_idle(struct drm_device *dev,
|
|
struct intel_ring_buffer *ring)
|
|
{
|
|
if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
|
|
return 0;
|
|
|
|
i915_gem_flush_ring(dev, ring,
|
|
I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
|
|
return i915_wait_request(dev,
|
|
i915_gem_next_request_seqno(dev, ring),
|
|
ring);
|
|
}
|
|
|
|
int
|
|
i915_gpu_idle(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
bool lists_empty;
|
|
int ret;
|
|
|
|
lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
|
|
list_empty(&dev_priv->mm.active_list));
|
|
if (lists_empty)
|
|
return 0;
|
|
|
|
/* Flush everything onto the inactive list. */
|
|
ret = i915_ring_idle(dev, &dev_priv->render_ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = i915_ring_idle(dev, &dev_priv->blt_ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
|
|
struct intel_ring_buffer *pipelined)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
u32 size = obj->gtt_space->size;
|
|
int regnum = obj->fence_reg;
|
|
uint64_t val;
|
|
|
|
val = (uint64_t)((obj->gtt_offset + size - 4096) &
|
|
0xfffff000) << 32;
|
|
val |= obj->gtt_offset & 0xfffff000;
|
|
val |= (uint64_t)((obj->stride / 128) - 1) <<
|
|
SANDYBRIDGE_FENCE_PITCH_SHIFT;
|
|
|
|
if (obj->tiling_mode == I915_TILING_Y)
|
|
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
|
|
val |= I965_FENCE_REG_VALID;
|
|
|
|
if (pipelined) {
|
|
int ret = intel_ring_begin(pipelined, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(pipelined, MI_NOOP);
|
|
intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
|
|
intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
|
|
intel_ring_emit(pipelined, (u32)val);
|
|
intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
|
|
intel_ring_emit(pipelined, (u32)(val >> 32));
|
|
intel_ring_advance(pipelined);
|
|
} else
|
|
I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
|
|
struct intel_ring_buffer *pipelined)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
u32 size = obj->gtt_space->size;
|
|
int regnum = obj->fence_reg;
|
|
uint64_t val;
|
|
|
|
val = (uint64_t)((obj->gtt_offset + size - 4096) &
|
|
0xfffff000) << 32;
|
|
val |= obj->gtt_offset & 0xfffff000;
|
|
val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
|
|
if (obj->tiling_mode == I915_TILING_Y)
|
|
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
|
|
val |= I965_FENCE_REG_VALID;
|
|
|
|
if (pipelined) {
|
|
int ret = intel_ring_begin(pipelined, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(pipelined, MI_NOOP);
|
|
intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
|
|
intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
|
|
intel_ring_emit(pipelined, (u32)val);
|
|
intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
|
|
intel_ring_emit(pipelined, (u32)(val >> 32));
|
|
intel_ring_advance(pipelined);
|
|
} else
|
|
I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
|
|
struct intel_ring_buffer *pipelined)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
u32 size = obj->gtt_space->size;
|
|
u32 fence_reg, val, pitch_val;
|
|
int tile_width;
|
|
|
|
if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
|
|
(size & -size) != size ||
|
|
(obj->gtt_offset & (size - 1)),
|
|
"object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
|
|
obj->gtt_offset, obj->map_and_fenceable, size))
|
|
return -EINVAL;
|
|
|
|
if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
|
|
tile_width = 128;
|
|
else
|
|
tile_width = 512;
|
|
|
|
/* Note: pitch better be a power of two tile widths */
|
|
pitch_val = obj->stride / tile_width;
|
|
pitch_val = ffs(pitch_val) - 1;
|
|
|
|
val = obj->gtt_offset;
|
|
if (obj->tiling_mode == I915_TILING_Y)
|
|
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
|
|
val |= I915_FENCE_SIZE_BITS(size);
|
|
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
|
|
val |= I830_FENCE_REG_VALID;
|
|
|
|
fence_reg = obj->fence_reg;
|
|
if (fence_reg < 8)
|
|
fence_reg = FENCE_REG_830_0 + fence_reg * 4;
|
|
else
|
|
fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
|
|
|
|
if (pipelined) {
|
|
int ret = intel_ring_begin(pipelined, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(pipelined, MI_NOOP);
|
|
intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
|
|
intel_ring_emit(pipelined, fence_reg);
|
|
intel_ring_emit(pipelined, val);
|
|
intel_ring_advance(pipelined);
|
|
} else
|
|
I915_WRITE(fence_reg, val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
|
|
struct intel_ring_buffer *pipelined)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
u32 size = obj->gtt_space->size;
|
|
int regnum = obj->fence_reg;
|
|
uint32_t val;
|
|
uint32_t pitch_val;
|
|
|
|
if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
|
|
(size & -size) != size ||
|
|
(obj->gtt_offset & (size - 1)),
|
|
"object 0x%08x not 512K or pot-size 0x%08x aligned\n",
|
|
obj->gtt_offset, size))
|
|
return -EINVAL;
|
|
|
|
pitch_val = obj->stride / 128;
|
|
pitch_val = ffs(pitch_val) - 1;
|
|
|
|
val = obj->gtt_offset;
|
|
if (obj->tiling_mode == I915_TILING_Y)
|
|
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
|
|
val |= I830_FENCE_SIZE_BITS(size);
|
|
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
|
|
val |= I830_FENCE_REG_VALID;
|
|
|
|
if (pipelined) {
|
|
int ret = intel_ring_begin(pipelined, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(pipelined, MI_NOOP);
|
|
intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
|
|
intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
|
|
intel_ring_emit(pipelined, val);
|
|
intel_ring_advance(pipelined);
|
|
} else
|
|
I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int i915_find_fence_reg(struct drm_device *dev,
|
|
bool interruptible)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_fence_reg *reg;
|
|
struct drm_i915_gem_object *obj = NULL;
|
|
int i, avail, ret;
|
|
|
|
/* First try to find a free reg */
|
|
avail = 0;
|
|
for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
|
|
reg = &dev_priv->fence_regs[i];
|
|
if (!reg->obj)
|
|
return i;
|
|
|
|
if (!reg->obj->pin_count)
|
|
avail++;
|
|
}
|
|
|
|
if (avail == 0)
|
|
return -ENOSPC;
|
|
|
|
/* None available, try to steal one or wait for a user to finish */
|
|
avail = I915_FENCE_REG_NONE;
|
|
list_for_each_entry(reg, &dev_priv->mm.fence_list,
|
|
lru_list) {
|
|
obj = reg->obj;
|
|
if (obj->pin_count)
|
|
continue;
|
|
|
|
/* found one! */
|
|
avail = obj->fence_reg;
|
|
break;
|
|
}
|
|
|
|
BUG_ON(avail == I915_FENCE_REG_NONE);
|
|
|
|
/* We only have a reference on obj from the active list. put_fence_reg
|
|
* might drop that one, causing a use-after-free in it. So hold a
|
|
* private reference to obj like the other callers of put_fence_reg
|
|
* (set_tiling ioctl) do. */
|
|
drm_gem_object_reference(&obj->base);
|
|
ret = i915_gem_object_put_fence_reg(obj, interruptible);
|
|
drm_gem_object_unreference(&obj->base);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
return avail;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_object_get_fence_reg - set up a fence reg for an object
|
|
* @obj: object to map through a fence reg
|
|
*
|
|
* When mapping objects through the GTT, userspace wants to be able to write
|
|
* to them without having to worry about swizzling if the object is tiled.
