linux/drivers/usb/gadget/f_eem.c
Yauheni Kaliuta 505d1f69ec usb: gadget: eem: fix echo command processing
During processing of bunch of eem frames if "echo" command is found
skb is cloned and the cloned version should be used to send reply.
Unfortunately, the data of the original skb were actually used and
the cloned skb is never freed.

Using the cloned skb and freeing the skb in the completion callback
for usb request.

Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@nokia.com>
Reviewed-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-04-13 15:44:01 -07:00

565 lines
14 KiB
C

/*
* f_eem.c -- USB CDC Ethernet (EEM) link function driver
*
* Copyright (C) 2003-2005,2008 David Brownell
* Copyright (C) 2008 Nokia Corporation
* Copyright (C) 2009 EF Johnson Technologies
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/etherdevice.h>
#include <linux/crc32.h>
#include <linux/slab.h>
#include "u_ether.h"
#define EEM_HLEN 2
/*
* This function is a "CDC Ethernet Emulation Model" (CDC EEM)
* Ethernet link.
*/
struct eem_ep_descs {
struct usb_endpoint_descriptor *in;
struct usb_endpoint_descriptor *out;
};
struct f_eem {
struct gether port;
u8 ctrl_id;
struct eem_ep_descs fs;
struct eem_ep_descs hs;
};
static inline struct f_eem *func_to_eem(struct usb_function *f)
{
return container_of(f, struct f_eem, port.func);
}
/*-------------------------------------------------------------------------*/
/* interface descriptor: */
static struct usb_interface_descriptor eem_intf __initdata = {
.bLength = sizeof eem_intf,
.bDescriptorType = USB_DT_INTERFACE,
/* .bInterfaceNumber = DYNAMIC */
.bNumEndpoints = 2,
.bInterfaceClass = USB_CLASS_COMM,
.bInterfaceSubClass = USB_CDC_SUBCLASS_EEM,
.bInterfaceProtocol = USB_CDC_PROTO_EEM,
/* .iInterface = DYNAMIC */
};
/* full speed support: */
static struct usb_endpoint_descriptor eem_fs_in_desc __initdata = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
};
static struct usb_endpoint_descriptor eem_fs_out_desc __initdata = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
};
static struct usb_descriptor_header *eem_fs_function[] __initdata = {
/* CDC EEM control descriptors */
(struct usb_descriptor_header *) &eem_intf,
(struct usb_descriptor_header *) &eem_fs_in_desc,
(struct usb_descriptor_header *) &eem_fs_out_desc,
NULL,
};
/* high speed support: */
static struct usb_endpoint_descriptor eem_hs_in_desc __initdata = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(512),
};
static struct usb_endpoint_descriptor eem_hs_out_desc __initdata = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(512),
};
static struct usb_descriptor_header *eem_hs_function[] __initdata = {
/* CDC EEM control descriptors */
(struct usb_descriptor_header *) &eem_intf,
(struct usb_descriptor_header *) &eem_hs_in_desc,
(struct usb_descriptor_header *) &eem_hs_out_desc,
NULL,
};
/* string descriptors: */
static struct usb_string eem_string_defs[] = {
[0].s = "CDC Ethernet Emulation Model (EEM)",
{ } /* end of list */
};
static struct usb_gadget_strings eem_string_table = {
.language = 0x0409, /* en-us */
.strings = eem_string_defs,
};
static struct usb_gadget_strings *eem_strings[] = {
&eem_string_table,
NULL,
};
/*-------------------------------------------------------------------------*/
static int eem_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl)
{
struct usb_composite_dev *cdev = f->config->cdev;
int value = -EOPNOTSUPP;
u16 w_index = le16_to_cpu(ctrl->wIndex);
u16 w_value = le16_to_cpu(ctrl->wValue);
u16 w_length = le16_to_cpu(ctrl->wLength);
DBG(cdev, "invalid control req%02x.%02x v%04x i%04x l%d\n",
ctrl->bRequestType, ctrl->bRequest,
w_value, w_index, w_length);
/* device either stalls (value < 0) or reports success */
return value;
}
static int eem_set_alt(struct usb_function *f, unsigned intf, unsigned alt)
{
struct f_eem *eem = func_to_eem(f);
struct usb_composite_dev *cdev = f->config->cdev;
struct net_device *net;
/* we know alt == 0, so this is an activation or a reset */
if (alt != 0)
goto fail;
if (intf == eem->ctrl_id) {
if (eem->port.in_ep->driver_data) {
DBG(cdev, "reset eem\n");
gether_disconnect(&eem->port);
}
if (!eem->port.in) {
DBG(cdev, "init eem\n");
eem->port.in = ep_choose(cdev->gadget,
eem->hs.in, eem->fs.in);
eem->port.out = ep_choose(cdev->gadget,
eem->hs.out, eem->fs.out);
}
/* zlps should not occur because zero-length EEM packets
* will be inserted in those cases where they would occur
*/
eem->port.is_zlp_ok = 1;
eem->port.cdc_filter = DEFAULT_FILTER;
DBG(cdev, "activate eem\n");
net = gether_connect(&eem->port);
if (IS_ERR(net))
return PTR_ERR(net);
} else
goto fail;
return 0;
fail:
return -EINVAL;
}
static void eem_disable(struct usb_function *f)
{
struct f_eem *eem = func_to_eem(f);
struct usb_composite_dev *cdev = f->config->cdev;
DBG(cdev, "eem deactivated\n");
if (eem->port.in_ep->driver_data)
gether_disconnect(&eem->port);
}
/*-------------------------------------------------------------------------*/
/* EEM function driver setup/binding */
static int __init
eem_bind(struct usb_configuration *c, struct usb_function *f)
{
struct usb_composite_dev *cdev = c->cdev;
struct f_eem *eem = func_to_eem(f);
int status;
struct usb_ep *ep;
/* allocate instance-specific interface IDs */
status = usb_interface_id(c, f);
if (status < 0)
goto fail;
eem->ctrl_id = status;
eem_intf.bInterfaceNumber = status;
status = -ENODEV;
/* allocate instance-specific endpoints */
ep = usb_ep_autoconfig(cdev->gadget, &eem_fs_in_desc);
if (!ep)
goto fail;
eem->port.in_ep = ep;
ep->driver_data = cdev; /* claim */
ep = usb_ep_autoconfig(cdev->gadget, &eem_fs_out_desc);
if (!ep)
goto fail;
eem->port.out_ep = ep;
ep->driver_data = cdev; /* claim */
status = -ENOMEM;
/* copy descriptors, and track endpoint copies */
f->descriptors = usb_copy_descriptors(eem_fs_function);
if (!f->descriptors)
goto fail;
eem->fs.in = usb_find_endpoint(eem_fs_function,
f->descriptors, &eem_fs_in_desc);
eem->fs.out = usb_find_endpoint(eem_fs_function,
f->descriptors, &eem_fs_out_desc);
/* support all relevant hardware speeds... we expect that when
* hardware is dual speed, all bulk-capable endpoints work at
* both speeds
*/
if (gadget_is_dualspeed(c->cdev->gadget)) {
eem_hs_in_desc.bEndpointAddress =
eem_fs_in_desc.bEndpointAddress;
eem_hs_out_desc.bEndpointAddress =
eem_fs_out_desc.bEndpointAddress;
/* copy descriptors, and track endpoint copies */
f->hs_descriptors = usb_copy_descriptors(eem_hs_function);
if (!f->hs_descriptors)
goto fail;
eem->hs.in = usb_find_endpoint(eem_hs_function,
f->hs_descriptors, &eem_hs_in_desc);
eem->hs.out = usb_find_endpoint(eem_hs_function,
f->hs_descriptors, &eem_hs_out_desc);
}
DBG(cdev, "CDC Ethernet (EEM): %s speed IN/%s OUT/%s\n",
gadget_is_dualspeed(c->cdev->gadget) ? "dual" : "full",
eem->port.in_ep->name, eem->port.out_ep->name);
return 0;
fail:
if (f->descriptors)
usb_free_descriptors(f->descriptors);
/* we might as well release our claims on endpoints */
if (eem->port.out)
eem->port.out_ep->driver_data = NULL;
if (eem->port.in)
eem->port.in_ep->driver_data = NULL;
ERROR(cdev, "%s: can't bind, err %d\n", f->name, status);
return status;
}
static void
eem_unbind(struct usb_configuration *c, struct usb_function *f)
{
struct f_eem *eem = func_to_eem(f);
DBG(c->cdev, "eem unbind\n");
if (gadget_is_dualspeed(c->cdev->gadget))
usb_free_descriptors(f->hs_descriptors);
usb_free_descriptors(f->descriptors);
kfree(eem);
}
static void eem_cmd_complete(struct usb_ep *ep, struct usb_request *req)
{
struct sk_buff *skb = (struct sk_buff *)req->context;
dev_kfree_skb_any(skb);
}
/*
* Add the EEM header and ethernet checksum.