|
|
*
|
|
* This function walks the fence regs looking for a free one for @obj,
|
|
* stealing one if it can't find any.
|
|
*
|
|
* It then sets up the reg based on the object's properties: address, pitch
|
|
* and tiling format.
|
|
*/
|
|
int
|
|
i915_gem_object_get_fence_reg(struct drm_i915_gem_object *obj,
|
|
bool interruptible)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_fence_reg *reg = NULL;
|
|
struct intel_ring_buffer *pipelined = NULL;
|
|
int ret;
|
|
|
|
/* Just update our place in the LRU if our fence is getting used. */
|
|
if (obj->fence_reg != I915_FENCE_REG_NONE) {
|
|
reg = &dev_priv->fence_regs[obj->fence_reg];
|
|
list_move_tail(®->lru_list, &dev_priv->mm.fence_list);
|
|
return 0;
|
|
}
|
|
|
|
switch (obj->tiling_mode) {
|
|
case I915_TILING_NONE:
|
|
WARN(1, "allocating a fence for non-tiled object?\n");
|
|
break;
|
|
case I915_TILING_X:
|
|
if (!obj->stride)
|
|
return -EINVAL;
|
|
WARN((obj->stride & (512 - 1)),
|
|
"object 0x%08x is X tiled but has non-512B pitch\n",
|
|
obj->gtt_offset);
|
|
break;
|
|
case I915_TILING_Y:
|
|
if (!obj->stride)
|
|
return -EINVAL;
|
|
WARN((obj->stride & (128 - 1)),
|
|
"object 0x%08x is Y tiled but has non-128B pitch\n",
|
|
obj->gtt_offset);
|
|
break;
|
|
}
|
|
|
|
ret = i915_find_fence_reg(dev, interruptible);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
obj->fence_reg = ret;
|
|
reg = &dev_priv->fence_regs[obj->fence_reg];
|
|
list_add_tail(®->lru_list, &dev_priv->mm.fence_list);
|
|
|
|
reg->obj = obj;
|
|
|
|
switch (INTEL_INFO(dev)->gen) {
|
|
case 6:
|
|
ret = sandybridge_write_fence_reg(obj, pipelined);
|
|
break;
|
|
case 5:
|
|
case 4:
|
|
ret = i965_write_fence_reg(obj, pipelined);
|
|
break;
|
|
case 3:
|
|
ret = i915_write_fence_reg(obj, pipelined);
|
|
break;
|
|
case 2:
|
|
ret = i830_write_fence_reg(obj, pipelined);
|
|
break;
|
|
}
|
|
|
|
trace_i915_gem_object_get_fence(obj,
|
|
obj->fence_reg,
|
|
obj->tiling_mode);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_clear_fence_reg - clear out fence register info
|
|
* @obj: object to clear
|
|
*
|
|
* Zeroes out the fence register itself and clears out the associated
|
|
* data structures in dev_priv and obj.
|
|
*/
|
|
static void
|
|
i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[obj->fence_reg];
|
|
uint32_t fence_reg;
|
|
|
|
switch (INTEL_INFO(dev)->gen) {
|
|
case 6:
|
|
I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
|
|
(obj->fence_reg * 8), 0);
|
|
break;
|
|
case 5:
|
|
case 4:
|
|
I915_WRITE64(FENCE_REG_965_0 + (obj->fence_reg * 8), 0);
|
|
break;
|
|
case 3:
|
|
if (obj->fence_reg >= 8)
|
|
fence_reg = FENCE_REG_945_8 + (obj->fence_reg - 8) * 4;
|
|
else
|
|
case 2:
|
|
fence_reg = FENCE_REG_830_0 + obj->fence_reg * 4;
|
|
|
|
I915_WRITE(fence_reg, 0);
|
|
break;
|
|
}
|
|
|
|
reg->obj = NULL;
|
|
obj->fence_reg = I915_FENCE_REG_NONE;
|
|
list_del_init(®->lru_list);
|
|
}
|
|
|
|
/**
|
|
* i915_gem_object_put_fence_reg - waits on outstanding fenced access
|
|
* to the buffer to finish, and then resets the fence register.
|
|
* @obj: tiled object holding a fence register.
|
|
* @bool: whether the wait upon the fence is interruptible
|
|
*
|
|
* Zeroes out the fence register itself and clears out the associated
|
|
* data structures in dev_priv and obj.
|
|
*/
|
|
int
|
|
i915_gem_object_put_fence_reg(struct drm_i915_gem_object *obj,
|
|
bool interruptible)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
int ret;
|
|
|
|
if (obj->fence_reg == I915_FENCE_REG_NONE)
|
|
return 0;
|
|
|
|
/* If we've changed tiling, GTT-mappings of the object
|
|
* need to re-fault to ensure that the correct fence register
|
|
* setup is in place.