* We currently do not attempt to put multiple ethernet frames
* into a single USB transfer
*/
static struct sk_buff *eem_wrap(struct gether *port, struct sk_buff *skb)
{
struct sk_buff *skb2 = NULL;
struct usb_ep *in = port->in_ep;
int padlen = 0;
u16 len = skb->len;
if (!skb_cloned(skb)) {
int headroom = skb_headroom(skb);
int tailroom = skb_tailroom(skb);
/* When (len + EEM_HLEN + ETH_FCS_LEN) % in->maxpacket) is 0,
* stick two bytes of zero-length EEM packet on the end.
*/
if (((len + EEM_HLEN + ETH_FCS_LEN) % in->maxpacket) == 0)
padlen += 2;
if ((tailroom >= (ETH_FCS_LEN + padlen)) &&
(headroom >= EEM_HLEN))
goto done;
}
skb2 = skb_copy_expand(skb, EEM_HLEN, ETH_FCS_LEN + padlen, GFP_ATOMIC);
dev_kfree_skb_any(skb);
skb = skb2;
if (!skb)
return skb;
done:
/* use the "no CRC" option */
put_unaligned_be32(0xdeadbeef, skb_put(skb, 4));
/* EEM packet header format:
* b0..13: length of ethernet frame
* b14: bmCRC (0 == sentinel CRC)
* b15: bmType (0 == data)
*/
len = skb->len;
put_unaligned_le16(len & 0x3FFF, skb_push(skb, 2));
/* add a zero-length EEM packet, if needed */
if (padlen)
put_unaligned_le16(0, skb_put(skb, 2));
return skb;
}
/*
* Remove the EEM header. Note that there can be many EEM packets in a single
* USB transfer, so we need to break them out and handle them independently.
*/
static int eem_unwrap(struct gether *port,
struct sk_buff *skb,
struct sk_buff_head *list)
{
struct usb_composite_dev *cdev = port->func.config->cdev;
int status = 0;
do {
struct sk_buff *skb2;
u16 header;
u16 len = 0;
if (skb->len < EEM_HLEN) {
status = -EINVAL;
DBG(cdev, "invalid EEM header\n");
goto error;
}
/* remove the EEM header */
header = get_unaligned_le16(skb->data);
skb_pull(skb, EEM_HLEN);
/* EEM packet header format:
* b0..14: EEM type dependent (data or command)
* b15: bmType (0 == data, 1 == command)
*/
if (header & BIT(15)) {
struct usb_request *req = cdev->req;
u16 bmEEMCmd;
/* EEM command packet format:
* b0..10: bmEEMCmdParam
* b11..13: bmEEMCmd
* b14: reserved (must be zero)
* b15: bmType (1 == command)
*/
if (header & BIT(14))
continue;
bmEEMCmd = (header >> 11) & 0x7;
switch (bmEEMCmd) {
case 0: /* echo */
len = header & 0x7FF;
if (skb->len < len) {
status = -EOVERFLOW;
goto error;
}
skb2 = skb_clone(skb, GFP_ATOMIC);
if (unlikely(!skb2)) {
DBG(cdev, "EEM echo response error\n");
goto next;
}
skb_trim(skb2, len);
put_unaligned_le16(BIT(15) | BIT(11) | len,
skb_push(skb2, 2));
skb_copy_bits(skb2, 0, req->buf, skb2->len);
req->length = skb2->len;
req->complete = eem_cmd_complete;
req->zero = 1;
req->context = skb2;
if (usb_ep_queue(port->in_ep, req, GFP_ATOMIC))