|
|
*/
|
|
i915_gem_release_mmap(obj);
|
|
|
|
/* On the i915, GPU access to tiled buffers is via a fence,
|
|
* therefore we must wait for any outstanding access to complete
|
|
* before clearing the fence.
|
|
*/
|
|
if (obj->fenced_gpu_access) {
|
|
ret = i915_gem_object_flush_gpu_write_domain(obj, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj->fenced_gpu_access = false;
|
|
}
|
|
|
|
if (obj->last_fenced_seqno) {
|
|
ret = i915_do_wait_request(dev,
|
|
obj->last_fenced_seqno,
|
|
interruptible,
|
|
obj->last_fenced_ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj->last_fenced_seqno = false;
|
|
}
|
|
|
|
i915_gem_object_flush_gtt_write_domain(obj);
|
|
i915_gem_clear_fence_reg(obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Finds free space in the GTT aperture and binds the object there.
|
|
*/
|
|
static int
|
|
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
|
|
unsigned alignment,
|
|
bool map_and_fenceable)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_mm_node *free_space;
|
|
gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
|
|
u32 size, fence_size, fence_alignment, unfenced_alignment;
|
|
bool mappable, fenceable;
|
|
int ret;
|
|
|
|
if (obj->madv != I915_MADV_WILLNEED) {
|
|
DRM_ERROR("Attempting to bind a purgeable object\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
fence_size = i915_gem_get_gtt_size(obj);
|
|
fence_alignment = i915_gem_get_gtt_alignment(obj);
|
|
unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
|
|
|
|
if (alignment == 0)
|
|
alignment = map_and_fenceable ? fence_alignment :
|
|
unfenced_alignment;
|
|
if (map_and_fenceable && alignment & (fence_alignment - 1)) {
|
|
DRM_ERROR("Invalid object alignment requested %u\n", alignment);
|
|
return -EINVAL;
|
|
}
|
|
|
|
size = map_and_fenceable ? fence_size : obj->base.size;
|
|
|
|
/* If the object is bigger than the entire aperture, reject it early
|
|
* before evicting everything in a vain attempt to find space.
|
|
*/
|
|
if (obj->base.size >
|
|
(map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
|
|
DRM_ERROR("Attempting to bind an object larger than the aperture\n");
|
|
return -E2BIG;
|
|
}
|
|
|
|
search_free:
|
|
if (map_and_fenceable)
|
|
free_space =
|
|
drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
|
|
size, alignment, 0,
|
|
dev_priv->mm.gtt_mappable_end,
|
|
0);
|
|
else
|
|
free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
|
|
size, alignment, 0);
|
|
|
|
if (free_space != NULL) {
|
|
if (map_and_fenceable)
|
|
obj->gtt_space =
|
|
drm_mm_get_block_range_generic(free_space,
|
|
size, alignment, 0,
|
|
dev_priv->mm.gtt_mappable_end,
|
|
0);
|
|
else
|
|
obj->gtt_space =
|
|
drm_mm_get_block(free_space, size, alignment);
|
|
}
|
|
if (obj->gtt_space == NULL) {
|
|
/* If the gtt is empty and we're still having trouble
|
|
* fitting our object in, we're out of memory.
|
|
*/
|
|
ret = i915_gem_evict_something(dev, size, alignment,
|
|
map_and_fenceable);
|
|
if (ret)
|
|
return ret;
|
|
|
|
goto search_free;
|
|
}
|
|
|
|
ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
|
|
if (ret) {
|
|
drm_mm_put_block(obj->gtt_space);
|
|
obj->gtt_space = NULL;
|
|
|
|
if (ret == -ENOMEM) {
|
|
/* first try to clear up some space from the GTT */
|
|
ret = i915_gem_evict_something(dev, size,
|
|
alignment,
|
|
map_and_fenceable);
|
|
if (ret) {
|
|
/* now try to shrink everyone else */
|
|
if (gfpmask) {
|
|
gfpmask = 0;
|
|
goto search_free;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
goto search_free;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
ret = i915_gem_gtt_bind_object(obj);
|
|
if (ret) {
|
|
i915_gem_object_put_pages_gtt(obj);
|
|
drm_mm_put_block(obj->gtt_space);
|
|
obj->gtt_space = NULL;
|
|
|
|
ret = i915_gem_evict_something(dev, size,
|
|
alignment, map_and_fenceable);
|
|
if (ret)
|
|
return ret;
|
|
|
|
goto search_free;
|
|
}
|
|
|
|
list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
|
|
list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
|
|
|
|
/* Assert that the object is not currently in any GPU domain. As it
|
|
* wasn't in the GTT, there shouldn't be any way it could have been in
|
|
* a GPU cache
|
|
*/
|
|
BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
|
|
BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
|
|
|
|
obj->gtt_offset = obj->gtt_space->start;
|
|
|
|
fenceable =
|
|
obj->gtt_space->size == fence_size &&
|
|
(obj->gtt_space->start & (fence_alignment -1)) == 0;
|
|
|
|
mappable =
|
|
obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
|
|
|
|
obj->map_and_fenceable = mappable && fenceable;
|
|
|
|
trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
|
|
{
|
|
/* If we don't have a page list set up, then we're not pinned
|
|
* to GPU, and we can ignore the cache flush because it'll happen
|
|
* again at bind time.
|
|
*/
|
|
if (obj->pages == NULL)
|
|
return;
|
|
|
|
trace_i915_gem_object_clflush(obj);
|
|
|
|
drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
|
|
}
|
|
|
|
/** Flushes any GPU write domain for the object if it's dirty. */
|
|
static int
|
|
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj,
|
|
struct intel_ring_buffer *pipelined)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
|
|
if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
|
|
return 0;
|
|
|
|
/* Queue the GPU write cache flushing we need. */
|
|
i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
|
|
BUG_ON(obj->base.write_domain);
|
|
|
|
if (pipelined && pipelined == obj->ring)
|
|
return 0;
|
|
|
|
return i915_gem_object_wait_rendering(obj, true);
|
|
}
|
|
|
|
/** Flushes the GTT write domain for the object if it's dirty. */
|
|
static void
|
|
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
|
|
{
|
|
uint32_t old_write_domain;
|
|
|
|
if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
|
|
return;
|
|
|
|
/* No actual flushing is required for the GTT write domain. Writes
|
|
* to it immediately go to main memory as far as we know, so there's
|
|
* no chipset flush. It also doesn't land in render cache.
|
|
*/
|
|
i915_gem_release_mmap(obj);
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
obj->base.write_domain = 0;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->base.read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
/** Flushes the CPU write domain for the object if it's dirty. */
|
|
static void
|
|
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
|
|
{
|
|
uint32_t old_write_domain;
|
|
|
|
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
|
|
return;
|
|
|
|
i915_gem_clflush_object(obj);
|
|
intel_gtt_chipset_flush();
|
|
old_write_domain = obj->base.write_domain;
|
|
obj->base.write_domain = 0;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->base.read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
/**
|
|
* Moves a single object to the GTT read, and possibly write domain.
|
|
*
|
|
* This function returns when the move is complete, including waiting on
|
|
* flushes to occur.
|
|
*/
|
|
int
|
|
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
|
|
{
|
|
uint32_t old_write_domain, old_read_domains;
|
|
int ret;
|
|
|
|
/* Not valid to be called on unbound objects. */
|
|
if (obj->gtt_space == NULL)
|
|
return -EINVAL;
|
|
|
|
ret = i915_gem_object_flush_gpu_write_domain(obj, NULL);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
i915_gem_object_flush_cpu_write_domain(obj);
|
|
|
|
if (write) {
|
|
ret = i915_gem_object_wait_rendering(obj, true);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
old_read_domains = obj->base.read_domains;
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
|
|
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
|
|
if (write) {
|
|
obj->base.read_domains = I915_GEM_DOMAIN_GTT;
|
|
obj->base.write_domain = I915_GEM_DOMAIN_GTT;
|
|
obj->dirty = 1;
|
|
}
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Prepare buffer for display plane. Use uninterruptible for possible flush
|
|
* wait, as in modesetting process we're not supposed to be interrupted.
|
|
*/
|
|
int
|
|
i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
|
|
struct intel_ring_buffer *pipelined)
|
|
{
|
|
uint32_t old_read_domains;
|
|
int ret;
|
|
|
|
/* Not valid to be called on unbound objects. */
|
|
if (obj->gtt_space == NULL)
|
|
return -EINVAL;
|
|
|
|
ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Currently, we are always called from an non-interruptible context. */
|
|
if (!pipelined) {
|
|
ret = i915_gem_object_wait_rendering(obj, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
i915_gem_object_flush_cpu_write_domain(obj);
|
|
|
|
old_read_domains = obj->base.read_domains;
|
|
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
obj->base.write_domain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
|
|
bool interruptible)
|
|
{
|
|
if (!obj->active)
|
|
return 0;
|
|
|
|
if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
|
|
i915_gem_flush_ring(obj->base.dev, obj->ring,
|
|
0, obj->base.write_domain);
|
|
|
|
return i915_gem_object_wait_rendering(obj, interruptible);
|
|
}
|
|
|
|
/**
|
|
* Moves a single object to the CPU read, and possibly write domain.
|
|
*
|
|
* This function returns when the move is complete, including waiting on
|
|
* flushes to occur.
|
|
*/
|
|
static int
|
|
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
|
|
{
|
|
uint32_t old_write_domain, old_read_domains;
|
|
int ret;
|
|
|
|
ret = i915_gem_object_flush_gpu_write_domain(obj, false);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
i915_gem_object_flush_gtt_write_domain(obj);
|
|
|
|
/* If we have a partially-valid cache of the object in the CPU,
|
|
* finish invalidating it and free the per-page flags.
|
|
*/
|
|
i915_gem_object_set_to_full_cpu_read_domain(obj);
|
|
|
|
if (write) {
|
|
ret = i915_gem_object_wait_rendering(obj, true);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
old_read_domains = obj->base.read_domains;
|
|
|
|
/* Flush the CPU cache if it's still invalid. */
|
|
if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
|
|
i915_gem_clflush_object(obj);
|
|
|
|
obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
|
|
|
|
/* If we're writing through the CPU, then the GPU read domains will
|
|
* need to be invalidated at next use.
|
|
*/
|
|
if (write) {
|
|
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
|
|
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Moves the object from a partially CPU read to a full one.
|
|
*
|
|
* Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
|
|
* and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
|
|
*/
|
|
static void
|
|
i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (!obj->page_cpu_valid)
|
|
return;
|
|
|
|
/* If we're partially in the CPU read domain, finish moving it in.
|
|
*/
|
|
if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
|
|
int i;
|
|
|
|
for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
|
|
if (obj->page_cpu_valid[i])
|
|
continue;
|
|
drm_clflush_pages(obj->pages + i, 1);
|
|
}
|
|
}
|
|
|
|
/* Free the page_cpu_valid mappings which are now stale, whether
|
|
* or not we've got I915_GEM_DOMAIN_CPU.
|
|
*/
|
|
kfree(obj->page_cpu_valid);
|
|
obj->page_cpu_valid = NULL;
|
|
}
|
|
|
|
/**
|
|
* Set the CPU read domain on a range of the object.
|
|
*
|
|
* The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
|
|
* not entirely valid. The page_cpu_valid member of the object flags which
|
|
* pages have been flushed, and will be respected by
|
|
* i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
|
|
* of the whole object.
|
|
*
|
|
* This function returns when the move is complete, including waiting on
|
|
* flushes to occur.