DBG(cdev, "echo response queue fail\n");
break;
case 1: /* echo response */
case 2: /* suspend hint */
case 3: /* response hint */
case 4: /* response complete hint */
case 5: /* tickle */
default: /* reserved */
continue;
}
} else {
u32 crc, crc2;
struct sk_buff *skb3;
/* check for zero-length EEM packet */
if (header == 0)
continue;
/* EEM data packet format:
* b0..13: length of ethernet frame
* b14: bmCRC (0 == sentinel, 1 == calculated)
* b15: bmType (0 == data)
*/
len = header & 0x3FFF;
if ((skb->len < len)
|| (len < (ETH_HLEN + ETH_FCS_LEN))) {
status = -EINVAL;
goto error;
}
/* validate CRC */
if (header & BIT(14)) {
crc = get_unaligned_le32(skb->data + len
- ETH_FCS_LEN);
crc2 = ~crc32_le(~0,
skb->data, len - ETH_FCS_LEN);
} else {
crc = get_unaligned_be32(skb->data + len
- ETH_FCS_LEN);
crc2 = 0xdeadbeef;
}
if (crc != crc2) {
DBG(cdev, "invalid EEM CRC\n");
goto next;
}
skb2 = skb_clone(skb, GFP_ATOMIC);
if (unlikely(!skb2)) {
DBG(cdev, "unable to unframe EEM packet\n");
continue;
}
skb_trim(skb2, len - ETH_FCS_LEN);
skb3 = skb_copy_expand(skb2,
NET_IP_ALIGN,
0,
GFP_ATOMIC);
if (unlikely(!skb3)) {
DBG(cdev, "unable to realign EEM packet\n");
dev_kfree_skb_any(skb2);
continue;
}
dev_kfree_skb_any(skb2);
skb_queue_tail(list, skb3);
}
next:
skb_pull(skb, len);
} while (skb->len);
error:
dev_kfree_skb_any(skb);
return status;
}
/**
* eem_bind_config - add CDC Ethernet (EEM) network link to a configuration
* @c: the configuration to support the network link
* Context: single threaded during gadget setup
*
* Returns zero on success, else negative errno.
*
* Caller must have called @gether_setup(). Caller is also responsible
* for calling @gether_cleanup() before module unload.
*/
int __init eem_bind_config(struct usb_configuration *c)
{
struct f_eem *eem;
int status;
/* maybe allocate device-global string IDs */
if (eem_string_defs[0].id == 0) {
/* control interface label */
status = usb_string_id(c->cdev);
if (status < 0)
return status;
eem_string_defs[0].id = status;
eem_intf.iInterface = status;
}
/* allocate and initialize one new instance */
eem = kzalloc(sizeof *eem, GFP_KERNEL);
if (!eem)
return -ENOMEM;
eem->port.cdc_filter = DEFAULT_FILTER;
eem->port.func.name = "cdc_eem";
eem->port.func.strings = eem_strings;
/* descriptors are per-instance copies */
eem->port.func.bind = eem_bind;
eem->port.func.unbind = eem_unbind;
eem->port.func.set_alt = eem_set_alt;
eem->port.func.setup = eem_setup;
eem->port.func.disable = eem_disable;
eem->port.wrap = eem_wrap;
eem->port.unwrap = eem_unwrap;
eem->port.header_len = EEM_HLEN;
status = usb_add_function(c, &eem->port.func);
if (status)
kfree(eem);
return status;
}