|
|
*/
|
|
static int
|
|
i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
|
|
uint64_t offset, uint64_t size)
|
|
{
|
|
uint32_t old_read_domains;
|
|
int i, ret;
|
|
|
|
if (offset == 0 && size == obj->base.size)
|
|
return i915_gem_object_set_to_cpu_domain(obj, 0);
|
|
|
|
ret = i915_gem_object_flush_gpu_write_domain(obj, false);
|
|
if (ret != 0)
|
|
return ret;
|
|
i915_gem_object_flush_gtt_write_domain(obj);
|
|
|
|
/* If we're already fully in the CPU read domain, we're done. */
|
|
if (obj->page_cpu_valid == NULL &&
|
|
(obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
|
|
return 0;
|
|
|
|
/* Otherwise, create/clear the per-page CPU read domain flag if we're
|
|
* newly adding I915_GEM_DOMAIN_CPU
|
|
*/
|
|
if (obj->page_cpu_valid == NULL) {
|
|
obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
|
|
GFP_KERNEL);
|
|
if (obj->page_cpu_valid == NULL)
|
|
return -ENOMEM;
|
|
} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
|
|
memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
|
|
|
|
/* Flush the cache on any pages that are still invalid from the CPU's
|
|
* perspective.
|
|
*/
|
|
for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
|
|
i++) {
|
|
if (obj->page_cpu_valid[i])
|
|
continue;
|
|
|
|
drm_clflush_pages(obj->pages + i, 1);
|
|
|
|
obj->page_cpu_valid[i] = 1;
|
|
}
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
|
|
|
|
old_read_domains = obj->base.read_domains;
|
|
obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
obj->base.write_domain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Throttle our rendering by waiting until the ring has completed our requests
|
|
* emitted over 20 msec ago.
|
|
*
|
|
* Note that if we were to use the current jiffies each time around the loop,
|
|
* we wouldn't escape the function with any frames outstanding if the time to
|
|
* render a frame was over 20ms.
|
|
*
|
|
* This should get us reasonable parallelism between CPU and GPU but also
|
|
* relatively low latency when blocking on a particular request to finish.
|
|
*/
|
|
static int
|
|
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_file_private *file_priv = file->driver_priv;
|
|
unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
|
|
struct drm_i915_gem_request *request;
|
|
struct intel_ring_buffer *ring = NULL;
|
|
u32 seqno = 0;
|
|
int ret;
|
|
|
|
spin_lock(&file_priv->mm.lock);
|
|
list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
|
|
if (time_after_eq(request->emitted_jiffies, recent_enough))
|
|
break;
|
|
|
|
ring = request->ring;
|
|
seqno = request->seqno;
|
|
}
|
|
spin_unlock(&file_priv->mm.lock);
|
|
|
|
if (seqno == 0)
|
|
return 0;
|
|
|
|
ret = 0;
|
|
if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
|
|
/* And wait for the seqno passing without holding any locks and
|
|
* causing extra latency for others. This is safe as the irq
|
|
* generation is designed to be run atomically and so is
|
|
* lockless.
|
|
*/
|
|
ring->user_irq_get(ring);
|
|
ret = wait_event_interruptible(ring->irq_queue,
|
|
i915_seqno_passed(ring->get_seqno(ring), seqno)
|
|
|| atomic_read(&dev_priv->mm.wedged));
|
|
ring->user_irq_put(ring);
|
|
|
|
if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
|
|
ret = -EIO;
|
|
}
|
|
|
|
if (ret == 0)
|
|
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_object_pin(struct drm_i915_gem_object *obj,
|
|
uint32_t alignment,
|
|
bool map_and_fenceable)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
|
|
WARN_ON(i915_verify_lists(dev));
|
|
|
|
if (obj->gtt_space != NULL) {
|
|
if ((alignment && obj->gtt_offset & (alignment - 1)) ||
|
|
(map_and_fenceable && !obj->map_and_fenceable)) {
|
|
WARN(obj->pin_count,
|
|
"bo is already pinned with incorrect alignment:"
|
|
" offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
|
|
" obj->map_and_fenceable=%d\n",
|
|
obj->gtt_offset, alignment,
|
|
map_and_fenceable,
|
|
obj->map_and_fenceable);
|
|
ret = i915_gem_object_unbind(obj);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (obj->gtt_space == NULL) {
|
|
ret = i915_gem_object_bind_to_gtt(obj, alignment,
|
|
map_and_fenceable);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (obj->pin_count++ == 0) {
|
|
if (!obj->active)
|
|
list_move_tail(&obj->mm_list,
|
|
&dev_priv->mm.pinned_list);
|
|
}
|
|
obj->pin_mappable |= map_and_fenceable;
|
|
|
|
WARN_ON(i915_verify_lists(dev));
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
WARN_ON(i915_verify_lists(dev));
|
|
BUG_ON(obj->pin_count == 0);
|
|
BUG_ON(obj->gtt_space == NULL);
|
|
|
|
if (--obj->pin_count == 0) {
|
|
if (!obj->active)
|
|
list_move_tail(&obj->mm_list,
|
|
&dev_priv->mm.inactive_list);
|
|
obj->pin_mappable = false;
|
|
}
|
|
WARN_ON(i915_verify_lists(dev));
|
|
}
|
|
|
|
int
|
|
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pin *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (obj == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
if (obj->madv != I915_MADV_WILLNEED) {
|
|
DRM_ERROR("Attempting to pin a purgeable buffer\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (obj->pin_filp != NULL && obj->pin_filp != file) {
|
|
DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
|
|
args->handle);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
obj->user_pin_count++;
|
|
obj->pin_filp = file;
|
|
if (obj->user_pin_count == 1) {
|
|
ret = i915_gem_object_pin(obj, args->alignment, true);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
/* XXX - flush the CPU caches for pinned objects
|
|
* as the X server doesn't manage domains yet
|
|
*/
|
|
i915_gem_object_flush_cpu_write_domain(obj);
|
|
args->offset = obj->gtt_offset;
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pin *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (obj == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
if (obj->pin_filp != file) {
|
|
DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
|
|
args->handle);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
obj->user_pin_count--;
|
|
if (obj->user_pin_count == 0) {
|
|
obj->pin_filp = NULL;
|
|
i915_gem_object_unpin(obj);
|
|
}
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_busy *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (obj == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Count all active objects as busy, even if they are currently not used
|
|
* by the gpu. Users of this interface expect objects to eventually
|
|
* become non-busy without any further actions, therefore emit any
|
|
* necessary flushes here.
|
|
*/
|
|
args->busy = obj->active;
|
|
if (args->busy) {
|
|
/* Unconditionally flush objects, even when the gpu still uses this
|
|
* object. Userspace calling this function indicates that it wants to
|
|
* use this buffer rather sooner than later, so issuing the required
|
|
* flush earlier is beneficial.
|
|
*/
|
|
if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
|
|
i915_gem_flush_ring(dev, obj->ring,
|
|
0, obj->base.write_domain);
|
|
|
|
/* Update the active list for the hardware's current position.
|
|
* Otherwise this only updates on a delayed timer or when irqs
|
|
* are actually unmasked, and our working set ends up being
|
|
* larger than required.
|
|
*/
|
|
i915_gem_retire_requests_ring(dev, obj->ring);
|
|
|
|
args->busy = obj->active;
|
|
}
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
return i915_gem_ring_throttle(dev, file_priv);
|
|
}
|
|
|
|
int
|
|
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_madvise *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
switch (args->madv) {
|
|
case I915_MADV_DONTNEED:
|
|
case I915_MADV_WILLNEED:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
|
|
if (obj == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
if (obj->pin_count) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (obj->madv != __I915_MADV_PURGED)
|
|
obj->madv = args->madv;
|
|
|
|
/* if the object is no longer bound, discard its backing storage */
|
|
if (i915_gem_object_is_purgeable(obj) &&
|
|
obj->gtt_space == NULL)
|
|
i915_gem_object_truncate(obj);
|
|
|
|
args->retained = obj->madv != __I915_MADV_PURGED;
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
|
|
size_t size)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
obj = kzalloc(sizeof(*obj), GFP_KERNEL);
|
|
if (obj == NULL)
|
|
return NULL;
|
|
|
|
if (drm_gem_object_init(dev, &obj->base, size) != 0) {
|
|
kfree(obj);
|
|
return NULL;
|
|
}
|
|
|
|
i915_gem_info_add_obj(dev_priv, size);
|
|
|
|
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
|
|
|
|
obj->agp_type = AGP_USER_MEMORY;
|
|
obj->base.driver_private = NULL;
|
|
obj->fence_reg = I915_FENCE_REG_NONE;
|
|
INIT_LIST_HEAD(&obj->mm_list);
|
|
INIT_LIST_HEAD(&obj->gtt_list);
|
|
INIT_LIST_HEAD(&obj->ring_list);
|
|
INIT_LIST_HEAD(&obj->exec_list);
|
|
INIT_LIST_HEAD(&obj->gpu_write_list);
|
|
obj->madv = I915_MADV_WILLNEED;
|
|
/* Avoid an unnecessary call to unbind on the first bind. */
|
|
obj->map_and_fenceable = true;
|
|
|
|
return obj;
|
|
}
|
|
|
|
int i915_gem_init_object(struct drm_gem_object *obj)
|
|
{
|
|
BUG();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
ret = i915_gem_object_unbind(obj);
|
|
if (ret == -ERESTARTSYS) {
|
|
list_move(&obj->mm_list,
|
|
&dev_priv->mm.deferred_free_list);
|
|
return;
|
|
}
|
|
|
|
if (obj->base.map_list.map)
|
|
i915_gem_free_mmap_offset(obj);
|
|
|
|
drm_gem_object_release(&obj->base);
|
|
i915_gem_info_remove_obj(dev_priv, obj->base.size);
|
|
|
|
kfree(obj->page_cpu_valid);
|
|
kfree(obj->bit_17);
|
|
kfree(obj);
|
|
}
|
|
|
|
void i915_gem_free_object(struct drm_gem_object *gem_obj)
|
|
{
|
|
struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
|
|
struct drm_device *dev = obj->base.dev;
|
|
|
|
trace_i915_gem_object_destroy(obj);
|
|
|
|
while (obj->pin_count > 0)
|
|
i915_gem_object_unpin(obj);
|
|
|
|
if (obj->phys_obj)
|
|
i915_gem_detach_phys_object(dev, obj);
|
|
|
|
i915_gem_free_object_tail(obj);
|
|
}
|
|
|
|
int
|
|
i915_gem_idle(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
if (dev_priv->mm.suspended) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return 0;
|
|
}
|
|
|
|
ret = i915_gpu_idle(dev);
|
|
if (ret) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/* Under UMS, be paranoid and evict. */
|
|
if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
|
|
ret = i915_gem_evict_inactive(dev, false);
|
|
if (ret) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
i915_gem_reset_fences(dev);
|
|
|
|
/* Hack! Don't let anybody do execbuf while we don't control the chip.
|
|
* We need to replace this with a semaphore, or something.
|
|
* And not confound mm.suspended!
|
|
*/
|
|
dev_priv->mm.suspended = 1;
|
|
del_timer_sync(&dev_priv->hangcheck_timer);
|
|
|
|
i915_kernel_lost_context(dev);
|
|
i915_gem_cleanup_ringbuffer(dev);
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
/* Cancel the retire work handler, which should be idle now. */
|
|
cancel_delayed_work_sync(&dev_priv->mm.retire_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_init_ringbuffer(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
ret = intel_init_render_ring_buffer(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (HAS_BSD(dev)) {
|
|
ret = intel_init_bsd_ring_buffer(dev);
|
|
if (ret)
|
|
goto cleanup_render_ring;
|
|
}
|
|
|
|
if (HAS_BLT(dev)) {
|
|
ret = intel_init_blt_ring_buffer(dev);
|
|
if (ret)
|
|
goto cleanup_bsd_ring;
|
|
}
|
|
|
|
dev_priv->next_seqno = 1;
|
|
|
|
return 0;
|
|
|
|
cleanup_bsd_ring:
|
|
intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
|
|
cleanup_render_ring:
|
|
intel_cleanup_ring_buffer(&dev_priv->render_ring);
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
intel_cleanup_ring_buffer(&dev_priv->render_ring);
|
|
intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
|
|
intel_cleanup_ring_buffer(&dev_priv->blt_ring);
|
|
}
|
|
|
|
int
|
|
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return 0;
|
|
|
|
if (atomic_read(&dev_priv->mm.wedged)) {
|
|
DRM_ERROR("Reenabling wedged hardware, good luck\n");
|
|
atomic_set(&dev_priv->mm.wedged, 0);
|
|
}
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
dev_priv->mm.suspended = 0;
|
|
|
|
ret = i915_gem_init_ringbuffer(dev);
|
|
if (ret != 0) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
BUG_ON(!list_empty(&dev_priv->mm.active_list));
|
|
BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
|
|
BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
|
|
BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
|
|
BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
|
|
BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
|
|
BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
|
|
BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
|
|
BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
ret = drm_irq_install(dev);
|
|
if (ret)
|
|
goto cleanup_ringbuffer;
|
|
|
|
return 0;
|
|
|
|
cleanup_ringbuffer:
|
|
mutex_lock(&dev->struct_mutex);
|
|
i915_gem_cleanup_ringbuffer(dev);
|
|
dev_priv->mm.suspended = 1;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return 0;
|
|
|
|
drm_irq_uninstall(dev);
|
|
return i915_gem_idle(dev);
|
|
}
|
|
|
|
void
|
|
i915_gem_lastclose(struct drm_device *dev)
|
|
{
|
|
int ret;
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return;
|
|
|
|
ret = i915_gem_idle(dev);
|
|
if (ret)
|
|
DRM_ERROR("failed to idle hardware: %d\n", ret);
|
|
}
|
|
|
|
static void
|
|
init_ring_lists(struct intel_ring_buffer *ring)
|
|
{
|
|
INIT_LIST_HEAD(&ring->active_list);
|
|
INIT_LIST_HEAD(&ring->request_list);
|
|
INIT_LIST_HEAD(&ring->gpu_write_list);
|
|
}
|
|
|
|
void
|
|
i915_gem_load(struct drm_device *dev)
|
|
{
|
|
int i;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
INIT_LIST_HEAD(&dev_priv->mm.active_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
|
|
init_ring_lists(&dev_priv->render_ring);
|
|
init_ring_lists(&dev_priv->bsd_ring);
|
|
init_ring_lists(&dev_priv->blt_ring);
|
|
for (i = 0; i < 16; i++)
|
|
INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
|
|
INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
|
|
i915_gem_retire_work_handler);
|
|
init_completion(&dev_priv->error_completion);
|
|
|
|
/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
|
|
if (IS_GEN3(dev)) {
|
|
u32 tmp = I915_READ(MI_ARB_STATE);
|
|
if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
|
|
/* arb state is a masked write, so set bit + bit in mask */
|
|
tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
|
|
I915_WRITE(MI_ARB_STATE, tmp);
|
|
}
|
|
}
|
|
|
|
/* Old X drivers will take 0-2 for front, back, depth buffers */
|
|
if (!drm_core_check_feature(dev, DRIVER_MODESET))
|
|
dev_priv->fence_reg_start = 3;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
|
|
dev_priv->num_fence_regs = 16;
|
|
else
|
|
dev_priv->num_fence_regs = 8;
|
|
|
|
/* Initialize fence registers to zero */
|
|
switch (INTEL_INFO(dev)->gen) {
|
|
case 6:
|
|
for (i = 0; i < 16; i++)
|
|
I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
|
|
break;
|
|
case 5:
|
|
case 4:
|
|
for (i = 0; i < 16; i++)
|
|
I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
|
|
break;
|
|
case 3:
|
|
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
|
|
for (i = 0; i < 8; i++)
|
|
I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
|
|
case 2:
|
|
for (i = 0; i < 8; i++)
|
|
I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
|
|
break;
|
|
}
|
|
i915_gem_detect_bit_6_swizzle(dev);
|
|
init_waitqueue_head(&dev_priv->pending_flip_queue);
|
|
|
|
dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
|
|
dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
|
|
register_shrinker(&dev_priv->mm.inactive_shrinker);
|
|
}
|
|
|
|
/*
|
|
* Create a physically contiguous memory object for this object
|
|
* e.g. for cursor + overlay regs
|
|
*/
|
|
static int i915_gem_init_phys_object(struct drm_device *dev,
|
|
int id, int size, int align)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_phys_object *phys_obj;
|
|
int ret;
|
|
|
|
if (dev_priv->mm.phys_objs[id - 1] || !size)
|
|
return 0;
|
|
|
|
phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
|
|
if (!phys_obj)
|
|
return -ENOMEM;
|
|
|
|
phys_obj->id = id;
|
|
|
|
phys_obj->handle = drm_pci_alloc(dev, size, align);
|
|
if (!phys_obj->handle) {
|
|
ret = -ENOMEM;
|
|
goto kfree_obj;
|
|
}
|
|
#ifdef CONFIG_X86
|
|
set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
|
|
#endif
|
|
|
|
dev_priv->mm.phys_objs[id - 1] = phys_obj;
|
|
|
|
return 0;
|
|
kfree_obj:
|
|
kfree(phys_obj);
|
|
return ret;
|
|
}
|
|
|
|
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_phys_object *phys_obj;
|
|
|
|
if (!dev_priv->mm.phys_objs[id - 1])
|
|
return;
|
|
|
|
phys_obj = dev_priv->mm.phys_objs[id - 1];
|
|
if (phys_obj->cur_obj) {
|
|
i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
|
|
}
|
|
|
|
#ifdef CONFIG_X86
|
|
set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
|
|
#endif
|
|
drm_pci_free(dev, phys_obj->handle);
|
|
kfree(phys_obj);
|
|
dev_priv->mm.phys_objs[id - 1] = NULL;
|
|
}
|
|
|
|
void i915_gem_free_all_phys_object(struct drm_device *dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
|
|
i915_gem_free_phys_object(dev, i);
|
|
}
|
|
|
|
void i915_gem_detach_phys_object(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
|
|
char *vaddr;
|
|
int i;
|
|
int page_count;
|
|
|
|
if (!obj->phys_obj)
|
|
return;
|
|
vaddr = obj->phys_obj->handle->vaddr;
|
|
|
|
page_count = obj->base.size / PAGE_SIZE;
|
|
for (i = 0; i < page_count; i++) {
|
|
struct page *page = read_cache_page_gfp(mapping, i,
|
|
GFP_HIGHUSER | __GFP_RECLAIMABLE);
|
|
if (!IS_ERR(page)) {
|
|
char *dst = kmap_atomic(page);
|
|
memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
|
|
kunmap_atomic(dst);
|
|
|
|
drm_clflush_pages(&page, 1);
|
|
|
|
set_page_dirty(page);
|
|
mark_page_accessed(page);
|
|
page_cache_release(page);
|
|
}
|
|
}
|
|
intel_gtt_chipset_flush();
|
|
|
|
obj->phys_obj->cur_obj = NULL;
|
|
obj->phys_obj = NULL;
|
|
}
|
|
|
|
int
|
|
i915_gem_attach_phys_object(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
int id,
|
|
int align)
|
|
{
|
|
struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
int ret = 0;
|
|
int page_count;
|
|
int i;
|
|
|
|
if (id > I915_MAX_PHYS_OBJECT)
|
|
return -EINVAL;
|
|
|
|
if (obj->phys_obj) {
|
|
if (obj->phys_obj->id == id)
|
|
return 0;
|
|
i915_gem_detach_phys_object(dev, obj);
|
|
}
|
|
|
|
/* create a new object */
|
|
if (!dev_priv->mm.phys_objs[id - 1]) {
|
|
ret = i915_gem_init_phys_object(dev, id,
|
|
obj->base.size, align);
|
|
if (ret) {
|
|
DRM_ERROR("failed to init phys object %d size: %zu\n",
|
|
id, obj->base.size);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* bind to the object */
|
|
obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
|
|
obj->phys_obj->cur_obj = obj;
|
|
|
|
page_count = obj->base.size / PAGE_SIZE;
|
|
|
|
for (i = 0; i < page_count; i++) {
|
|
struct page *page;
|
|
char *dst, *src;
|
|
|
|
page = read_cache_page_gfp(mapping, i,
|
|
GFP_HIGHUSER | __GFP_RECLAIMABLE);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
src = kmap_atomic(page);
|
|
dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
|
|
memcpy(dst, src, PAGE_SIZE);
|
|
kunmap_atomic(src);
|
|
|
|
mark_page_accessed(page);
|
|
page_cache_release(page);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_phys_pwrite(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
|
|
char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
|
|
|
|
if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
|
|
unsigned long unwritten;
|
|
|
|
/* The physical object once assigned is fixed for the lifetime
|
|
* of the obj, so we can safely drop the lock and continue
|
|
* to access vaddr.
|
|
*/
|
|
mutex_unlock(&dev->struct_mutex);
|
|
unwritten = copy_from_user(vaddr, user_data, args->size);
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (unwritten)
|
|
return -EFAULT;
|
|
}
|
|
|
|
intel_gtt_chipset_flush();
|
|
return 0;
|
|
}
|
|
|
|
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *file_priv = file->driver_priv;
|
|
|
|
/* Clean up our request list when the client is going away, so that
|
|
* later retire_requests won't dereference our soon-to-be-gone
|
|
* file_priv.
|
|
*/
|
|
spin_lock(&file_priv->mm.lock);
|
|
while (!list_empty(&file_priv->mm.request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
|
|
request = list_first_entry(&file_priv->mm.request_list,
|
|
struct drm_i915_gem_request,
|
|
client_list);
|
|
list_del(&request->client_list);
|
|
request->file_priv = NULL;
|
|
}
|
|
spin_unlock(&file_priv->mm.lock);
|
|
}
|
|
|
|
static int
|
|
i915_gpu_is_active(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
int lists_empty;
|
|
|
|
lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
|
|
list_empty(&dev_priv->mm.active_list);
|
|
|
|
return !lists_empty;
|
|
}
|
|
|
|
static int
|
|
i915_gem_inactive_shrink(struct shrinker *shrinker,
|
|
int nr_to_scan,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(shrinker,
|
|
struct drm_i915_private,
|
|
mm.inactive_shrinker);
|
|
struct drm_device *dev = dev_priv->dev;
|
|
struct drm_i915_gem_object *obj, *next;
|
|
int cnt;
|
|
|
|
if (!mutex_trylock(&dev->struct_mutex))
|
|
return 0;
|
|
|
|
/* "fast-path" to count number of available objects */
|
|
if (nr_to_scan == 0) {
|
|
cnt = 0;
|
|
list_for_each_entry(obj,
|
|
&dev_priv->mm.inactive_list,
|
|
mm_list)
|
|
cnt++;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return cnt / 100 * sysctl_vfs_cache_pressure;
|
|
}
|
|
|
|
rescan:
|
|
/* first scan for clean buffers */
|
|
i915_gem_retire_requests(dev);
|
|
|
|
list_for_each_entry_safe(obj, next,
|
|
&dev_priv->mm.inactive_list,
|
|
mm_list) {
|
|
if (i915_gem_object_is_purgeable(obj)) {
|
|
if (i915_gem_object_unbind(obj) == 0 &&
|
|
--nr_to_scan == 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* second pass, evict/count anything still on the inactive list */
|
|
cnt = 0;
|
|
list_for_each_entry_safe(obj, next,
|
|
&dev_priv->mm.inactive_list,
|
|
mm_list) {
|
|
if (nr_to_scan &&
|
|
i915_gem_object_unbind(obj) == 0)
|
|
nr_to_scan--;
|
|
else
|
|
cnt++;
|
|
}
|
|
|
|
if (nr_to_scan && i915_gpu_is_active(dev)) {
|
|
/*
|
|
* We are desperate for pages, so as a last resort, wait
|
|
* for the GPU to finish and discard whatever we can.
|
|
* This has a dramatic impact to reduce the number of
|
|
* OOM-killer events whilst running the GPU aggressively.
|
|
*/
|
|
if (i915_gpu_idle(dev) == 0)
|
|
goto rescan;
|
|
}
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return cnt / 100 * sysctl_vfs_cache_pressure;
|
|
}
|